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1 Abstract

Category theory unifies and formalizes the mathematical structure and concepts in a way

that various area of interest can be connected. For example, many have learned about the

sets and its functions, the vector spaces and its linear transformation, and the group theo-

ries and its group homomorphism. Not to mention the similarity of structure in topological

spaces, as the continuous function is its mapping. In sum, category theory represents the

abstractions of other mathematical concepts. Hence, one could use category theory as a

new language to define and simplify the existing mathematical concepts as the universal

properties. The goal of this thesis is to provide an understanding of the basic category

theory and to derive the universal property of certain mathematical concepts, such as the

direct product, the quotient group, and the discrete topology. We start with the basic defi-

nitions of Category Theory, namely defining category, functor, natural transformation, and

the adjoint. After establishing the basic definition, we will study some notable examples,

as well as to propose some interesting examples of our own. Built upon the understanding

of the definitions and examples, we will discuss some related questions and come to an

application of category theory, the universal property.

2 Preliminary

To discuss the application of category theory, we have to define some of the fundamental

concepts (1). Although there exists some differences between various mathematical struc-

tures, say set and group, they both have objects and mappings in the language of category

theory. After establishing the definition of category, we could study the behavior across

fields without referring to its constructive definition.

Definition 1. Category: A Category A consists of:

1. a collection ob(A ) of objects
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2. for each A,B ∈ ob(A ), a collection ob(A ,B) of arrows (also called maps and mor-

phism) from A to B

3. for each A,B,C∈ ob(A ), a function A (B,C)×A (A,B)→A (A,C) or (g, f ) 7→ g◦ f

called composition

4. for each A ∈ ob(A ), an element 1A of A (A,A), called the identity on A

In sum, a category entails objects, arrows (morphismes), composition, and identity that

satisfies the associativity and the identity law. Now, we will discuss some of the examples.

1. Category of Set

(a) Objects are sets. A is a set, and it is the object of Set, i.e, A ∈ ob(Set)

(b) Arrows are ordinary set functions. Given A,B ∈ Set, then the set function f :

A→ B is an arrow of Set, i.e, f ∈ Set(A,B)

(c) The composition in Set is the ordinary composition of set functions, and the

idenity function the the identity set function.

The category set is a fundamental category in the category theory, and we will discuss

its connections to many other categories in the later part of this study.

2. Category of Group

(a) Objects are groups. G is a group, and it is the object of Grp, i.e, G ∈ ob(Grp)

(b) Arrows are group homomorphism. Given G,H ∈ Grp, then the group homo-

morphism h : G→ H is the arrow of Grp, i.e, h ∈Grp(G,H).

(c) The composition are the composition of group homomorphism and the identity

map is exactly the identity group homomorphism.

Similarly to the category of set, the category is group is another important category in

the thesis. In chapter 3, we will study many examples that have important connection

with the category of group.
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3. Category of Vector Space

(a) Objects are vector spaces over a given field. Given a field k, then the vector

space V over it is an object of Vectk, i.e, V ∈ ob(Vectk).

(b) Arrows are the linear transformations between vector spaces. Given V and

W over field k, then the linear map f : V →W is the arrow Vectk, i.e, f ∈

Vectk(V,W ).

(c) The compostion are the composition of linear transformations and the identity

map is exactly the identity linear map.

At this point, we should have the intuition of building a category. First, we need

objects to construct the category, and then we should be able to come up with the

arrows between the objects for the given category. Last but not least, we have to

check if the given category satisfies the composition and have an identity map.

4. Category of Topology

(a) Objects are topological spaces. Given a topological space X , then X is an object

of Top, i.e, X ∈ ob(Top).

(b) Arrows are the continuous maps between topological spaces. Given X ,Y ∈

ob(Top), then the continuous map f : X→Y is arrow of Top, i.e, f ∈Top(X ,Y ).

(c) The composition are the composition of continuous maps, and the identity is

the continuous identity map between topological spaces.

The category of topology important connections to the other categories. Specifically,

one can think of topological space as a set equipped with a certain topological struc-

ture. We will explicitly discuss the connection between the category of topology and

the category of set.

5. Discrete Category of One Object
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(a) There only exists one object in such category, i.e 1 ∈ ob(1).

(b) The arrow is the identity map from the object to itself, i.e. Given 1 in 1, then

the arrow i : 1→ 1 is the arrow of the discrete category, i.e, i ∈ 1(1,1).

(c) The composition and the identity are vacuously satisfied as there only exists

one object and one arrow.

The discrete topology is one of the most trivial examples of all. However, it is a valid

category. We will see its appilication later in Chapter 2.

6. Category of Abelian Group

(a) Objects are Abelian groups. A is an Abelian group, and it is the object of Ab,

i.e, A ∈ ob(Ab)

(b) Arrows are group homomorphism. Given A,B ∈ Ab, then the group homomor-

phism h : A→ B is the arrow of Ab, i.e, h ∈ Ab(A,B)

(c) The composition are the composition of group homomorphism and the identity

map is exactly the identity group homomorphism.

The Category of Abelian Group Ab has similar struture to Grp. The only difference

is in Ab, the object needs to be Abelian. However, for the arrows, composition, and

idenity map, Ab has almost identical structure to Grp.

Definition 2. Functor: Let A and B be categories. A functor F : A →B consists of:

1. a function ob(A )→ ob(B) or A→ F(A)

2. for each A,A′ ∈A , a function A (A,A′)→B(F(A),F(A′)) or f 7→ F( f ) satisfying

the follwing axioms:

(a) F( f ′ ◦ f ) = F( f ′)◦F( f ) whenever A
f−→ A′

f ′−→ A′′ in A

(b) F(1A) = 1F(A) whenever A ∈A
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Functor is built upon the definition of category, as it maps the objects and the arrows

between one category to another category. Firstly, let’s consider some examples.

1. Free Functor from Set to Top

(a) Set and Top are two categories, and the functor F : Set→ Top consists of a

function i : S → D(S) that equips set S with the discrete topology, i(s) = s,

∀s ∈ S. Recall that the discrete topology defines all subsets to open.

(b) f → F( f ), define where f is mapping between the sets and F( f ) is the contin-

uous map in the topological space

(c) F satisfies the following axioms:

i. the composition in the set is preserved by the functor in the topological

space

ii. the identity in the set is preserved by the functor in the topological space

The functor from Set to Top is referred as free functors. Informally, free functor is

the functor that equip the domain category with minimal mathematical structure to

the codomain category. In this case, this specific functor equips the set, the object,

with discrete topology, and maps the function of set, the arrow, to the continuous

map of topological spaces. We will study another case of free functor.

2. Free Functor from Set to Grp

(a) Set andGrp are two categories, and the functor F : Set→ Grp equips the set

with group structure.

(b) Given x ∈ Set, F is defined by {x} 7→ {x,x−1, id,x−1x−1,xxx...}. F also maps

the ordinary set function in Set to the corresponding group homomorphism in

Grp.

(c) The composition and the identity are preserved by this free functor.
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Whenever there exists a free functor, its dual, the forgetful functor exists. Consider

the following examples:

3. Forgetful Functor from Top to Set

(a) Top and Set are two categories, and the functor U : Top→ Set forgets the topo-

logical struture of topology and maps the topological space to its underlying

set.

(b) Given T ∈ Top and S ∈ Set, the forgetful functor is defined as such: U : T 7→ S.

(c) The composition and the identity are preserved by forgetful functor.

Similarly, there exists a forgetful functor that is dual to F : Set→Grp.

4. Forgetful Functor from Grp to Set

(a) Grp and Set are two categories and forgetful functor U : Grp→ Set forgets the

group strutrute of the given group and leaves its underlying set.

(b) Given G ∈ Grp and S ∈ Set, then the forgetful functor is defined as such: U :

G 7→ S.

(c) The composition and the identity are preserved by U .

We’ve studied two pairs of free functors and forgetful functors, where they are dual

to each other respectively. There exists an important application to it, and we will

discuss it in the later chapter.

Having established the definition of functor and category, we will study some interest-

ing properties of the functor. First, let’s consider a non-example.

Lemma 1. There does not exist a functor Z : Grp→ Ab with the property that Z(G) is the

centre of G for all groups G.
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Before proceeding to the proof of the lemma, let’s recall some important definitions

relevant to this proof.

Group theory is an important area of interest in the study of Category Theory. Concepts

like the category of group, the quotient group and abelianization universal properties will

occur many times in our discussion. Before proceeding to the proof of the lemma, let us

recall some important definitions in relation to the group theory. The following definition

relating to group theory comes from A First Course in Abstract Algebra (2) and Contem-

porary Abstract Algebra (3).

Definition 3. Group: Let G be a set together with a binary operation that assigns to each

order pair (a,b) of elements of G an element in G denoted ab. We say G is a group under

this operation if the following three properties are satisfied:

1. Associatetivity: ∀a,b,c ∈ G, (ab)c = a(bc)

2. Identity: ∃e ∈ G such that ea = ae = a, ∀a ∈ G

3. Inverse: ∀a ∈ G, ∃b ∈ G such that ab = ba = e

Informally speaking, group is a set that equipped with a certain binary operation that

is closed under the property of associativity, identity, and the inverse. This notion parallels

with example 1, since there also exist a functor from Set to Grp. At this point, after learning

the definition of category, we should be able to view definitions in the language of category

theory.

Definition 4. Center: The center, Z(G), of a group G is the subset of elements in G that

commute with every element of G. In Symbols, Z(G) = {a ∈ G|ax = xa,∀x ∈ G}

Definition 5. Definition of Symmetric Group: Let A be the finite set {1,2, ...,n},n ∈ N.

The group of all permutations of A is the symmetric group on n letters, and is denoted by

Sn
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Definition 6. Group Homomorphism: A homomorphism φ from a group G to a group Ḡ

is a mapping from G into Ḡ that preserves the group operation; that is, φ(ab) = φ(a)φ(b),

∀a,b ∈ G

In relation to the Category theory, group homomorphism is an arrow in the category

of group, and it is a mapping that preserves the group operation. Now we will prove the

lemma.

Proof. Consider the category A consists of three objects S2,S3,S3. f ∈A (S2,S3), where

f is an inclusion mapping, and g ∈ A (S3,S2), where g : S3→ S2 is a mapping. Consider

the following diagram:

•

S2 S2 Z(S2) Z(S2)

S3 Z(S3)

f

Z

Z( f )g Z(g)

The map g sends the even permutations of S3 to the identity permutation of S2, and sends

the odd permutations S3 to the other permutation of S2. Hence, g◦ f , defined as g◦ f : S2→

S3→ S2 is an identity function of S2. However, Z( f ): Z(S2)→ Z(S3) is a trivial map, thus

Z(g ◦ f ) is a trivial map as well, which implies that the functor Z does not preserve the

identity function, as desired.

This discussion of Lemma 1 leads to another important aspect of functor behaviors.

After all, functor sends arrows in one category to another category, and itself is a function

loosely speaking. Thus, the discussion of surjection and injection arises, and we have a

very precious definition for that.

Definition 7. Faithful: A functor F : A →B is faithful (respectively, full) if for each

A,A′ ∈A , the function A (A,A′)→B(F(A),F(A′)) or f 7→F( f ) is injective (respectively,

surjective)
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Now, we will analyze a specific case of faithfulness. Let’s propose a general example

of a functor F : A →B such that F is faithful but there exist distinct maps f1 and f2 in A

with F( f1) = F( f2)

Example: Consider the following example. Let A and B be two categories of groups.

A,B ∈ ob(A ) and C ∈ ob(B). They both are discrete categories, as each object in each

category only map to itself, i.e, f1 = 1A, f2 = 1B, and f3 = 1C. F( f1) = F( f2) = f3.

Claim: The functor F is faithful. Consider the following diagram:

•
A

A C

B C

B

f1
F

f3

f2

F

Proof. We proceed by verifying the definition of faithful for each mapping. φ(A,B) is

/0, so the mapping φ(A,B) → φ(F(A),F(B)) is vacuously injective. φ(A,A) is 1A and

φ(F(A),F(A)) is 1F(A), so φ(A,A)→ φ(F(A),F(A)) is injective. Similarly, φ(B,B)→

φ(F(B),F(B)) is injective. Hence, the functor F is faithful, as desired.

This is a trivial yet interesting example. Since it is easy to construct a faithful functor

between the category of monoiods, and it will vacuously satisfy some of the property.

However, it is still a valid example.

Having established the definition of functor, one question arises: how could we relate

two functors, between the same pair of categories, together? Thus, it leads to the concept

of natural transformation.

Definition 8. Natural Transformation: Let A and B be categories and let A
F

==⇒
G

B be

functors. A natural transformation α:F → G is a family (F(A)
αA−→ G(A))A∈A , such that
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the square

F(A) F(A′)

G(A) G(A′)

αA

F( f )

G( f )

α ′A

commutes. The maps αA are called the components of α .

The square commutative diagram is often referred as the naturality axiom. Now, let’s

move to the examples of natural transformations.

1. Power Set Functor and Identity Functor

(a)

Definition 9. the power set functor P: Set→Set maps each set to its power

set and each function f : X → Y to the map which sends U ⊆ X to its image

f (U)⊆ Y .

In short, the power set functor convert a given set to its power set.

(b) Let A and B be categories of sets, and let A
P

==⇒
id

B be functors, where P is

the power set functor, and id is the identity functor, and there exists a natural

transformation from the power set functor to the identity functor. We will draw

the commutative diagram to prove that it indeed is a natural transformation.

(c) Let X ,Y ∈ ob(A ), where αX : id(X)→ P(X) and αY : id(Y )→ P(Y ) are the

inclusion maps from the sets to the power sets. Thus, the following diagram

commutes:

id(X) id(Y )

P(X) P(Y )

αX

id( f )

P( f )

αY

Thus, the naturality axiom is satisfied.
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There exists some similar structures in Category theory. For instance, category of

monoids, identity functor, and identity transformation. In the same spirit, there exist an-

other simple concept called the constant functor. We will give the rigirous defintion.

Definition 10. Constant Functor: F : C→ D is a functor that maps each objects of the

category C to a fixed object d ∈D and each morphism of C to the identity morphism of that

fixed object.

Essentially, the constant functor sends objects of the domain to the a fixed objects in

the codomain, and all the arrows in the dmoain to the idenity arrow of such fixed objects in

the codomain. Hence one question arises: Let F and G be constant functor from a category

C to a category D. What’s the transforamtion from F to G look like? We will consider

some simple exemples from the discrete categories to illustrate the point, and then the case

of non-discrete categories will become evident.

Type 1, discrete categories : Let C and D be two categories, and only a,b ∈ C and

c,d ∈ D . The only morphisms in C and D are the identity morphisms. Let C
F

==⇒
G

D be

two constant functors. F maps a,b to c, and 1a,1b to 1c. G maps a,b to d, and 1a,1b to 1d .

1. In this case, there will not be any natural transformations, because there does not

exist non trivial arrows between the objects in D

This is the most trivial case of all, as there does not exist any arrows in D . Hence, the

naturality axiom diagram will not commute.

Type 2, discrete categories: Let C and D be two discrete categories with only one

objects, a and b respectively. They only arrow in C is f = 1a, as the only one in D is 1b.

Let C
F

==⇒
G

D be two constant functors. Consider the following diagram:
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1.

F(a) F(a)

G(a) G(a)

αa

F( f )

G( f )

αa

In this diagram, F(a) = b, F( f ) = 1b, G(a) = b, and G( f ) = 1b. Hence, the natural trans-

formation αa is the identity morphism 1b. In the discrete type of categories, there either

does not exist natural transformation, or the natural transformation is the identity mor-

phism. Since there only exists identity arrow in the codomain, then inevitable the natural

transformation becomes the identity morphism. At this point, we should realize the con-

nection between natural transformation and the arrows in the codomain category, and it will

become edivident in the non-discrete categories.

Type 3, non-discrete categories: In the most generic case, the natural transformation

is the morphism in the co-domain category.

Having elucidated the nature of natural transformation, we will revisit the concept of

ismorphism in relation to natural transformation by stating an lemma. We will prove it after

establish pertinent defintions.

Lemma 2. Let A and B be two categories. Let A
F

==⇒
G

B be two functors, and let α be a

natural transformation. Then α is a natural isomorphism if and only if αA:F(A)→ G(A)

is an isomorphism for all A ∈A .

Definition 11. Functor Categories: Let A and B be two categories, then exists a category

where functors from A to B are the objects and whose maps are the natural transformation

between them. This is called a functor category from A to B and written as [A ,B] or

BA .

In the functor category, the functors are the objects, and then the natural transformation

between the functors are the arrows. Let F and G be two functors from A to B, and α
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to be the natural transformation between F and G. Consider the following commutative

diagram as an illustration:

•
F : A →B

G : A →B

α

Definition 12. Isomorphism:A map f : A→ B in a category A is an isomorphism if there

exists a map g : B→ A in A s.t. g f = 1A and f g = 1B.

Informally speaking, it should be noted that the definition isomorphism is relevant only

in the level of arrows, and it shouldn’t be confused with isomorphim between functors or

categories.

Definition 13. Natural Isomorphism:Let A and B be categories. A natural isomorphism

between functors from A to B is an isomorphism in [A ,B].

Essentially, the isomorphism in functor category occurs at the level of arrow. In ad-

dition, since the natural transformation are the arrows in the functor category, we have to

work with natural transformation to prove the lemma.

Proof. (⇒) Assume α is a natural isomorphism, then we have to show ∀A∈A , αA:F(A)→

G(A) is an isomorphism. Let A ∈ A be given. We know there exists an isomorphism in

[A ,B], which implies that if α:F → G, then there exists a map α ′: G→ F s.t α ′α = 1F

and αα ′ = 1G. Since αA is an arrow from F(A) to G(A) in [A ,B], then there exists a map

α ′(A) : G(A)→ F(A) s.t. α ′(A)α(A) = 1F(A) and α(A)α ′(A) = 1G(A), so α(A):F(A)→

G(A) is an isomorphism, as desired.

(⇐) Assume ∀A ∈ A , αA:F(A)→ G(A) is an isomorphism, then we have to show

α is a natural isomorphism, that is to show if α : F → G, then ∃ a map α ′ : G→ F s.t.

α ′α = 1F and αα ′ = 1G. Since αA is an isomorphism, then ∃ a map α ′A:G(A)→ F(A) s.t.
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α ′(A)α(A) = 1F(A) and α(A)α ′(A) = 1G(A). Since A is arbitary, then we have α ′α = 1F

and αα ′ = 1G, as desired.

The logic of this proof is straightforward, but it stresses an important aspect of nat-

ural transformation. In plain language, if every individual natural transformation in the

codomain as arrows are isomorphism, then the natural transformation as a whole is a natu-

ral isomorphism.

To study the property of natural transformation, let’s study another trivial example. If

there exists a category, then we can obtain its dual category simply by reversing the arrow

of the category. Thus, one questions arises, what would what the functor between one

category and its dual category look like? Will there be any interesting example of natural

transformations? First, we will give rigorous definition of dual category.

Definition 14. Dual Category: Every category A has a dual category A op, defined by

reversing the arrow. Formally, ob(A op) = ob(A ) and A op(B,A) = A (A,B) ∀ objects

A,B ∈A . Identity stays the same but composition with argument reversed. If A
f−→ B

g−→C

are maps in A op, then A
f←− B

g←−C are maps in A .

After established the definition, we will also propose a lemma to answer the question

and then prove it.

Lemma 3. Let C be a category, and then C op is its dual category. Let C
Fop
==⇒

id
C op be two

functors, and we claim there exists a natural transformation α from Fop to id.

Proof. Let A,B ∈ C be arbitrary, and there exists f ∈ C (A,B). The functor Fop will pre-

serve the same object, but reverse the order of f ∈ C (A,B). Consider the following dia-

gram:
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1.

Fop(A) Fop(B)

id(A) id(B)

αA

Fop( f )

id( f )

αB

2. In the diagram, Fop(A) = A, Fop(B) = B, and Fop( f ) = f but with reversed order.

In this case, the diagram commutes, and the natural transformations are the identity

morphisms in C op.

In this particular lemma, we discover the natural transformation between the dual func-

tor and the identity functor. Lemma 3 is pertinent in the general sense. Now, we will study

the natural transformation between abelian functor and the idenity functor under the con-

text of Grp. Before proving the lemma, it’s important to recall that that Gab = G/[G.G], in

which [G,G] = {xyx−1y−1‖x,y ∈ G}, is the commutator subgroup.

When natural transformation arises, adjoint arises naturally. Adjoint addresses the rela-

tion when two functors are of opposite directions. One would be right adjoint to the other,

the other would be left adjoint to the one. We will give the rigirous definition of adjoint.

Definition 15. Adjoint: Let A
F−�==�−
G

B be categories and functors. We say that F is left

adjoint to G, and G is right adjoint to F , and write F a G, if B(F(A),B)∼= A (A,G(B))

naturally in A ∈A and B ∈B.

To be adjoint, it entails natural isomorphism between the two functors, and it also has

to satisfies the naturality axiom.

1. Remarks on “Naturally”: An adjunction between F and G is a choice of natural

isomorphism. Naturally in A ∈A and B ∈B means that there is a specifed bijection

for each A ∈A and B ∈B, and that it satisfies a naturality axiom

2. To state it, given objects A ∈A and B ∈B, the correspondence between F(A)→ B

and A→ G(B) is deonoted by a horizontal bar, in both directions:
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(a) (F(A)
g−→ B) 7→ (A

ḡ−→ G(B))

(b) (F(A)
f̄−→ B) (A

f−→ G(B))

so ¯̄f = f and ¯̄g = g. We call f̄ the transpose of f , and similarly for g. The relations

above are precisely the definition of transpose. In addition, the naturality axiom has

two parts, that is ¯q◦g = G(q) ◦ ḡ, ∀g,q ∈B, and ¯f ◦ p = f̄ ◦F(p), ∀p, f ∈ A .The

composition of transpose has to be satisfied.

Now, we will look at some of the important examples of Adjoints. In particular, by

nature, Forgetful functors is left ajoint to the free functors.

1. Forgetful and Free Functors in Algebraic structures

(a) Consider the free functor F and forgetful U between Ab and Grp.

Ab

a U
��

Grp

F

OO

In this case, the forgetful functor is left adjoint to the free functor. In previous section

of functors, we have also covered the free functor and forgetful functor between

vector space and set, and it follows the same rule here.

After establishing definition and concrete examples of adjoint, it is important to note

that adjunctions can be interpreted from different perspectives. Say from the view of unit

and counit, or from the view of initial and terminal object. Before redefining adjoint, we

will intruduce the idea of initial and terminal object first.

Definition 16. Initial/Terminal: Let A be a category. An object I ∈ A is initial if for

every A ∈A , there is exactly one map I −→ A. An object T ∈A is terminal if for every

A ∈A , there is exactly one map A−→ T .

Informally speaking, being an initial object means that there only exist one unique map

from such object any other object in the given category. Similarly, being a terminal object
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means that the map from any object to the terminal object is unique. Consider the empty

set in the Set, where there only exists one trivial map from the empty set to any given set.

Similarly, singleton in Set is terminal, as for any given object there exists a unique map

from the given object to the singleton set.

Now, we will reintroduce the definition of adjunctions in terms of units and counits.

Definition 15 defines adjunctions in terms of transpose and naturality axiom. However, the

unit and counit version offers practical ways for us to study adjunction. Even more so with

the initial version, where we have many direct applications.

Definition 17. Unit/Counit: Let A
F−�==�−
G

B be categories and functors. Then, we can

define the natural transformations in terms of unit and counit, where the unit is η : 1A −→

G◦F and counit is ε : F ◦G−→ 1B

The idea of unit and counit come handy when verifying if two functors are adjoint to

each other.

Lemma 4. Given an adjunction F a G with unit η and counit ε , the following triangles

commute, and they are referred as triangle identities.

F FGF G GFG

F G

Fη

1F
ηF

ηG

1G
Gη

Remarks: If the diagrams of triangle identities commute, then the we know the given

functors, say, F and G are adjoint to each other. It’s important to note that Fη is the com-

position of functor F and the unit map η , and this notation applies to ηF , ηG, and Gη . 1F

and 1G are the identity map. The diagram is straight forward with respect to the unit and

the counit map.

Theorem 1. Take categories and functor A
F−�==�−
G

B. There is a one-to-one correspon-

dence between

1. adjunctions between F and G (with F on the left and G on the right)
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2. pairs (1A
η−→ GF,FG ε−→ 1B) of natural transformations satisfying the triangle iden-

tities.

Theorem 1 have its equivalence via the initial version of adjunction in the later sections.

Having introduced the theorem 1, the corollary follows.

Lemma 5. Take categories and functors A
F−�==�−
G

B.Then F a G if and only if there exist

natural transformations 1
η−→ GF and FG ε−→ 1 satisfying the triangle identities.

Before studying adjunction via initial, we will demonstrate certain property of initial

objects in relation to adjoints and prove such property.

Lemma 6. The left adjoints preserve initial objects: that is, if A
F−�==�−
G

B, F a G, and I is

an initial object of A , then F(I) is an initial object of B. Dually, show that right adjoints

preserve terminal objects.

Proof. Assume A
F−�==�−
G

B, F a G, and I is an initial object of A . We want tp show F(I)

is an initial object of B, that is to show ∀B ∈B, ∃ exactly one map from F(I) to B. Find

some B∈B such that G(B) =A, then we know there exist exactly one map from I→G(B).

Since we have an adjunction between F and G, then we have: (F(I)
g−→ B) 7−→ (I

ḡ−→G(B))

This lemma follows naturally from Definition 15 and Definition 16. Then, we will

illustrate how does the adjunction preserves the order of ordered sets.

Claim: Let A
F−�==�−
G

B be order-preserving maps between ordered sets. A and B are

the categories of posets, and F and G are two order preserving functors between them. The

following conditions are equivalent:

1. for all a ∈ A and b ∈ B, f (a)≤ b←− a≥ g(b)

2. a≥ g( f (a)) for all a ∈ A and f (g(b)≤ b for all b ∈ B
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Proof. (⇒) Assume f (a)≤ b iff a≤ g(b) for all a∈A and b∈B. Given a∈A and b∈B, we

want to show a≤ g( f (a)) and f (g(b))≤ b. Since f (a)≤ f (b), then we have a≤ g( f (a)).

Since g(b)≤ g(b), then by 1. we have f (g(b))≤ b, as desired.

(⇐) Assume a ≤ g( f (a)) and f (g(b)) ≤ b for all a ∈ A and b ∈ B, we want to show

f (a)≤ b iff a≤ g(b) given a ∈ A and b ∈ B. Assume f (a)≤ b, we want to show a≤ g(b).

Since a ≤ g( f (a)), thenwe know a ≤ g(b). Assume a ≤ g(b), we want to show f (a) ≤ b.

Since f (g(b)≤ b, then we know f (a)≤ b, as desired.

3 Universal Properties

Having shown some interesting properties of adjunction, we will interpret adjunction in

terms of initial and terminal object. The notion of initial and terminal object is critical in

relation to Universal Property, the goal of this research. Since many Universal Property can

be viewed as a comma category with either intial or terminal object. Comma category is in

the core of this section, and it’s defined as follows:

Definition 18. Given categories A ,B,C and functors P : A → C and Q : B → C , the

comma category (P ↓ Q) is a category.

•
B

A C

Q

P

• objects are triples (A,h,B) with A ∈A ,B ∈B and h : P(A)→ Q(B) in C .

• maps (A,h,B)→ (A′,h′,B′) are pairs ( f : A→ A′,g : B→ B′) of maps such that the

square commutes.

P(A) Q(B)

P(A′) Q(B′)

h

P( f ) Q(g)

h′
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Remarks: Essentially, the object of comma categories are arrows in C , so we will

denote the object as h instead of (A,h,B). Similarly, the arrows of the comma category is

the map between two “maps,” namely h→ h′, so the whole commutative diagram is the

arrow.

In order to discuss and eventually derive universal properties, we will introduce an

important Theorem, the equivalent statement of Theorem 1, and it partly follows from a

lemma.

Lemma 7. Take an adjunction A
F−�==�−
G

B and an object A ∈ A . Then the unit map

ηA : A→ GF(A) is an initial object of (A).

Theorem 2. Take categories and functor A
F−�==�−
G

B. There is a one-to-one correspon-

dence between

1. adjunctions between F and G (with F on the left and G on the right)

2. natural transformation η : 1A →GF such that ηA : A→GF(A) is initial in (A⇒G)

for every A ∈A

One-to-one correspondence in this context means that if we have an adjunction between

F and G, then we will be able to find a unique natural transformation that satisfies certain

properties. Vice versa, if we have a natural transformation that satisfies certain properties,

then we will be able to find an unique adjunction corresponds to it. Thus, we will name the

1→ 2 direction as uniqueness, and name the 2→ 1 direction as existence.

To illustrate the significance of Theorem 2, we will introduce an universal property of

quotient group. Consider the constructive definition and the universal property of quotient

group.

3.1 Universal Property of Quotient Group

Definition 19. Let G be a group and let H be a normal subgroup of G. The set G/H =

{aH : a ∈ G} is a group under the operation (aH)(bH) = (ab)H.
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Recall from Abstract Algebra, we have the following proposition:

Proposition. Let G be any group, N /G, and g : G→ G/N the natural homomorphism

defined by g(x) = xN. Then let f : G→ H be any homomorphism such that f (N) = {id}.

Then there exists a unique homomorphism h : G/N→ H such that f = h◦g.

• In other words, this diagram commutes

G H

G/N

f

g ∃!h

Remarks: It is not our goal to establish equivalence between the two definitions, and

we want to derive the universal property using Theorem 2 to show the existence part for

the quotient group. Ultimately, we want to be able illustrate the quotient group without

referring to its constructive definitions.

Proof. First, given cateories Grp,D , and 1, a one object category, and functors G and U ,

we will construct the comma category (G⇒U). We define D as such:

• Objects: a pair of two groups (N,G), where N is normal to G, i.e, N /G.

• Arrows: Let (N,G) and (H,K) ∈D be givem, then f : G→ K, where f (N) = {idK}.

We define the functor U and G to be such:

• U : Grp→D is a functor.

– U : K 7→ (1,K)

• G : 1→D is another functor, where 1 is one object category.

– G : 1 7→ (N,G)
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• It implies the following diagram commutes:

Grp

1 D

U

G

We want to find an unique functor F that is left adjoint to U . Thus, by 2 of Theorem

2, we have η : 1A → U ◦F such that ηA : A 7→ UF(A) is initial in the comma category

(G⇒U). Thus, ηA being initial in the comma category precisely implies the following

diagram commutes, given that f : A 7→U(B) is another arrow of the comma category:

•
A UF(A)

U(B)
f

ηA

∃!h

Consider the functor F : D→Grp, where is defined as F : (N,G) 7→G/N, a pair of groups

that N /G is mapped to its quotient group G/N. Thus, let A = (N,G), we will have the

following commutative diagram, given that f : A 7→U(B) is another arrow of the comma

category:

•
(N,G) (1,G/N)

(1,B)
f

ηA

∃!h

This commutative diagram is analogous to the universal property of quotient group,

•
G H

G/N

f

g ∃!h

which implies that for any other projection map f from G, a group to another group H, it

has to factor through the quotient group G/N, as desired.

Since the universal property addresses mainly the existence and the uniqueness proper-

ties of a given mathematical concept. In most of the cases, the idea of initial and terminal

objects are very important in relation to derive the universal property.
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3.2 Universal Property of Abelianization

Now, we will how to derive the universal property of commutator subgroups, which is

analogous to the derivation for quotient group. Consider the following two definitions:

Definition 20. Gab = G/[G,G], where [G,G] = {xyx−1y−1 : x,y ∈ G} and [G,G]/G.

Recall from Abstract Algebra, we have the following proposition:

Proposition. Let G be any group, Gab = G/[G,G], and g : G→ Gab the natural ho-

momorphism defined by g(x) = x[G,G]. Then Gab satisfies the following property. Let

f : G→ H be any homomorphism from G to an Abelian group H. Then there exist a

unique homomorphism h : Gab→ H such that f = h◦g.

• In other words, this diagram commutes

G H

Gab

f

g ∃!h

Remarks: At this point, it’s easy to notice that the commutative diagram of commutator

subgroups and the diagram of quotient groups are almost identical except the Abelian group

takes place of the quotient group. We will prove the universal property using Theorem 2.

Proof. First, given categories Ab, the category of Abelian group, D , and 1, a one object

category, and functors G and U , we will construct the comma category (U⇒G). We define

define D as such:

• Objects: a pair of two groups (N,G), where N is normal to G, i.e, N /G, and G/N is

Abelian.

• Arrows: Let (N,G) and (H,K) ∈D be given, then f : G→ K, where f (N) = {idK}.

We define the functor U and G to be such:
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• G : Ab→D is a functor.

– G : H 7→ (1,H)

• U : 1→D is another functor, where 1 is one object category.

– U : 1 7→ ([G,G],G)

• It implies the following diagram commutes:

Ab

1 D

U

G

We want to find an unique functor F that is left adjoint to G. Thus, by 2 of Theorem

2, we have ηA : A 7→ GF(A) is initial in the comma category (U ⇒ G). Thus, ηA being

initial in the comma category precisely implies the following diagram commutes, given

that f : A 7→ G(B) is another arrow of the comma category:

•
A GF(A)

G(B)
f

ηA

∃!h

Consider the functor F : D → Ab, where is defined as F : (N,G) 7→ G/N, a pair of groups

that N /G is mapped to its quotient group G/N. Thus, let A = (N,G), we will have the

following commutative diagram, given that f : A 7→ G(B) is another arrow of the comma

category:

•
(N,G) (1,G/N)

(1,B)
f

ηA

∃!h

This commutative diagram is analogous to the universal property of quotient group,

•
G H

Gab

f

g ∃!h
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which implies that for any other projection map f from G, a group to another group H, it

has to factor through the Abelian group Gab, as desired.

3.3 Universal Property of Direct Product

We’ve discussed universal property through initial object, and now we will look at the

universal property of direct product, which is established by the property of terminal object.

Consider the two following defintions:

Definition 21. Let G1,G2 be a collection of groups. The external direct product of G1,G2

written as G1⊕G2 is the set of all 2-tuples for which the 2nd component is an element of

G2 and the operation is componentwise.

Recall from Abstract Algebra, we have the following proposition:

Proposition. Let G1,G2 be any groups, G1⊕G2 is their external direct product, and

g1,g2 is the projection maps (i.e., g1(a,b) = a and g2(a,b) = b). Let f1 : H → G1 and

f2 : H → G2 be any pair of homomorphisms. Then there exists a unique h : H → G1⊕G2

such that f1 = g1 ◦h and f2 = g2 ◦h.

• In other words, this diagram commutes

H

G1⊕G2 G2

G1

∃!h

f1

f2

g1

g2

Remarks: Before proceed we will introduce a important lemma in relation the initial

object and make a claim of its dual.
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Lemma 8. Take an adjunctionA
F−�==�−
G

B and an object A ∈A . Then the unit map is an

initial object of (A⇒ G).

Lemma 9. If A and B are categories and F : A →B and G : B→A be adjoint functors,

then for B∈B, the counit map εB : FG(B)→ B is terminal in the comma category (F⇒ B)

where B is the functor from the discrete category with one element to the category B.

It’s obvious that Lemma 9 is dual to Lemma 8. Lemma 8 addresses the initial prop-

erty of a given objective in the comma category in terms of unit. Conversely, Lemma 9

addresses the terminal property of a given objective in the comma category in terms of

counit. Generally, since most universal property can be derived via initial and terminal

objects, Lemma 8 and its dual are powerful tools to have. To prove the Lemma 9, we need

to introduce another lemma:

Lemma 10. Let A
F−�==�−
G

B be an adjunction, with unit η and counit ε . Then ḡ=G(g)◦ηA

for any g : F(A)→ B, and f̄ = εB ◦F( f ) for any f : A→ G(B).

Proof. Let f : F(A)→ B be an object of (F ⇒ B). We have to show there only exists one

map from f to εB. A map f → εB in (F ⇒ B) is a map q : A→ G(B) in A such that:

FG(B) B

F(A)

εB

F(q) f

commutes. But εB ◦F(q) = q̄ by Lemma 10, so the diagram commutes if only if f = q̄,

and if only if q = f̄ . Hence, F(q) is the unique map from F(A) to FG(B).

Having established the connection between universal property and terminal object, we

will use such property to illustrate how to derive the universal property of direct product.

Proof. First, given cateories Grp,D , and 1, a one object category, and functors F and B,

we will construct the comma category (F ⇒ B). We define define D as such:
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• Objects: (G1,G2), a collection of two groups.

• Arrows: Let (H1,H2),(G1,G2) ∈D be given, then f : (G1,G2)→ (H1,H2) is pair of

maps defined as follows:

–

H1

G2

H2

h1

h2

We define the functor F and B to be such:

• F : Grp→D is a functor.

– F : G 7→ (1,G)

• B : 1→D is another functor, where 1 is one object category.

– G : 1 7→ (G1,G2)

• It implies the following diagram commutes:

1

Grp D

B

F

We want to find a unique functor G that is adjoint to F . Consider the functor G : D →

Grp, where it’s defined as G : (H,K) 7→H⊕K, a pair of group that is mapped to their direct

product. By the claim, we know εB : FG(B)→ B is terminal in the comma category (F ⇒

B), given B∈B, and in our set up of the comma category, ε(G1,G2) : (1,G1⊕G2) 7→ (G1.G2)

being terminal in (F ⇒ B) precisely implies the following, given that f : H 7→ (G1,G2) is

another object in this comma category:
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•

G1

H G1⊕G2

G2

∃!h

f1

f2

ε1

ε2

This commutative diagram is analogues to the universal property of direct product:

•

H

G1⊕G2 G2

G1

∃!h

f1

f2

g1

g2

It implies that for any other pair of projection map, the arrow in the comma category, to be

mapped to G1, G2. It has to factor through the direct product, as desired.

3.4 Universal Property of Discrete Topology

In the study of topology, discrete topology is a topological space that all subsets are open.

We will provide the universal property of it and then derive it from Lemma 10.

Definition 22. Given a set S, we can build a topological space D(S) by equipping S with

the discrete topology: all subsets are open. With this topology, any map from S to a space

X is continuous.

• Define a function i : S→ D(S) by i(s) = s(s ∈ S). Then the following commutative

diagram commutes:

–
S D(S)

∀X

i

∀ f unctions f ∃!continuous f̄
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At this point, one should be familiar with the derivation of universal property. To reit-

erate, we start by construction the comma category, and then apply Lemma 10 using the

fact that the unit map is initial. However, in certain cases, it entails the fact that the counit

maps are terminal. After building the commutative diagram of the unit or the counit map,

the connection between the maps and the universal property becomes obvious.

Proof. First, given categories Top, Set, 1, the discrete category, and functors S, U , we will

construct the comma category (S⇒U). The categories Top and Set are the categories of

topological spaces and sets respectivly. We define the functor S and U as such:

• U : Top→ Set is a forgetful functor that forget the topological struture of a given set.

– U : T 7→ S, where T ∈ Top and S ∈ Set

• S : 1→ Set, where 1 is the one object category

– S : 1 7→ S, 1 ∈ 1 and S ∈ Set

• It implies the following commutative diagram commutes:

Top

1 Set

U

S

We want to find a unique functor D that is adjoint to U . Consider the functor D : Set→

Top, where it’s defined as D : S 7→ D(S), where S is a set and D(S) is the set equipped

with discrete topology. Since U and D are forgetful functor and free functor respectively.

so we know they are adjoint to each other. To show D is adjoint to U , we have to show

that Top(D(S),T ) ∼= Set(S,U(T )). We define g : D(S)→ T to be an arrow in Top, thus

we have ḡ : S→ U(T ) as an arrow in Set. Let q : T → T ′ be a map in Top. Similarly,

let f : S→U(T ) to be an arrow in Set, then we have f̄ : D(S)→ T as an arrow in Top. It

suffices to show ¯q◦g =U(q)◦ ḡ. Now we have ¯q◦g : S→U(T ′) and U(q)◦ ḡ : S→U(T ′),
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so we haven shown that D and U are adjoint to each other. Thus, by Lemma 10, we know

the the unit map η is initial in this comma category, and it implies that given S ∈ Set, ηS :

S 7→UD(S) is initial in (S⇒U). Note that h : D(S) 7→ T is the continous map between the

discrete topological space to another arbitrary topological space T . Given another object

of (S⇒U), f : S 7→U(T ), ηS being initial implies the follwoing:

•
S UD(S)

U(T )

ηS

f ∃!U(h)

• This commutative diagram is analogous to the universal property of discrete topol-

ogy:

S D(S)

∀X

i

∀ f unctions f ∃!continuous f̄

It implies that for other projection maps from a set to a topological space, there exist a

unique map from the discrete topological space to the other topological space.

Remarks: We should be aware of the abuse of notation in this case, indeed, i : S→D(S)

means the functions between the sets S and UD(S) that equips the set S with discrete topol-

ogy. Even without the forgetful functor U : Top→ Set, the maps between the underlying

sets of their corresponding topologies are continous.

3.5 Universal Property of Indiscrete Topology

The universal property of indiscrete topology is similar to the one of discrete topology. It’s

important to note that the indiscrete topology is dual to discrete topology, thus we would

apply the dual of Lemma 10 to derive the universal property via the terminal property of

indiscrete topology. Consider the universal property of indiscrete topology:
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Definition 23. Given a indiscrete topology I(S), we could unequip the indiscrete topologi-

cal struture of it, the only open sets are I(S) and /0 the set, to a set S.

• In other words, define a function i : I(S)→ S by i(I(s)) = s, s∈ S. X is some arbitrary

topological space. Then the following commutative diagram commutes:

I(S) S

X

i

f∃!h

For any projection map between a topological space and its underlying set, there exists

a unique map from the topological space and the indiscrete topological space.

Proof. First, given categories Top, Set, and 1, the discrete category, and functors U and S,

we will construct the comma category (U ⇒ S). We define U and S as such:

• U : Top→ Set is a forgetful functor that forget the topological struture of a given set.

– U : T 7→ S, where T ∈ Top and S ∈ Set

• S : 1→ Set, where 1 is the one object category

– S : 1 7→ S, 1 ∈ 1 and S ∈ Set

• It implies the follwoing commutative diagram commutes:

1

Top Set

S

U

We want to find a unique functor I that is adjoint to U . Consider the free functor

I : Set→Top, where it’s defined by I : s 7→ I(s), where s is a set and I(s) is the set equipped

with indiscrete topology. Since U is the forgetful functor in relation to I as the free functor,

so they are adjoint to each other. Thus, by the dual of Lemma 10, we know the counit
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map ε is terminal in this comma category. Given S ∈ Set, the dual of Lemma 10 implies

εs : UI(S)→ S is terminal in the comma category (U ⇒ S). Note that h : I(S)→ T is

the continuous map between the indiscrete topological space, I(S), and an aribitrary topo-

logical space T . The following commutative diagram represents an arrow of the comma

category (U ⇒ S), f 7→ εS, and it commutes:

•
UI(S) S

U(T )

εS

∃!U(h) f

• This commutative diagram is analogous to the universal property of indiscrete topol-

ogy:

I(S) S

X

i

f∃!h

Remarks: The argument for the abusive notation is similar in the case of indiscrete

topology. Without the forgetful functor U , the maps between two sets are still continuous.

3.6 Summary

Overall this study, we begin by establishing the basic definitions of category, functor, natu-

ral transformation, and adjunctions. Providing relevant examples to achieve a better under-

standing of the topic. At the end, we start to derive universal properties for some mathemat-

ical concepts built upon the study of adjunctions. The universal properties proposed in this

study are interpreted either in terms of initial object or in terms of terminal object, two fun-

damental concepts for the derivation. Universal property is an important direct application

of category theory, but there are many more applications yet to be discussed.
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