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Abstract

PORAT, ZACHARY Classification of Torsion Subgroups for Mordell Curves

Department of Mathematics, March 2020

ADVISOR: HATLEY, JEFFREY

Elliptic curves are an interesting area of study in mathematics, laying at

the intersection of algebra, geometry, and number theory. They are a powerful

tool, having applications in everything from Andrew Wiles’ proof of Fermat’s

Last Theorem to cybersecurity. In this paper, we first provide an introduction

to elliptic curves by discussing their geometry and associated group structure.

We then narrow our focus, further investigating the torsion subgroups of ellip-

tic curves. In particular, we will examine two methods used to classify these

subgroups. We finish by employing these methods to categorize the torsion

subgroups for a specific family of elliptic curves known as Mordell curves.
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Notation

We shall use the following notation throughout this paper:

N = {1, 2, 3, . . .} is the set of natural numbers.

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} is the group of integers.

Q = {m
n

: m,n ∈ Z, n 6= 0} is the field of rational numbers.

R is the field of real numbers.

C = {a+ bi : a, b ∈ R, i2 = −1} is the field of complex numbers.
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1. Introduction to Elliptic Curves

Elliptic curves are an interesting area of study, laying at the intersection of

algebra, geometry, and number theory. They are a powerful tool, famously

being used in Andrew Wiles’ proof of Fermat’s Last Theorem [Wil95] for ex-

ample, while remaining relatively accessible for junior mathematicians. The

aim of this paper is to first provide an overview of elliptic curves and then dive

more deeply into their characteristics, primarily focusing on their so-called

torsion subgroups for a specific family of curves known as Mordell curves.

1.1. Definition and Geometry. In order to begin our discussion of elliptic

curves, we must first construct them. Let’s start with an arbitrary cubic curve

in the following form:

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0 (1.1)

We will assume this cubic is rational, meaning that its coefficients are rational

numbers. Even with this constraint, the generalized equation (1.1) is still

unwieldy to work with. We need ten (rational) coefficients just to define the

curve! It would be nice if we could find a method to simplify the equation for

a cubic curve. Enter Weierstrass normal form. Curves in this form have

the following general equation:

y2 = x3 + ax2 + bx+ c (1.2)

We obtain this simplified form from (1.1) by performing a series of transfor-

mations. These transformations also allow us to depict the cubic curve in the
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affine plane such that the curve is always oriented symmetrically with respect

to the x-axis.

Note, in order to obtain this symmetry, we actually have to work with curves

in the projective plane defined over the field of rational numbers, P2(Q). As a

result, we pick up an additional rational point on the curve called the point

at infinity, denoted by O.1 A complete explanation of the transformation

process can be found in [ST15, §1.3].

Remark 1.1.1. Any cubic with at least one rational point can be expressed

in this form. Thus, for the remainder of this paper, we will assume all curves

are presented in Weierstrass normal form.

Before we introduce the definition of an elliptic curve, we also need to make

the following distinction. We consider a projective curve C : F (X, Y, Z) = 0

to be singular at a point P ∈ C if and only if

∂F

∂X
(P ) =

∂F

∂Y
(P ) =

∂F

∂Z
(P ) = 0.

In other words, C is singular at a point P if the tangent line at the point

vanishes. Equivalently, P is a singular point on C if F has a repeated root

at P . Otherwise, we say that C is nonsingular at P . If C is nonsingular at

every point, we say that C is a smooth (or nonsingular) curve. Geometrically

speaking, smooth curves have no cusps or self-intersections, which is why every

point on the curve has a well-defined tangent line.

1In projective space, lines that are parallel in the affine plane actually intersect at a so-called
point at infinity. For a cubic, we have one such point, which corresponds to the projective
point [0 : 1 : 0] on the projectivized curve. Shortly, we will understand the importance of
this point in relation to the group structure of elliptic curves.
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(a) y2 = x3 + 3x2

x

y

(b) y2 = x3

Figure 1. Two of the three possible types of singular curves.

In contrast, there also exist singular curves, the opposite of smooth curves.

Singular curves come in three variants, two of which are shown in Figure

1. Unlike smooth curves, singular curves have drastically different behavior

because of their unsavory properties.

Motivated by our simplifications of the general cubic equation and with this

distinction dispatched, we arrive at the following definition:

Definition 1.1.2. An elliptic curve is the set of solutions, including the

point at infinity O, which satisfy the following equation:

y2 = x3 + ax2 + bx+ c (1.3)

where a, b, c ∈ Z and the curve is nonsingular. An example of an elliptic curve

is shown in Figure 2.

The condition that the curve be smooth is vital when defining an elliptic

curve. While we could look at a curve graphically to determine smoothness and

consequently, elliptic curve eligibility, an efficient computational test would be

a helpful tool. (Of course, we could compute the partial derivatives, set them
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Figure 2. The elliptic curve y2 = x3 − 5x+ 8.

equal to zero, and solve for potential singular points, but doing so is hardly

efficient.) Such a test exists and involves the discriminant of the equation for

a cubic curve.

This notion of a discriminant for a curve should not be wholly unfamiliar.

Recall that there exists such a quantity for a quadratic curve with equation

ax2 + bx + c = 0 and a 6= 0. For this type of curve, the discriminant is the

quantity given by

b2 − 4ac.

The discriminant can be positive, zero, or negative, and this determines how

many solutions there are to the given quadratic equation. In particular, a

discriminant of zero indicates that the quadratic has a repeated real number

solution.

The discriminant for a cubic curve plays the same role; if it is zero, then

the cubic has a repeated root. We know that if the curve has a repeated root,

then there is at least one point at which the partial derivatives simultaneously

vanish and therefore, the curve is not smooth. Thus, the discriminant offers
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an alternative to calculating the partial derivatives when verifying smoothness

for a given curve.

Definition 1.1.3. The discriminant of a curve E is defined as the following

quantity:

∆E = −16(4a3c− a2b2 − 18abc+ 4b3 + 27c2)

A curve is smooth if and only if ∆E 6= 0.

1.2. Binary Operations. The previous section laid the groundwork for un-

derstanding elliptic curves by providing a geometric interpretation of their

structure. In this section, we dive more deeply into their geometry, while

hinting at their algebraic connection. In particular, we can define a binary op-

eration between points on elliptic curves. Doing so allows us to relate curves

back to group theory, a subject area we understand well.

Let P and Q be two rational points on an elliptic curve, i.e. P = (x1, y1)

and Q = (x2, y2) are solutions to (1.3). Then, the secant line that passes

through both P and Q, call it L, must intersect the cubic at a third point.

We let P ∗Q denote this third point of intersection. Importantly, P ∗Q is also

a rational point. We explicitly find the relationship between the coordinates

of P , Q, and P ∗Q in Section 1.3, which supports these claims. See (1.5) for

confirmation.

If P = Q, then we define L to be the tangent line to the curve at P . Thus,

P ∗P is the point of intersection of the tangent line with the curve. Note, this

tangent line is always defined because we previously established that elliptic

curves are always smooth curves, which have well-defined tangent lines for

every point. The binary operation ∗ is shown in Figure 3.
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P
Q

P*Q
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Figure 3. The binary operation ∗ on points P and Q.

Now we are going to define another binary operation + in terms of the

previously-established operation ∗. Again, let P and Q be rational points

on an elliptic curve. Then, define P + Q = O ∗ (P ∗ Q) where O is the

point at infinity. Graphically, we can interpret drawing a line through O and

P ∗Q as drawing a vertical line through the point P ∗Q. We define the point

of intersection between the vertical line and the elliptic curve to be P + Q.

Since our curves are symmetric about the x-axis, this is equivalent to simply

reflecting P ∗Q across the x-axis. The process of finding P +Q graphically is

shown in Figure 4.

1.3. Duplication Formula. While the process for finding P +Q graphically

is fairly straightforward, it would be helpful to have a method for finding

it computationally. Let us start by explicitly defining points on our elliptic

curve. Let P = (x1, y1) and Q = (x2, y2) be points on an elliptic curve. Let

P ∗ Q = (x3, y3). Then, because of our earlier graphical argument, we also

have P +Q = (x3,−y3). Our goal is to calculate x3 and y3 in terms of known

quantities, so that we can easily determine P +Q. We define the line through

6



P
Q

P * Q

P + Q
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Figure 4. The process for defining the point P +Q.

P and Q, which we previously called L, as follows:

L : y = λx+ ν, where λ =
y2 − y1
x2 − x1

and ν = y1−λx1 = y2−λx2. (1.4)

To find the third point of intersection with the elliptic curve, we substitute

the equation for L from (1.4) into (1.3) to find

y2 = (λx+ ν)2 = x3 + ax2 + bx+ c.

Moving everything to one side and expanding the binomial, we have

0 = x3 + ax2 + bx+ c− (λ2x2 + 2λνx+ ν2).

Factoring and rearranging, we find

0 = x3 + (a− λ2)x2 + (b− 2λν)x+ (c− ν2).

Note, this is just a cubic in x. Therefore, its three roots, x1, x2, x3 give us the

x-coordinates of the three intersection points with L. Thus, we can rewrite
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the left side of the equation as

(x− x1)(x− x2)(x− x3) = x3 + (a− λ2)x2 + (b− 2λν)x+ (c− ν2). (1.5)

To find x3, we can equate the coefficients for each term in the polynomial on

the left side and the right side of (1.5). After expanding the left side, we

determine that the coefficients for the x2 terms in particular give the following

equality:

a− λ2 = −x1 − x2 − x3.

Thus, we arrive at an equation for x3:

x3 = λ2 − a− x1 − x2.

This value for x3 can then be substituted into L, the equation for y in terms

of x, to find an equation for y3:

y3 = λx3 + ν.

Thus, we have found a method for computing x3 and y3 using known quantities.

Let’s see a brief example.

Example 1.3.1. Examine the curve y2 = x3 + 9 with rational points P =

(−2, 1) and Q = (0, 3). First, we find the line L through P and Q:

y = x+ 3, so λ = 1 and ν = 3.

Now we have all we need to solve for x3 and y3. So, we have

x3 = λ2 − x1 − x2 = 3 and y3 = λx3 + ν = 6.
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Thus, we find P +Q = (x3,−y3) = (3,−6). �

While this general method is helpful, we more specifically want to focus on

the case when P = Q so that we can find a finite multiple of P . In this case,

we will derive a formula to find the x-value for P + P = 2P .

Let us start with the point P = (X, Y ). We want to find 2P = P + P =

O ∗ (P ∗ P ). We can no longer find λ as in the previous case where we had

distinct points, because the value would be undefined. Instead, recall that

when we apply the ∗ binary operation to a single point, the resulting point

P ∗ P is the point of intersection of the tangent line with the elliptic curve.

We can find an equation for this tangent line to the cubic by using the curve’s

equation:

y2 = f(x) = x3 + ax2 + bx+ c.

If we implicitly differentiate, we can find the slope of the tangent line:

λ =
dy

dx
(P ) =

f ′(X)

2Y
.

Let’s return to our previous example.

Example 1.3.2. Again we will look at the curve y2 = x3 + 9, but this time,

we will only work with P = (−2, 1). Our goal is to compute 2P . First, we

find the slope of the tangent line:

λ =
f ′(X)

2Y
=
f ′(−2)

2
=

12

2
= 6

Since the tangent line passes through P , we can find ν:

ν = Y − λX = 1− (6)(−2) = 13
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With values for λ and ν, we have the needed information to compute x3 and

y3. Plugging in, we find

x3 = λ2 − x1 − x2 = 36− (−2)− (−2) = 40 and

y3 = λx3 + ν = (6)(40) + 13 = 253.

Thus, we find P + P = 2P = (x3,−y3) = (40,−253). �

For our purposes, it will be helpful to have an explicit expression for 2P in

terms of the coordinates of P . Substituting λ = f ′(X)/2Y into the formulas

from above, simplifying over a common denominator, and replacing Y 2 with

X3 + aX2 + bX + c, we arrive at the following:

x-coordinate of 2(X, Y ) =
X4 − 2bX2 − 8cX + b2 − 4ac

4(X3 + aX2 + bX + c)
.

This formula for x(2P ) is called the duplication formula. Let us quickly

verify our result from the previous example. Since y2 = x3 + 9, we have

coefficients a = b = 0 and c = 9. Thus, we have

x-coordinate of 2P =
X4 − 8cX

4(X3 + c)
=

(−2)4 − 8(9)(−2)

4 ((−2)3 + 9)
=

160

4
= 40

which is indeed the same value. With the duplication formula in hand, finding

the formula for y(2P ) is straightforward and left to the reader.

1.4. Group Structure. Recall that we are searching for an algebraic inter-

pretation of elliptic curves. Ideally, we want to connect them back to groups,

a well-understood subject. So, it would be nice to show that the binary oper-

ation +, with the rational points on the curve E, form a group. In order to

10



form a group, four properties must be satisfied. We will show that + on the

curve does in fact satisfy all these properties.

1. Closure: From the previous examples, it is easy to see that (E,+)

is closed. So long as we start with a point on the elliptic curve in a

specific field, the binary operation, when applied to two points on the

curve, produces another point on the curve.

2. Identity: As one might suspect, the identity element is the point

at infinity, O. For points P and Q on the elliptic curve, P + Q =

O ∗ (P ∗ Q). Thus, for an arbitrary point P on the elliptic curve,

O + P = O ∗ (O ∗ P ). The right-hand-side of this equation simply

reflects P over the x-axis twice, which returns it to its original position.

Thus, O+P = P for any P on the elliptic curve. Therefore, an identity

element exists for the group.

3. Inverse: To show the existence of inverses, we start with an arbitrary

point P on the elliptic curve. Then, we reflect P across the x-axis and

suggestively notate this new point −P . Applying the binary operation,

we have P + (−P ) = O ∗ (P ∗ (−P )). P ∗ (−P ) is just a vertical line

graphically. This implies that P ∗ (−P ) only intersects the point at

infinity. Therefore, P ∗ (−P ) = O. Since O ∗ O = O, P + (−P ) = O.

Thus, −P is the inverse of P .

4. Associativity: Proving associativity is much more difficult than the

previous three properties. So instead, we will present a graphical

demonstration of the property in Figure 5. This provides a fairly con-

vincing argument that is easier to understand than the proof. For those

unsatisfied, the complete proof can be found in [ST15, §1.2]. Note, it
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suffices to show that P ∗ (Q+R) = (P +Q) ∗R because we can simply

reflect this point over the x-axis to obtain P + (Q+R) = (P +Q) +R.

(Thankfully this is the case, as it prevents adding yet another line to

the figure.)

P

R Q

P* Q

P+ Q

Q* R

Q+ R
(P+Q)*R

P*(Q+R)

x

y

Figure 5. A graphical interpretation of the associativity property.

While knowing that an elliptic curve E with the binary operation + forms a

group is a helpful piece of information, we can in fact conclude something even

more remarkable. Since we analyze the set of points on the curve over the field

of rational numbers, denoted E(Q), the set of points form an abelian group

that is finitely generated. This idea was conjectured by Henri Poincaré in 1908

[Poi08], and proved by Louis Mordell in 1922 [Mor22], with a generalization

provided by André Weil in 1928 [Wei28].
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Theorem 1.4.1 (Mordell-Weil). E(Q) is a finitely generated abelian group.

In other words, there are points P1, . . . , Pn such that any other point Q in

E(Q) can be expressed as a linear combination

Q = a1P1 + a2P2 + · · ·+ anPn

for some ai ∈ Z.

While the complete proof of this theorem is not in the scope of this paper, it

is easy to show commutativity for +, thus proving E(Q) is an abelian group.

Clearly, ∗ is commutative. There exists one secant line between two points on

the curve, so the intersection between this line and the curve always occurs

at the same point. Since + simply takes these intersection points and reflects

them across the x-axis, it immediately follows that + is commutative too. We

still present the theorem in its entirety because the result is useful. A complete

proof can be found in [Sil86, Thm. VIII.6.7].

1.5. Torsion Subgroup. With this information, we can now start discussing

particularly interesting points on the elliptic curve called torsion points.

Definition 1.5.1. The torsion points of an elliptic curve are defined as

follows:

E(Q)tors = {P ∈ E(Q) : there is n ∈ N such that nP = O}.

Here, n is known as the (finite) order of the point P .

First, we note that E(Q)tors ⊂ E(Q). Since E(Q) is a finitely generated

abelian group from the Mordell-Weil theorem, we recognize that E(Q)tors must
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be finite, in addition to being abelian. Recall from group theory that any finite

abelian group is isomorphic to a cyclic group Z/nZ for some n ∈ N or a direct

sum of these cyclic groups. Naturally, the following question arises:

Question 1.5.2. What are the possible groups to which E(Q)tors can be iso-

morphic?

Throughout this paper, we aim to answer this question for one specific

(infinite) family of curves. By doing so, we hope to gain an understanding

of what this question entails and what the answer might look like generally.

With our background in elliptic curves complete, let’s begin investigating the

subgroups formed by torsion points.

2. Methods for Classifying Torsion

In order to classify the torsion of specific elliptic curves, we use two main

strategies: the Nagell-Lutz Theorem and the Reduction Modulo ` Method.

Both have distinct purposes, so we will introduce each individually. However,

when used in conjunction, these two methods can help us efficiently understand

torsion for different families of curves.

2.1. Nagell-Lutz Theorem. Discovered by Trygve Nagell and Élisabeth Lutz,

two mathematicians working independently in the 1930s, the Nagell-Lutz the-

orem is a powerful tool when analyzing torsion subgroups as it provides a

framework for rational points of finite order. Importantly, it provides torsion-

point candidates.
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Before we state the Nagell-Lutz theorem, we need some additional informa-

tion. First, we will use the following proposition, also proved by both Nagell

[Nag35] and Lutz [Lut37].

Proposition 2.1.1. On an elliptic curve E, a rational point (X, Y ) that has

finite order must have integer coordinates.

The proof of this proposition is quite long. Additionally, while the result is

interesting, we care more about the computational benefits of the Nagell-Lutz

theorem. Thus, we will merely state this proposition to use in our proof. For

the curious reader, [ST15, §2.4] covers how to prove this result.

In order to prove the Nagell-Lutz theorem, we still need one other piece of

information provided in the following theorem.

Theorem 2.1.2. Let E be an elliptic curve given by the equation

E : y2 = x3 + ax2 + bx+ c a, b, c ∈ Z.

A point P = (X, Y ) 6= O on E has order two if and only if Y = 0.

Proof. We begin the proof by assuming P = (X, Y ) 6= O on E has order

two. Recalling the definition of order, this is equivalent to 2P = O. By the

definition of inverse elements, 2P = O if and only if P = −P . From our

discussion of the group structure, we know that −P is just the reflection of

P across the x-axis. Therefore, y(−P ) = −Y . Since P = −P , we also have

Y = y(−P ). By substitution, Y = −Y , which can only occur when Y = 0. �

With these two preliminary results, we now can state and prove the Nagell-

Lutz Theorem.
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Theorem 2.1.3 (Nagell-Lutz, [Nag35], [Lut37]). Let E be an elliptic curve

given by the equation

E : y2 = f(x) = x3 + ax2 + bx+ c, a, b, c ∈ Z.

Let P = (X, Y ) be a point of finite order on E. Then, 2P = O or Y 2
∣∣∆E.

Proof. Let E be an elliptic curve as defined above. Let P = (X, Y ) be a ratio-

nal point of finite order on E. By Prop. 2.1.1, P must have integer coefficients,

i.e. X, Y ∈ Z. Let P be of finite order greater than 2; by Thm. 2.1.2, Y 6= 0.

By the duplication formula, we have:

x(2P ) =
φ(X)

4f(X)
=
X4 − 2bX2 − 8cX + b2 − 4ac

4(X3 + aX2 + bX + c)

Since P is a rational point of finite order, so too is 2P . Thus by Prop. 2.1.1,

x(2P ) ∈ Z. Substituting Y 2 = f(X), we see that since x(2P ) ∈ Z and is equiv-

alent to a fraction, the numerator must divide denominator. So, Y 2
∣∣φ(X).

Since P = (X, Y ) is on the curve y2 = f(x), in particular Y 2 = f(X). There-

fore, we clearly have that Y 2
∣∣ f(X). By a generalized version of Bézout’s

theorem from basic number theory, there exist polynomials F (x) and Φ(x)

with integer coefficients so that

F (x)f(x) + Φ(x)φ(x) = ∆E.

Given that these polynomials exist for all x ∈ E, they exist for x = X in

particular. So, we have

F (X)f(X) + Φ(X)φ(X) = ∆E.
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Since F (x), f(x), φ(x),Φ(x) all have integer coefficients, the values F (X),

f(X), φ(X),Φ(X) are all integers. Thus, since Y 2
∣∣ f(X) and Y 2

∣∣φ(X), then

Y 2
∣∣∆E as desired. �

For the remainder of this paper, we will only be looking at curves of the form

y2 = x3 +Ax+B. This simplifies the statement of the Nagell-Lutz Theorem.

Corollary 2.1.4. Let E be an elliptic curve in short Weierstrass form:

y2 = x3 + Ax+B, A,B ∈ Z.

Then, every torsion point P = (X, Y ) 6= O of E satisfies:

(1) If P is a point of order n ≥ 3, then Y 2 divides 4A3 + 27B2.

(2) If P is of order 2, then Y = 0 and X3 + AX +B = 0.

Proof. The first result is easily obtained by substituting a = 0, b = A, c = B

into the discriminant equation and applying Thm. 2.1.3. The second result

follows immediately from Thm. 2.1.2 and the fact that Y 2 = X3+AX+B. �

2.2. Reduction Modulo ` Method. The Nagell-Lutz Theorem is useful

when looking at specific curves, as it allows us to find potential torsion points.

What if we want to examine torsion more generally, say for a family of curves?

In this case, we use the Reduction Modulo ` Method.

Up until this point, we have defined elliptic curves over the field of rational

numbers Q. However, we are not restricted to only defining them over this

field. In fact, elliptic curves can be defined over any field, including F`, the

finite field of size `, i.e.

F` = Z/`Z = {a mod ` : a = 0, 1, 2, . . . , `− 1}.
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As with elliptic curves over Q, when defined over F`, the curve needs to be

given by a cubic equation and the curve needs to be smooth.

So long as these conditions are met, we can still ask for solutions to our

cubic equation. Furthermore, the algebraic equations for the group operation

will also still hold in F` provided that ` is a prime of good reduction. A

prime is considered to be of good reduction if and only if ∆E 6≡ 0 mod `, i.e.

` - ∆E. One way to obtain an elliptic curve defined over F` is to take an elliptic

curve given by an equation with integer coefficients and reduce it modulo `.

For example, let E be an elliptic curve with equation y2 = x3 + Ax + B

where A,B ∈ Z, and let ` ≥ 2 be a prime number. If we reduce A and B

modulo `, then we obtain the equation of a curve Ẽ given by a cubic curve

and defined over the field F`. However, just because E is smooth, does not

guarantee that the same holds for Ẽ over F`. Only if the reduction curve Ẽ is

smooth do we have an elliptic curve over F`. If this is the case, we say that E

has good reduction modulo `.

Reducing equations modulo primes is a powerful tool because doing so often

provides a simpler framework for problem-solving. This, as it turns out, is the

case in the realm of elliptic curves, hence the introduction! However, before we

see exactly how these reduced curves can help us, we need a bit of notation.

First, as previously mentioned, there exist points that provide solutions to

the equation for Ẽ/F`. We will denote the set of points which give solutions

Ẽ(F`), where all the coordinates are elements of F`. Second, if we have the

abelian group E(Q) and m is a natural number greater than 1, then the points

of E(Q) with order dividing m will be denoted E(Q)[m].
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Theorem 2.2.1. Let E/Q be an elliptic curve, ` a prime number, and m a

natural number not divisible by `. Suppose that E/Q has good reduction at `.

Then the reduction map modulo `,

E(Q)[m] −→ Ẽ(F`),

is an injective homomorphism of abelian groups. In particular, the number of

elements of E(Q)[m] divides the number of elements of Ẽ(F`).

Note, the size of the set Ẽ(F`) is finite. There are at most ` choices for X

and ` choices for Y . Including the point at infinity, this gives us a maximum

of `2 + 1 possible points. Because of this finite bound on Ẽ(F`), the latter

half of Thm. 2.2.1 is of particular interest to us. Essentially, the reduction

map allows us to conclude information about the size of E(Q)tors, while only

having to perform a finite number of computations. In turn, we can lessen

the workload associated with finding the size of the torsion subgroup for a

particular curve (or family of curves) by reducing said curve(s) over a finite

field. Since we are focusing primarily on the computation associated with

this theorem, we will not present the proof. However, for those interested, a

complete proof can be found in [Sil86, Prop. VII.3.1].

3. Torsion Subgroups for Mordell Curves

This section is where we begin to put our strategies to use. Henceforth, we

will devote our focus on Mordell curves, which are elliptic curves of the form

ED : y2 = x3 + D, where D is a fixed, nonzero integer. In particular, we are

interested in the cases where D = ±1,±p,±p2,±p3 for a prime p.
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3.1. Concrete Examples. We start with a couple of concrete examples.

Once we get a handle on how to work through these problems, we will transi-

tion to working more generally with Mordell curves.

Example 3.1.1. Let us start by setting D = 1, so we are examining the curve

E1 : y2 = x3 + 1.

Let P = (X, Y ) be a point on the curve; we see if Y = 0, then X = −1. By

Thm. 2.1.2, this is the only non-trivial point of order 2, so all other torsion

points must be of order n ≥ 3. Thus, from Cor. 2.1.4, if P is a torsion point,

then Y ∈ Z and Y 2 divides the discriminant, so we have Y 2
∣∣ 27. We find

Y = ±1,±3 as potential Y -values for torsion points. For our equation, X = 0

provides a solution when Y = ±1 and X = 2 provides a solution when Y = ±3.

Therefore, we have shown that

E(Q)tors = {O, (−1, 0), (2,±3), (0,±1)}.

Thus, E(Q)tors is an abelian group of order 6, which implies E(Q)tors ' Z/6Z.

�

Example 3.1.2. Next, we examine when D = −1, which gives us the curve

E−1 : y2 = x3 − 1.

By inspection, we see that if Y = 0, then X = 1. Just like the previous

example, this is the only solution with Y = 0. By Thm. 2.1.2, this is the only

point of order 2, which means all other torsion points must be of order n ≥ 3.
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We find, from Cor. 2.1.4, that in this case too Y 2
∣∣ 27. Thus, the potential

Y -values for torsion points are Y = ±1,±3.

With so few options, we can simply plug these values into the equation for

E−1 and solve by hand. Doing so, we do not find any integer solutions for X.

Thus, none of the potential values for Y yield torsion points other than Y = 0.

The torsion subgroup of E(Q) is thus

E(Q)tors = {O, (1, 0)} ' Z/2Z �

3.2. Results for Distinct Choices of D. As shown in the previous two ex-

amples, computing the torsion subgroup for specific curves is a fairly straight-

forward process. With these concrete examples under our belt, we now turn

our attention to classifying the torsion subgroups for the entire family of curves.

This is where the reduction mod ` method becomes useful.

Thm. 2.2.1 involves the number of elements of Ẽ(F`). Since we will be

working with this number extensively, we will denote it N`. Heuristically,

we expect N` to be ` + 1. Consider a generic Mordell curve with equation

y2 = x3 +D. There are ` choices of x in F`. For each value X, the polynomial

f(x) = x3 + D gives a value for f(X) ∈ F`. The probability that a random

element in F` is a perfect square in F` is 1/2. If f(X) is a nonzero square mod

`, i.e. if there is a Y ∈ F` such that f(X) ≡ Y 2 6≡ 0 mod `, then this gives

two points (X,±Y ) in Ẽ(F`). If f(X) is not a square modulo `, then there

are no points in Ẽ(F`) with x-coordinate equal to X. Thus,

N` ≈ ` ·
(

1

2
· 2 +

1

2
· 0
)

+ 1 = `+ 1,

where we have to add 1 in order to account for the point at infinity.
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Notice, we assumed that f(X) is random for the sake of our heuristic argu-

ment. However, this is not the case because f(X) is in fact given by a specific

formula. Consequently, we would expect the estimate to hold true in some,

but not all, instances. Ideally, we would have a method for determining at

which primes the estimate does actually hold. This motivates the following

proposition.

Proposition 3.2.1. Let Ẽ be the curve y2 = x3 +D over F`, and assume that

` - ∆Ẽ, ` ≥ 5, and ` ≡ 2 mod 3. Then, Ẽ(F`) has exactly `+ 1 points.

Proof. Let ` ≡ 2 mod 3. We know infinitely many such primes exist by

Dirichlet’s theorem on primes in arithmetic progressions. Let F×` denote the

multiplicative group of nonzero elements of the field F`. We note that F×` has

` − 1 elements. Because of our choice for `, 3 - (` − 1). Thus, F×` has no

element of order 3. Therefore, the homomorphism a 7→ a3 on F×` is one-to-

one and onto. Hence, we can use the reverse mapping to conclude that each

nonzero element in F` has a unique cube root. We note that 0 ≡ 03 mod `, so

in fact every element in F` has a unique cube root. This implies that for each

Y ∈ F`, the element Y 2−D in particular has a unique cube root. We cleverly

call this root X, which gives a solution (X, Y ) satisfying our equation for Ẽ.

Given the size of F`, we obtain ` solutions in this way. Adding the point at

infinity, we find that Ẽ(F`) has `+ 1 points. �

With this proposition in mind, we want to work with the smallest primes

` that give us N` = ` + 1. By Prop. 3.2.1, we may take ` = 5.2 Recall

2Naturally, we might be inclined to start with the smallest prime, 2, or the perhaps the
first odd prime, 3. However, recalling the definition of the discriminant, we note that for
a Mordell curve, ∆Ẽ = −16(27D2) = −24(33)(D2). Thus, no matter the choice of D, for

` = 2 or ` = 3, ` always divides ∆Ẽ , so Ẽ has bad reduction at these primes.
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that Thm. 2.2.1 requires curves of good reduction at `. Thus, since we are

particularly interested in D = ±p,±p2,±p3, we have to exclude the curves

y2 = x3 ± 5k for k ∈ {1, 2, 3} because the discriminant for these curves is

congruent to 0 mod 5.

Since primes (and their squares and cubes) are relatively prime to one

another, Thm. 2.2.1 allows us to conclude that the number of elements in

E(Q)[q], denoted #E(Q)[q], for primes q 6= 5, divides N5 = 6. We note that

the Fundamental Theorem of Finitely Generated Abelian Groups tells us that

if E(Q)[q] and E(Q)[p] inject into Ẽ(F`), then so too does E(Q)[m] where

m = pq because E[m] ' E[p] × E[q]. Thus, it suffices to study E(Q)[q] for

each prime q. Therefore, the only remaining group we have to check is E(Q)[5].

If we can determine #E(Q)[5], then we will be able to make an overarching

statement about the size of E(Q)tors for Mordell curves withD = ±p,±p2,±p3,

minus the six bad-reduction curves.

The easiest way to evaluate #E(Q)[5] is by using another prime ` where N`

is easily computable. According to Prop. 3.2.1, the next smallest such prime

is ` = 11. By Thm. 2.2.1, we know that #E(Q)[5] divides N11 = 12, so long

as 11 - D. By Lagrange’s theorem, if E(Q)[p] is non-trivial, then p divides

#E(Q)[p].3 In this case, this implies that 5 divides N11 = 12. Obviously, this

is not true, thus E(Q)[5] must be trivial.

Remark 3.2.2. By invoking N11, we have introduced six more curves of bad

reduction, namely those with D = ±11,±112,±113. For these values of D, we

find that ∆E ≡ 0 mod 11, which prohibits us from invoking Thm. 2.2.1. As

3This result stems from the fact that for an elliptic curve E(C)[p] ' Z/pZ × Z/pZ. Then,
since E(Q)[p] is a subgroup of E(C)[p], Lagrange’s theorem can be applied.
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a result, we have to exclude these six curves, plus the previous six curves of

bad reduction with D = ±5,±52,±53, when we make our conclusion. We will

return to these twelve curves to ensure they agree with the conclusions after

completing our analysis.

Based on the previous work, we conclude that the size of the torsion sub-

groups for Mordell curves with D = ±p,±p2,±p3 and p 6= 5, 11 must divide

N5 = 6. Note, this result is in line with our two concrete examples. We found

#E(Q)tors = 6 for the Mordell curve with D = 1 and #E(Q)tors = 2 for the

curve with D = −1, both of which divide N5 = 6.

To divide N5 = 6, if there is any nontrivial torsion, then the size of the

torsion subgroup must either be 2, 3, or 6. We want to determine what values

of D yield torsion subgroups of these sizes. We can equivalently ask: When

does y2 = x3 + D have a point of order 2, a point of order 3, or a point of

order 6? These two questions are equivalent because the only abelian groups

of orders 2, 3, and 6 are cyclic. Note, there exists a point of order 6 if and

only if there exists a point of order 2 and a point of order 3.

To classify the torsion subgroups, we start by looking at when a point of

order 2 occurs. From Thm. 2.1.2, we know that a point has order two if and

only if Y = 0. So, setting Y = 0, we find:

02 = X3 +D ⇔ X3 = −D

This implies that D must be a cube. So, we conclude that D is a cube if and

only if 2 divides the size of the torsion subgroup, i.e. E(Q)tors has a subgroup

isomorphic to Z/2Z. Note, this result is in line with both of our concrete
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examples. For the case where D = −1, we found #E(Q)tors = 2 and obviously

2 divides 2. For the D = 1 case, #E(Q)tors = 6 and 2 divides 6.

To find when a point of order 3 occurs, we will use the division polynomial

φ3 = 3x4 + 12Dx. This polynomial is generated by taking the fact that

3P = O, which implies 2P = −P by the uniqueness of inverse elements, and

then using the duplication formula to equate the X-value for 2P with that of

−P . The division polynomial is helpful because its roots give the x-coordinates

for points of order 3 over an appropriate field extension of Q. We factor the

polynomial and set it equal to zero to find

φ3 = 0 = 3X(X3 + 4D).

So, X = 0 or X3 + 4D = 0. Plugging X = 0 into the original equation for the

Mordell curve, we find

Y 2 = 03 +D ⇒ Y 2 = D.

This implies that if the curve possesses a rational point of order 3 with X = 0,

then D must be a rational square. The other factor gives us X3 = −4D. By

substitution, we have

Y 2 = −4D +D = −3D. (3.1)

The only values of D that give integer solutions for Y in (3.1) are negative and

contain a factor of 3. Since we are focusing on D = ±p,±p2±p3 and no prime

(or its square or cube) contains a factor of 3, this rules out all values except

for D = −3,−27,−81. However, none of these three D-values give integer

solutions for X. So, this factor yields no additional rational points of order 3.
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Note, only when D is both a square and a cube can we simultaneously have

points of order 2 and order 3. Given our restrictions on D, the only value

where this occurs is D = 1. Therefore, we conclude the following:

For an elliptic curve E with equation y2 = x3+D with D = ±1,±p,±p2,±p3

and p 6= 5, 11 a prime,

E(Q)tors '



Z/6Z if D = 1 because both 2 and 3 divide #E(Q)tors which is at most 6

Z/3Z if D = � and D 6= 1 because 3 | #E(Q)tors but 2 - #E(Q)tors

Z/2Z if D = cube and D 6= 1 because 2 | #E(Q)tors but 3 - #E(Q)tors

0 otherwise

Now, we return to the twelve bad-reduction curves to confirm that they

follow the above result. These are simply concrete curves, so again we will

just use the Nagell-Lutz theorem to provide us with candidates for Y and

then check these in the equation for the curve. These calculations are tedious,

so we will not go through them individually, but the information for the curves

with D = ±5,±52,±53 can be found in Table 1 below.

D Possible Y -values Tors. Points #E(Q)tors

5 {±1,±3,±5,±15} None 1

−5 {±1,±3,±5,±15} None 1

25 {±1,±3,±5,±15,±25,±75} (0,±5) 3

−25 {±1,±3,±5,±15,±25,±75} None 1

125 {0,±1,±3,±5,±15,±25,±75,±125,±375} (−5, 0) 2

−125 {0,±1,±3,±5,±15,±25,±75,±125,±375} (5, 0) 2

Table 1
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We see that these results do indeed match our general conclusion regarding

the classification of the torsion subgroups. For D neither a square nor a cube,

the torsion is trivial. For D a square, E(Q)tors ' Z/3Z. For D a cube,

E(Q)tors ' Z/2Z.

We can show the same for the curves with D = ±11,±112,±113. Table 2

shows these results.

D Possible Y -values Tors. Points #E(Q)tors

11 {±1,±3,±11,±33} None 1

−11 {±1,±3,±11,±33} None 1

121 {±1,±3,±11,±33,±121,±363} (0,±11) 3

−121 {±1,±3,±11,±33,±121,±363} None 1

1331 {0,±1,±3,±11,±33,±121,±363,±1331,±3993} (−11, 0) 2

−1331 {0,±1,±3,±11,±33,±121,±363,±1331,±3993} (11, 0) 2

Table 2

These too agree with our more general results. Again, we find trivial torsion

whenD is neither a square nor a cube. WhenD is a square, we have E(Q)tors '

Z/3Z and when D is a cube, E(Q)tors ' Z/2Z.

Thus, we have completed classifying the torsion for Mordell curves when

D = ±1,±p,±p2,±p3 for a prime p. To recap, we found

E(Q)tors '



Z/6Z if D = 1

Z/3Z if D = � and D 6= 1

Z/2Z if D = cube and D 6= 1

0 otherwise
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This brings us to the final section. Up to this point, we have focused on

particular flavors of D because we had insider knowledge. We knew that

investigating these specific D-values would yield an array of torsion subgroup

classifications. Moreover, they lead us to the conjecture that in general for all

D’s, a similar pattern will hold.

3.3. General Results for All Mordell Curves. To conclude, let’s prove

this conjecture for all Mordell curves. First, we will state the idea formally,

and then prove it using a similar strategy to that found in [Kna92, Thm. 5.3].

Theorem 3.3.1. Let E be the elliptic curve y2 = x3 +D with D ∈ Z and with

D assumed sixth-power free. Then

E(Q)tors '



Z/6Z if D = 1

Z/3Z if D = −432 = −2433, or if D = � and D 6= 1

Z/2Z if D = cube and D 6= 1

0 otherwise

Note, the requirement that D be sixth-power free is just a technicality that

ensures D is as simple as possible. If an elliptic curve E over a field K is in

short Weierstrass form with equation y2 = x3 + Ax + B, the only change of

variables that preserves this form is x = u2x′ and y = u3y′ for u ∈ K?
where

K
?

is an extension of K. This change of variables implies B = u6B′ and

∆E = u12∆′E. So, if B is not sixth-power free and therefore the discriminant

is not minimal, we could use this change of variables to reduce them. With

this technicality addressed, we can now begin the proof of Thm. 3.3.1.
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Proof. The main step in the proof is to show that #E(Q)tors divides 6. We will

accomplish this by showing that no prime greater than 3 divides #E(Q)tors,

and that the smallest powers of 2 and 3 (22 = 4 and 33 = 9) do not di-

vide #E(Q)tors. Thus, we will conclude 2 divides #E(Q)tors and 3 divides

#E(Q)tors, which implies #E(Q)tors divides 6.

We start by noting that by Thm. 2.2.1, for all sufficiently large primes of

good reduction `, #E(Q)tors divides #Ẽ(F`). Also, by Prop. 3.2.1, #E(Q)tors

divides `+ 1 for all sufficiently large primes ` with ` ≡ 2 mod 3.

Next, we will show that 4 does not divide #E(Q)tors. By Dirichlet’s theorem,

we can choose a prime ` as previously described with ` ≡ 5 mod 12. Then,

` ≡ 2 mod 3. If 4 divides #E(Q)tors, then 4
∣∣ (` + 1). But, ` ≡ 1 mod 4

means that `+ 1 ≡ 2 mod 4. So, 4 - (`+ 1), and we have a contradiction.

We will now show that 9 does not divide #E(Q)tors. By Dirichlet’s theorem

again, we can choose ` large enough with ` ≡ 2 mod 9. Then, ` ≡ 2 mod 3.

Thus, 9
∣∣#E(Q)tors implies 9

∣∣ (`+ 1). However, `+ 1 ≡ 3 mod 9 implies that

9 - (`+ 1), and we have a contradiction.

Finally, let us show that no prime q > 3 divides #E(Q)tors. By Dirichlet’s

theorem, we can choose ` large with ` ≡ 2 mod 3q. Then, ` ≡ 2 mod 3.

Thus q
∣∣#E(Q)tors implies q

∣∣ (`+1). But, `+1 ≡ 3 mod 3q implies `+1 ≡ 3

mod q. So, q - (`+ 1), and we have a contradiction.

Thus, we have shown that #E(Q)tors divides 6. The torsion subgroup has an

element of order 2 if and only if D is a cube, as previously shown. Therefore,

we now only need to determine when the torsion subgroup has elements of

order 3. For such a point P = (X, Y ), 2P = −P . Furthermore, the X-value

is what matters, since 2P = +P is impossible for P 6= O. By the duplication
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formula, the question is whether

X4 − 8DX

4(X3 +D)
= X

has any rational solutions X. Clearing fractions, we have

4X4 + 4DX = X4 − 8DX

X4 = −4DX.

One solution is X = 0, which gives Y 2 = D; so E(Q)tors ' Z/3Z occurs if

D is a square. The only other possibility is X3 = −4D. By substitution,

Y 2 = −3D. As in our analysis, this implies D < 0. Since D is sixth-power

free, the only possible prime divisors of D are 2 and 3. We readily find D =

−2433. So, E(Q)tors ' Z/3Z occurs if and only if either D is a square or

D = −2433 = −432. �

Returning to Question 1.5.2, we see that for Mordell curves, the possible

torsion subgroups that pop out appear to be quite restricted. Naturally, we

wonder if some set of restrictions govern the torsion subgroups for all elliptic

curves defined over the rationals. As it turns out, a torsion subgroup generally

for an elliptic curve defined over Q is in fact isomorphic to one of only 15

possible groups! This idea was conjectured by Andrew Ogg in 1973 [Ogg73]

and proved by Barry Mazur in 1977.

Theorem 3.3.2 (Ogg’s Conjecture; Mazur [Maz77]). Let E/Q be an elliptic

curve. Then E(Q)tors is isomorphic to one of the following groups:

Z/NZ with 1 ≤ N ≤ 10 or N = 12, or
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Z/2Z⊕ Z/2MZ with 1 ≤M ≤ 4.

This neat result—in both senses of the word—is remarkable! But, after its

proof, mathematicians set their sights beyond Q, asking what sort of torsion

subgroups occur if we enlarge the field of definition from Q to some algebraic

extension of Q. This remains an open question and is a current area of research,

specifically for those who love the curves that lay at the intersection of algebra,

geometry, and number theory.
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