Date of Award
6-2013
Document Type
Open Access
Degree Name
Bachelor of Science
Department
Mathematics
First Advisor
Karl Zimmerman
Language
English
Keywords
abstract algebra, number theory, arithmetic
Abstract
Though it may seem non-intuitive, abstract algebra is often useful in the study of number theory. In this thesis, we explore some uses of abstract algebra to prove number theoretic statements. We begin by examining the structure of unique factorization domains in general. Then we introduce number fields and their rings of algebraic integers, whose structures have characteristics that are analogous to some of those of the rational numbers and the rational integers. Next we discuss quadratic fields, a special case of number fields that have important applications to number theoretic problems. We will use the structures that we introduce throughout the thesis to prove several number theoretic statements, including the Fundamental Theorem of Arithmetic, Fermat’s Theorem on Sums of Squares, and the Ramanujan-Nagell Theorem, as well as to generate a myriad of other interesting tangentially related results.
Recommended Citation
Sullivan, Mark, "An Algebraic Approach to Number Theory using Unique Factorization" (2013). Honors Theses. 742.
https://digitalworks.union.edu/theses/742