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Abstract

RIANNA QUIOGUE Preventing Browser Fingerprinting by Randomizing Canvas. Department of

Computer Science, June, 2019.

ADVISOR: Matthew Anderson

Whether users know it or not, their online behaviors are being tracked and stored by many of the web-

sites they visit regularly through a technique called browser fingerprinting. Just like a person’s physical

fingerprint can identify them, users’ browser fingerprints can identify them on the Internet. This thesis

outlines the techniques used in browser fingerprinting and explains how although it can be used for good,

it can also be a major threat to people’s online privacy and security. Since browser fingerprinting has

gained popularity among many websites and advertising companies, researchers have been developing

ways to counteract its effectiveness by creating programs that lie to fingerprinters or override a browser’s

innate properties in order to protect users’ true identities. Our project proposes that by adding randomiza-

tion to the canvas attribute in a Chromium browser, fingerprinting scripts will be rendered less effective.

We compare our countermeasure (the canvas modifications) to a previous study, Privaricator [7], that fo-

cused on randomization in other attributes in Chromium. We reimplement Privaricator’s modifications

into the newest version of Chromium source code and implement our canvas modifications into a separate

Chromium source code. We then test Privaricator and our countermeasure against several fingerprinters to

obtain repeatability rates to determine and compare the success of each countermeasure. We also test both

countermeasures against Panopticlick’s online fingerprinting test to determine detectability of both coun-

termeasures. We found that both countermeasures have the same repeatability rates when tested against

fingerprinters, but Panopticlick was able to detect randomization in our countermeasure and not in Pri-

varicator. We discuss future improvements to our countermeasure to potentially prevent detectability. We

also discuss the effects on appearance of webpages, since canvas is a visible component on some websites.
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1 Introduction

Many companies gather data on who visits their website including how many times and how often. One

way of finding this information utilizes third-party cookies, which are pieces of information stored in the

user’s computer created by the website to track a user’s browsing history. Cookies are often blocked by

users and are easily detectable [3]. This motivated the need for a new way to track users online. Thus,

browser fingerprinting was developed and has since been widely adopted. Browser fingerprinting gathers

information accessible to the host website via Javascript about a user’s browsers and operating systems,

creates a unique ”fingerprint” for each user. Browser fingerprinting runs in the background of a user’s

computer as part of the content of this webpage without their consent, therefore going unnoticed.

There are beneficial reasons for fingerprinting users, for example detecting fraud [8]. Websites that con-

tain valuable, private information such as banking accounts or important documents use fingerprinting as a

supplement to passwords and two-factor authentication to ensure that a user’s identity is not being falsified

or stolen. But on the other hand, fingerprinting can also be abused to log a user’s history information across

multiple websites or make it easier for cyber criminals to hack into a system once they know specific details

about a user’s digital device. A user’s behavior, interests, and browsing history can be tracked and logged

for a website or third-party’s use, making ads or attacks more targeted to a specific user. Although many

are not aware of what browser fingerprint is, studies show users find online behavioral advertising creepy

and an invasion of privacy [10], [9]. Often times, even selecting private browsing mode and deleting all

of one’s history does not protect users from being uniquely identified by their fingerprint. Fingerprinting

is quite deceiving because its tracking techniques are unseen by users. Unlike login credentials, search or

find boxes, or user clicks, there is no visual evidence or interaction from the user in order for his or her in-

formation to be gathered. Fingerprinting happens in the backend using seemingly insignificant or generic

attributes of the user’s browser family, browser version, operating system, HTTP preferences, JavaScript

settings, and Flash capabilities [2].

Eckersley [3] was one of the first to study device’s vulnerability to browser fingerprinting. They cre-

ated their own fingerprinting algorithm based on the configuration information that is accessible to all

websites and gathered a sample of about 470,000 fingerprints from users who visited their website, Panop-

ticlick.eff.org. This research project of the Electronic Frontier Foundation is widely cited by over 800 re-

search papers, as a reference to how easy it is to identify unique browsers. Of the 470,000 browsers fin-

gerprinted, they found that 94.2% of browsers with Flash and Javascript were unique. In this study they

found that browser’s fingerprints change over time; most of the time it occurs naturally, for example when

upgrading browser version or operating system versions to the most current version. They were able to
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show that 99.1% of the time they were able to link a browser’s old fingerprint to their new one when the

change was ”natural” or not due to a countermeasure. Since the article was published in 2010, they have

continued their research on improving their fingerprinting algorithm to be more robust against modern

countermeasures and to use fingerprinting techniques to combat them. They emphasize that browser fin-

gerprinting is a ”worst case” scenario for privacy because unlike cookies, they are an identifier that cannot

be deleted by the user unless a large enough change in configuration is able to break the fingerprinter. The

overall strength of the paper comes from their ability to identify users with high confidence and track their

changing fingerprints over time. They are now running version 3.0 of Panopticlicik on the same webpage

and can be visited by users to check how identifiable they are.

It is important for web users to be aware that this practice is commonly used, how it is employed,

and what they can do to curb it. Based off our research, it seems as though many prevention programs or

techniques currently in play are flawed, not very effective, or even helpful for fingerprinters. Fingerprinters

that detect a user has employed prevention techniques can create an even more unique fingerprint since

prevention of fingerprinting is not a widely used practice yet. Acar et al. [1] was able to identify 16 new

fingerprinting scripts and Flash objects, some of which were active in the top 500 Alexa websites, a list of

the highest-performing websites based on reach and page views among Alexa users. These fingerprinting

scripts include gathering information on attributes such as navigator properties userAgent, language

window screen properties height, width, colorDepth, pixelDepth and font loading calls. Acar

et al. [1] found new fingerprinting techniques that intend to erase evidence that a user was fingerprinted

by removing fingerprinting scripts after they have been run. They showed that fingerprinting is much

more prevalent than previously estimated. BlueCava (a third-party fingerprinting service) was found on

250 of the top Alexa websites and 404 sites on the Alexa top million websites fingerprint users on their

homepages. It is concerning that users’ information is being gathered without their consent from websites

they visit frequently. Browser fingerprinting is a threat to the specific privacy issue of linkability, the ability

of an attacker to distinguish whether two items of interested are linked (in this case our current identity to

our identity in the past). Being identifiable online is not as much of an issue as being tracked online; even

if fingerprinters can identify specific users, this practice is useless if they cannot watch people’s behavior

over time. If fingerprint trackers are able to link our current fingerprint to our previous fingerprint, they are

able to trace our browsing history and behavior over an extended period of time. This is the main concern

and motivation for uniquely identifying users.

One previous study, Privaricator [7], has been able unlink users’ fingerprints by randomizing certain

attributes in a Chromium browser. We implement Privaricator’s code into the current version of Chromium

and we use it to compare its effectiveness against our proposed countermeasure’s. Privaricator was one of
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the first studies to explore the method of spoofing fingerprinters by telling ”little white lies.” Previously

developed countermeasures focused on lying about more common attributes such as operating system

or browser family. They aim to spoof these attributes in order to make their fingerprint look like other

people’s fingerprints, or in other words to look less unique. These countermeasures often fail because

fingerprinters check other attributes or browser functionalities to determine if that person is lying. It is

obvious when someone is lying about these attributes because other components of one’s fingerprint reveal

the ground truth. The attributes Privaricator chose to randomize are not checked as often by fingerprinters,

so the randomizations successfully deceive the fingerprinter into thinking the user is a different person

every time.

1.1 Research Question

Over the past two terms we explored and answered the following research questions: Does randomizing

the canvas attribute in the Chromium browser achieve a repeatability rate that is lower than previously

found in the Privaricator study?

1. Does it bypass detection by fingerprinting trackers as measured by the Panopticlick fingerprinting

test?

2. Does it cause negligible difference to the user’s experience by significantly changing visual represen-

tations of webpages?

There is one significant characteristic that sets Privaricator apart from other countermeasures. Popu-

lar fingerprint spoofers aim to make a large number of users look the same by completely changing the

truth of attributes; for example changing everyone’s browser family to all appear as though they’re using

Firefox even if they are using a different browser. The reason why browser family or operating systems is

considered a ”big lie” is because these attributes affect many other aspects of the browser. Browser fam-

ily determines what fonts and plugins can be installed. The value of one’s browser family is also stored

in multiple places, for example in the the version of Flash installed, in the navigator object and in the

userAgent object. This is because the browser family determines many of the functionalities and directly

affect usage. Other attributes, like plugins and canvas may reveal information about a browser, but do

not affect other attributes within the browser. In other words, the relationship between browser family and

canvas is one-way because canvas is just an extension of browser family.

Privaricator and our countermeasure aim to change to the browser’s true attributes in order to look

different by making very slight differences at each visit. Utilizing the same method of ”little white lies,” we
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randomize the canvas attribute to return a value close to the true value but this returned value is different

every time. The canvas attribute allows browsers to render graphics on the fly and is typically used in

animations or online gaming. Based on the data we gathered to calculate repeatability rates against 6 fin-

gerprinters, we assert that our canvas modifications work as often as Privaricator, thus protecting users

at the same success rate. The limitation of our countermeasure is its lack of protection against detectabil-

ity. When we run both our countermeasure and Privaricator against Panopticlick, the most well-known

and trusted fingerprinting project, Panopticlick is able to see that we are randomizing canvas but does not

see that Privaricator is randomizing plugins. (They do not include offsetHeight and offsetWidth

in their fingerprinting algorithm.) We propose a modification to our countermeasure that would protect

our countermeasure against detectability. Our experiments only tested 6 fingerprinters, and thus is not an

exhaustive or representative set of all types of fingerprinters. There could be some fingerprinters that do

not use plugins in their algorithms, some that do not use canvas, and some that may not use either. For

this reason, we argue that combining Privaricator’s modification and our modifications into one counter-

measure would create an even more robust system that would spoof fingerprinters more than if they were

implemented separately. (This is given that the detectability issue with our countermeasure is resolved.)

Also, because we are modifying the appearance of canvas we also assess the effects on visual appearance

of webpages. We find that the most popular websites do not use visible canvases, so our modifications

are not seen by users in this cases. But in the instances where canvas is visibly used by websites, there is

a noticeable difference between the unmodified Chromium browser and the Chromium browser with our

modifications. The specific implementations of Privaricator are explained in Section 2.2 and we expand on

our own canvas modifications in Section 3.1.1.

2 Background

Many articles outlined in this section describe which specific browser characteristics are used to create fin-

gerprints. As browser fingerprinting has become more popular, there has also been more concern for pro-

tection against fingerprinting. We also discuss several countermeasures that attempt to spoof fingerprinters

by lying about users’ browser environments.

2.1 Fingerprinting in the Wild

Eckersley [3], a study conducted by Electronic Frontier Foundation in 2010, was the first to demonstrate

significantly accurate techniques and ease of browser fingerprinting. Users visited the Panopticlick website

4



and 470,161 fingerprint instances were collected over a year. They found that fingerprints change often

(37.4% of users’ fingerprints change over time) and that Flash and JavaScript userAgent properties are very

accessible, precise ways of identifying unique users. Of the fingerprints that experienced change over time,

the study was able to link them to their previous fingerprints with an accuracy rate of 99.1%, showing

that fingerprints are easily tracked over time even if a user updates their browser version. In these cases,

browser versions were the main difference between a user’s old and current fingerprint. They were able

to link users to their previous fingerprints because changing to a newer browser version is common and to

be expected among users. In this paper, Panoptioclick uses only 8 properties userAgent, HTTP ACCEPT

headers, cookies enable?, screen resolution, timezone, browser plugins, plugin versions

and MIME types, system fonts, and partial supercookie test to create a fingerprint.

At its creation, fingerprinting was supposed to be used for good. The motivation for this practice was to

be learn a user’s behavior so that trackers could notice when there was an anomaly or suspicious behavior

in hopes of preventing fraud or other cyber crimes. Also, on some sites, in order to opt-out of a tracking

program a user’s unique fingerprint must be formed so that the tracker remembers to disregard their data.

This study was able to identify 94.2% of users as unique in their sample. This study demonstrates the ease

of uniquely identifying users with minimal, and seemingly generic information.

According to Vastel et al. [13] common attributes for finding a user’s unique fingerprint include: ac-

cept, connection, encoding, headers, languages, userAgent, canvas, cookies, Do Not Track, local storage,

platform, plugins, resolution, timezone, WebGL, and fonts. All of these characteristics are categorized as

HTTP header, JavaScript, or Flash sourced. This study focused on the ability to track browser fingerprints

over time, as browser attributes often change either automatically or manually. They found that they were

able to track browsers for 54.48 days and 26% of browsers could be tracked for more than 100 days. 50%

of browser instances changed their fingerprints in less than 5 days and 80% changed in less than 10 days.

FP-Stalker was able to link fingerprints for a given browser, despite changes, for at least 51 days. It is

able to do so based on a rule-based algorithm. This algorithm includes the fact that OS, platform, and

browser family must stay consistent, browser version either stays constant or increases over time,

local storage, Do not Track, cookies and canvas settings should stay constant, and allows

timezone, resolution, encoding, userAgent, vendor, renderer, plugins, language, accept and headers to

change. This study published in 2018 found that attributes that are not expected to change often are canvas

(which stays stable for 290 days in 50% of browser instances) and screen resolution (which never changes

for 50% of users). These results show that it is relatively easy for fingreprinters to continue tracking users

even after attributes change so often.

Naturally occurring changes to a user’s browser, like updating to a newer browser version, is not
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enough to deter fingerprinting. Thus, fingerprinting is persistent over time and difficult to curb without

users’ mindful interference. Since this study represents many modern fingerprinter methods, this would

be a good area to focus my project on as modifications to these areas are not widely known of or practiced

yet. They used a rule-based algorithm to observe how easily users fingerprints could be linked to their own

previous fingerprints. Defined in this algorithm, they expect browser family and operating system to be

constant and browser version to either be constant or increase over time.

Another previous study by Laperdrix et al. [4] focused on creating their own browser fingerprinting

script made up of 17 attributes. These attributes are representative of what modern browser fingerprinters

use in the wild. They found that canvas fingerprinting was one of the most discriminating attributes,

meaning that it is significant in identifying users since one’s canvas is very unlikely to be similar to others’.

The HTML canvas attribute is used to draw graphics on the fly, via Javascript. With it, paths, shapes, text

and images can be drawn, which is useful for dynamic graphics, online gaming, animations, and interactive

videos. This means that it allows users to draw graphics on a webpage in real time. canvas gives away

information on a user’s hardware and software environment, for both desktop and mobile browsers. Figure

1 shows what a rendered image of a canvas fingerprint looks like. Because varying browsers use different

fonts and emojis and render colors differently, the returned image of the canvas can be very useful in

identifying users when combined with other attributes to create a full fingerprint. Acar et al. [2] found that

canvas fingerprinting is prevalent in 5% of the top 100,000 Alexa sites, which is a high percentage relative

to other fingerprinting techniques. They also found some uses of canvas fingerprinting in the wild that was

even unreported in the academic research community. Canvas fingerprinting is a technique that renders 2D

images, invisible to the user, in order to get information about the browser’s image processing in regards

to fonts, shapes, colors, and emojis. Fingerprinters rely on the canvas attribute to ensure that information

of the user’s operating system from the user agent and canvas are consistent. Canvas is used in a way to

double-check that a user is not lying. Canvas settings are also reliable because they are assumed to stay

relatively stable, or unchanging over time, because it is unlikely that a user will change their configurations

for image processing. Vastel et al. [13] found that canvas fingerprints usually stay stable for at least 290

days. There are multiple steps involved in canvas fingerprinting.

1. Font probing The script tells the browser to render a string of letters twice. For the first string, it tells

the browser to render the string using a fake font name, forcing the browser to use a ”fallback” font,

or a font that is available to the browser. This ”fallback” font will vary depending on the OS and the

fonts installed on the system. For the second line, the script tells the browser to render the string using

the font Arial, which commonly installed on many operating systems. The string rendered with Arial
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Figure 1: Above is an example of a rendered canvas used in canvas fingerprinting. Several lines of text are
rendered in different fonts, colors and transparencies and usually include at least 1 emoji. Shapes are also
drawn in different colors and transparencies.

font will have small visible variations of pixels due to differences in rendering processes in operating

system.

2. Emojis Emojis are small icons or characters that are used to represent a user’s emotion. Different

operating systems will render the same emoji differently and thus reveal the user’s hardware.

Nikiforakis et al. [8] notes that lying about having older browser versions (as seen in use in the Tor

browser) is often ineffective because newer version specific capabilities are revealed when scripts are run.

Fingerprinting scripts can also detect lies using canvas fingerprinting if the browser’s user agent and ren-

dering of an emoji is inconsistent. Lying must be done in a careful manner because fingerprinters often

check if a user has employed any kind of fingerprinting prevention tactic. When a fingerprinter notices

that a user is lying about their browser characteristics, that user is even more unique in the dataset of all

users since fingerprinting awareness and information privacy is not widely known by the average user.

In Acar et al. [2], which originally proposed the idea of canvas fingerprinting, used functions fillText

and toDataUrl to draw text on the canvas and read the image’s data. Once the image is rendered, the

toDataUrl method returns the canvas’s data in dataUrl format, which is an base64 encoded representation

of the binary data of the pixels. Then, the fingerprinting script takes a hash of this binary information and

uses it as the user’s canvas fingerprint which then gets combined with information from other attributes

like plugins, platform, timezone, and language to form a user’s complete browser fingerprint.

2.2 Prevention Methods in Use

Vastel et al. [11] notes that several prevention methods have been created in order to deceive finger-

printers, such as Ultimate User Agent Switcher and User-Agent Switcher. These countermeasures work by

changing the information of the user’s userAgent which include data on name, version and platform of
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the browser. The navigator object contains the userAgent but also contains repetitive information such as

platform in addition to plugins, cookiesEnabled, and userLanguage. In an unmodified browser, these two

attributes’ values should be identical. Ultimate User Agent Switcher alters the userAgent sent in the HTTP

request but doesn’t alter the one in the navigator. Both Ultimate User Agent Switcher and User-Agent

Switcher reveal inconsistencies between the userAgent and navigator. The problem with these techniques

is that their lying methods for certain attributes are not robust enough and end up revealing the ground

truth of the user’s environment when other methods that should return the same values are called by the

fingerprinter. Fingerprinters use this double-checking technique to discover the unmodified attributes and

if the user has employed any prevention methods in order to create a unique fingerprint. Inconsistencies

in returned values is the main giveaway spotted by fingerprinters and the reason why many fingerprinting

countermeasures ultimately fail.

This is a main issue with the offensive and defensive side of fingerprinting; they are trapped in an arms

race. When the defensive side creates a new countermeasure, the fingerprinters will learn from these tech-

niques and incorporate more resilient tests. This study outlines and creates tests for developers to check

whether their prevention techniques successfully deceive fingerprinters. They check short-term and long-

term fingerprintability. The short-term fingerprintability tests, implemented under the name FP-Scanner

[12], check how a browser with a countermeasure differs from a browser without one. It checks for DOM

modifications (or changes in HTML), inconsistencies between HTTP headers and the navigator object,

HTTP header modifications, overridden functions/attributes by checking their toString representations,

and canvas fingerprinting. Long-term fingerprintability tests focus on how countermeasures affect the abil-

ity for a user to be tracked over time. They do this by detecting variability, evaluating long-term tracking

by applying the countermeasure to all fingerprints in their test population to link users to their fingerprint

before they introduced the countermeasure, and applying browser extension changes on fingerprints. The

paper states that FP-TESTER contains four components: a fingerprinter, a short-term test component, a

long-term test component, and a report. Upon reaching out the the author of FP-TESTER, it was made

clear that the long-term fingerprintability tests had not been implemented but were outlined in the pa-

per as proof-of-concept and motivation to be implemented in the future. In this study, they were able

to identify two canvas extensions but failed to identify two user-agent spoofers. We were able to get in

contact with one of the author’s of FP-TESTER and he directed us to a Github repository of FP-Scanner

which is the implementation of the short-term fingerprintability tests outlined in FP-TESTER. According to

Github, FP-Scanner was last modified 10 months ago (in May of 2018) so we assume it was developed with

modern fingerprinting and countermeasure tactics taken into account. Upon looking at the source code of

FP-Scanner further, we see that it is not able to be used against our countermeasure or Privaricator as it is
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implemented but instead requires the development of our own database of very specific structure to match

theirs, an automated script which can repeatedly scrape data from fingerprinting webpages and populate

this database, and changes in FP-Scanner’s implementation. Due to all of the components necessary to get

FP-Scanner to work, we decide not to use their detectability tests for our study, although if these compo-

nents were implemented FP-Scanner would have been useful. We discuss the difficulties of implementing

FP-Scanner in Section 4.3.

Mulazzani et al. [5] focused on identifying users’ web browsers based on underlying JavaScript engines.

Using a test set of browsers and browser versions and a decision tree, they were able to ID a user’s browser

in multiple rounds. They found that modified userAgents were able to be detected. Comparing these two

studies, we can deduce that userAgent spoofing techniques are not reliable or consistent prevention or

fingerprinting techniques in modern technology. Our countermeasure will focus on modifying canvas and

not userAgent, therefore FP-TESTER’s short-term fingerprintability tests will still be useful since they have

proved to detect other canvas countermeasures.

Privaricator modified Chromium browser using randomization in offsetHeight, offsetWidth, getBound-

ingClientRect, and plugins as a way to make users look unique every time they are fingerprinted [7]. Their

countermeasure, Privaricator, is proposed as a comprehensive approach to preventing fingerprinting. Pri-

varicator’s purpose is to make the user appear to have a different fingerprint at every website visit. So, the

user is still able to have their fingerprint collected, but the randomization modifications make the user look

different from their past and future fingerprints, thereby unlinking their browser history. Browser finger-

printing is therefore rendered useless, as its whole purpose is to keep a record of a user’s browsing history

over time. Privaricator’s policy includes returning 0, a random number between 0-100, and the original

value +/- 5% noise to offsetHeight, offsetWidth, and getBoundingClientRect respectively.

These policies are controlled by a lying threshold (how fast Privaricator starts lying, or in other words after

a certain amount of accesses to these values) and a lying probability (the probability or frequency of lying

after the threshold has been met). For plugins, they use three parameters to decide the how Privaricator

will lie about the browser’s plugins. They define probability P(plug hide) as the a probability for hiding

each individual plugin in a browser’s list of plugins, theta as how soon Privaricator will start lying, and

P(lie) as how often Privaricator lies. This technique does not prevent fingerprintability, but instead pre-

vents linkability between fingerprints virtually making fingerprinting useless. Their techniques are helpful

in understanding how fingerprints are collected. Using several benchmark suites, they showed that Pri-

varicator caused negligible overhead for the user. By analyzing screenshots of vanilla browsers against

screenshots of their modified browser, they also show that there was no detrimental or significant change

in appearance of the sites visited by the user.
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Fingerprinter Used Repeatabiity Rate
BlueCava 3.68%
Coinbase 21.64%

Fingerprint.js 21.64%
PetPortal 62.17%

Figure 2: Repeatability rates found by the Privaricator study.

Figure 2 outlines the fingerprinters that the Privaricator study used and their resulting repeatability

rates. In this study, they ran automated tests using Privaricator against each fingerprinter at 1,331 different

parameters (varying each of the probabilities at intervals of 10%). So for example, PetPortal yielded a

repeatability rate of 62.17%, meaning that out of all of their runs, 62.17% of those runs returned fingerprint

that was already found by the fingerprinter. The other 37.83% of runs returned fingerprints that were not

already found by the fingerprinter. PetPortal was the most effective against Privaricator and it utilized

offsetHeight and offsetWidth but not plugin information. Since this paper has been published, several

studies have incorporated randomization for these specific attributes as areas to focus on for fingerprinters,

aware that prevention frameworks have employed techniques from or like Privaricator [11], [13]. Also,

offsetHeight is only accessed in 1.87% of fingerprinting scripts, [7]. Therefore, we think that these

results could be improved upon by modifying alternative features to protect against fingerprinting more

thoroughly, especially attributes that more fingerprinters access.

3 Method

In this section we outline the process of implementing Privaricator and modified canvas. We also intro-

duce the methods used to test both countermeasure in order to compare their success and effectiveness.

The results from these tests are discussed further in the Results section.

3.1 Implementing Privaricator

We have obtained the patch code from one of the authors of Privaricator and implemented its changes into

the most current version of the Chromium browser. Privaricator was originally implemented on Chromium

version 34.0.1768.0 in 2015. Since then, many changes have been made to the source code including changes

in syntax, class names, function names, and structure of the code. We spent some time deciding which ver-

sion we wanted to implement our countermeasure on, but we knew that it had to be the same version we

implemented Privaricator on in order to draw legitimate comparisons between the two. We were able to

find version 34.0.1768.0, but decided against implementing anything here for several reasons. Firstly, hav-
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ing a 4 year old version of Chromium may impact the user’s experience, who would be most used to using

up-to-date versions of browsers. We are assuming that there are many functionality improvements in the

newest version compared to version 34.0.1768.0. Secondly, having such an old browser of Chromium may

be a very defining attribute for users. This may make it very easy for fingerprinters to identify users or at

least classify users in a smaller percentage of people with that version. Many Chromium users have proba-

bly updated their version since 2015. We then moved on to finding the most current version of Chromium.

Chromium is not very well documented and source code is found on Google’s own adapted version of

Git (with limited functionality and readability). While further investigating the source code provided by

Google, it became apparent that the ”Blink” library was not included in it. Blink is a fork of WebCore which

is a layout, rendering and Document Object Model library that can be used in Chrome or Opera browsers.

It is where all of the Privaricator modifications reside thus a necessary part of the source code that we

needed. We were then able to download Chromium with the Blink library included which overall contains

over 649,000 files totalling 26.3 GB. Being such a large file, download and compilation time can be quite

lengthy.

Once we had the source code ready and confirmed that it compiled, we implemented the Privaricator

patch code and confirmed that it also compiles. The Privaricator patch modifies the Script Controller,

Navigator, Navigator ID, Element, and Plugin Data classes. The first three classes contain modi-

fications to the offsetHeight and offsetWidth attributes and the last two modify the plugin infor-

mation. According to the patch code of Privaricator, offsetHeight and offsetWidth are randomly

changed to +/- 5% of their true values. plugins are changed based on a set of rules dictated by the

P(plug hide), offset threshold, and P(lie) global variables. According to one of the authors of

Privaricator, these variables are meant to be set by the user as an environment variable on their system and

changed depending on the type of fingerprinting script on the website being visited and how many benign

websites (websites not containing fingerprinting scripts) are visited. We believe that this implementation

of dynamically changing environment variables was most useful to the researchers developing Privaricator

in order to run scripted automated tests to attempt the many parameters to find the best combination. We

slightly modified the original code of Privaricator to set P(lie) to 20, offset threshold to 60, and

P(plug hide) to 50. These values were chosen based off of a chart included in the Results section of the

Privaricator paper that highlighted the range of values that were found to be successful. The author of the

paper also confirmed that within this range, there is no right or wrong answer to set the values to [6].
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3.1.1 Implementing Randomization in canvas

To find where in the source code we have to randomize canvas, we visit a few known fingerprinting

websites and set a breakpoint in the JavaScript code to pause at any code that accessing canvas. This

reveals the exact functions used by the fingerprinter to create, modify, and output a canvas for canvas

fingerprinting. The code for canvas fingerprinting has many similarities between fingerprinters and is

relatively simple. First a canvas is created using the desired height and width. A rectangle is then drawn

at a given x and y position of a certain height, width and color. Then a few lines of text (usually including

emojis) are drawn to the canvas, specified by the type of font, x and y positions, and color. Finally, the

canvas is returned to the fingerprinter using the function toDataURL. toDataURL records the information

of each pixel, hashes it using Base64 encoding and returns the resulting string. This allows the image to be

converted between an image of the canvas and its string representation. Users are not able to see what the

rendered canvas looks like since fingerprinters make it invisible to not reveal that they are fingerprinting

visitors. But we use the toDataURL output to recreate the canvas and study the effects of our modifications.

The first function we attempt to randomize is the fillRect function which creates a rectangle on

the canvas. We were unable to successfully randomize the rendered rectangle; the modifications we were

making to color did not seem to have any actual effect on the resulting canvas based on the recreated

image using toDataURL. We randomly selected a color to be filled by the rectangle and we were able

to see these changes because the background of every website were populated with different colors. For

example, Google’s white background appears completely orange at one visit and green at another. Yet,

this modification does not change the fingerprint at all. Some of the features of canvas are documented

online to be used by web developers. For example, we can find documentation that tells us to use the

function fillRect to draw a rectangle on the canvas. But there is little to no documentation of how to

modify the inner workings of Chromium. fillRect is actually a wrapper function which calls many

other functions within it to complete its function. Attempting to change color within each of the functions

within fillRect, we still saw that the background of all webpages was being affected. This leads us to

believe that the same fillRect function is used not only to draw on the canvas, but for any document

on the webpage so it may be the case that any randomization added here could affect the appearance of all

webpages. So we decide that even if we were able to properly implement randomization to fillRect so

that the canvas fingerprint changed, the changes in background of every webpage would negatively impact

user experience.

Due to time constraints, we shift our focus to other functions that have simpler implementations like

those that randomize the color of the text. In the function fillStyle, we change the R (red), G (green),
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R 2(.15 ∗ 255) = 76.5
G 2(.15 ∗ 255) = 76.5
B 2(.15 ∗ 255) = 76.5
A 2(.10 ∗ 255) = 51

Figure 3: Number of possible different values for each text color property in canvas

B (blue), and A (alpha which represents transparency) to any value in the range of 0 to 255. This range

includes all of the possible values that are valid for these properties and must be integers. This randomiza-

tion changes the toDataURL output each time and fingerprinters return different fingerprints each time.

The changes are also visible when we render the image of the canvas. But, this modification changes colors

to be completely different than their original value and would not be usable in a practical setting for users.

It provides us with a proof of concept though, showing us that randomizing canvas does in fact change

our fingerprint. The R, G, B, and A properties have a range of 0 to 255. So, we tune the randomizations to

randomly change the R, G, B, and A variables to +/- 10% of the total range closest to the true value (the val-

ues specified by the fingerprinter). Since the range has 255 possible values, 10% of this range is 25.5 values

below and 25.5 values above the true value for a total of 51 possible values. If the true value of the R value

was 50, our modifications randomly choose a value between (50− 25.5) = 24.5 and (50 + 25.5) = 75.5. The

R, G, B, and A properties require integer values, so we round down to 25 so that the total range of possible

values is 50, an even number. This allows us to have the same range of values to randomly select above and

below the true value. This still changes the canvas fingerprint and overall fingerprint and the changes are

less noticeable in the rendered image of the canvas. But, these significantly impact the number of possible

fingerprints we are be able to achieve. The range of +/- 10% allows for R, G, B, and A to each only have up

to 50 possible different values. So we tune the randomization to allow R, G, B to randomly assign +/- 15%

of the total range and keep A to +/- 10%. The resulting image of our modifications are seen in Figure 4.

It follows that 15% of 255 equals 38.25 (a decimal) and doubling this range produces 76.5 (also a decimal).

For the same reason, we round the 15% range for the R, G and B properties down to 38 so the full range

including values above and below the true value is balanced. We do not believe that the decision to round

up or down for these decimal numbers has a significant effect on our countermeasure. This gives R, G, and

B each a range of 76 different values and A 50 values (Figure 3).

We also make sure that if the new value is below zero, that variable is set to zero and if it is above 255,

it is set to 255. This ensures that no value is out of range and gives an erroneous value that does not make

sense to canvas specifications.

To do so, we modify the fillText function which determines the x and y coordinates of the text on the

canvas. We randomize the x and y values to be +/- 5 their true values. We also make sure that the x and y
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Figure 4: On the left side of the image above is a portion of a canvas fingerprint rendered from an un-
modified browser. On the right side is a portion of a canvas fingerprint rendered from a browser with
just our color randomizations implemented. This highlights the visible difference in output caused by our
randomizations in the R, G, B and A properties.

values are no lower than 0 to stay within range. Adding to the x and y values should not produce a value

out of range on the upper bound of the canvas because these values indicate where the text starts. So, x

and y values of text are typically low values so that all of the text is within the canvas. Adding to these

values will likely keep the text within the canvas’s width or height range. We chose the value of 5 because

the canvases used in canvas fingerprinting are already small.

3.1.2 Testing Against Fingerprinters

Running preliminary tests against our canvas modifications to color and to position of text separately from

each other shows that both modifications are able to change the toDataURL output and our overall fin-

gerprints. Once Privaricator and the canvas modifications were fully implemented, we were able to gather

large datasets of fingerprints to calculate repeatability rates. Repeatability rates measure the success of a

countermeasure on a numeric scale. It is calculated by dividing the number of repeated fingerprints by the

total number of fingerprints in the dataset.

Repeatability Rate =
number of repeated fingerprints

number of total fingerprints
(1)

For example if 10 fingerprint tests are run and there are 9 distinct fingerprints with the remaining 1

fingerprint being a repeated fingerprint that was previously found, the repeatability rate is 10%. In theory,

the lower the repeatability rate, the more effective the countermeasure because the objective is to generate

a different fingerprint at each website visit. We test Privaricator and our countermeasure against 6 dif-

ferent fingerprinters: Fingerprintjs2, Hidester, BlueCava, Browserprint, PetPortal, and Fingerprint.js. All

fingerprinters are free to use online and return a string indicating the user’s fingerprint along with some

of the attributes that are included in the fingerprint. (One caveat with this approach is that because these
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fingerprinters are free to use online, they may not represent the most rigorous or advanced browser finger-

printing scripts that exist in the wild. Because only we only use 6 fingerprinters, they do not fully represent

the broad scope of all existing fingerprinting techniques. Thus we can only discuss our results relative to

these fingerprinters and cannot extrapolate this data to the total population of fingerprinters in the wild.

Due to lack of financial resources, we do not use any commercial fingerprinters in testing. The only ex-

ceptions to this are BlueCava and Fingerprint.js which are a commercial fingerprinter but their homepage

returns a fingerprint to the user but they do not reveal which attributes their fingerprinting scripts check

for. Their sold fingerprinting services may be more robust.) Another point to note is that Fingerprint.js is

the commercial version of Fingerprintjs2. Fingerprint.js is marketed as the ”modern and flexible” version

of Fingerprintjs2, implying that Fingerprint.js utilizes more advanced fingerprinting technology. So, we in-

clude both fingerprinters in our tests to see if there is a noticeable difference in their repeatability rates. We

run each fingerprinter a couple hundred times for all countermeasures and record the returned fingerprint.

These tests are run manually, by visiting the fingerprinter, navigating to another website, returning to the

fingerprinter and repeating this process consecutively. The results of these tests are explained in Section

5.1.

3.2 Assessing Visual Breakage

Because our modifications to canvas affect color and position of text, it is important to assess their effects

on the appearance of webpages. We visit many of the Alexa top 500 websites, which is a list that ranks web-

sites that are most frequently visited by users of the Alexa toolbar across the globe. In all of the websites

we visit, we record screenshots of the website from an unmodified Chromium browser and a Chromium

browser containing our modifications. We also visit websites that are known to have visible canvases on

them to note the difference between screenshots. To assess all possible user experiences, we include in-

stances where users do need to use canvas. We compare their differences based on our own subjectivity.

Conducting a formal user study in which participants are randomly assigned a screenshot from an unmodi-

fied or modified browser and then asked to describe anything unusual they see could have been conducted

and useful. But we choose not to do this due to a lack of time and resources (lack of compensation for

participants) for this study.

3.3 Measuring Detectability

As previously mentioned, it is imperative that fingerprinters are not aware that they are being lied to.

Because very few in the general population know about fingerprinting and even fewer people have coun-
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termeasures in place, if a fingerprinter can detect that a user is lying it makes the user look even more

unique. We were able to test the detectability of Privaricator and our countermeasure by running the coun-

termeasures against Panopticlick. Their test runs online for free and outputs the values of all attributes

they access. We trust that Panopticlick is a reliable, robust fingerprinter as this project has been and con-

tinues to be widely cited in research. They have also improved upon their original fingerprinting script;

they are now on version 3.0. FP-Scanner is an open source test suite written in Python that measures de-

tectability based on a predetermined set of rules. We initally hoped to use it in our experiments to test

detectability but implementing it turns out to be a complex process. The current implementation of FP-

Scanner accesses an online database set up by USENIX Association, or the Advanced Computing Systems

Association, who funded the FP-Scanner project. This database holds information on the true values of an

unmodified browser’s configuration and the values after a countermeasure is used. It also specifies which

countermeasure was used to generate these values. FP-Scanner then takes these values and compares them

in their ”inconsistency tests” and reports whether they were able to detect changes. In order to use FP-

Scanner we must change their implementation to access our own database instead of theirs. Our database

must be structured exactly the same as theirs, with corresponding columns to ensure the tests work prop-

erly. We would have to gather a large amount of data for true values and spoofed values and enter them

into the database. An automated script would be necessary to do this task efficiently. So, we conclude that

modifying FP-Scanner and implementing the database and script necessary to use it is not feasible given

the time frame of our project. Instead, we only use Panopticlick’s online, ready-to-use fingerprinter but do

acknowledge that FP-Scanner is a useful tool for the future.

4 Results

4.1 Repeatability Rates

We run Fingerprintjs2, Hidester, BlueCava, Browserprint, PetPortal, and Fingerprint.js fingerprinters against

both countermeasures hundreds of times each and record the fingerprint of each run to calculate 12 repeata-

bility rates, seen in Figure 5.

Fingerprintjs2, Hidester, Browserprint, and Fingerprint.js all yield a different fingerprint every time and

no fingerprints repeat. Privaricator and our countermeasure yield a repeatability rate of 100% against Blue-

Cava and PetPortal meaning that the same fingerprint is returned every time and the countermeasures

do not seem to spoof fingerprinters at all. Repeatability rates are dependent on the fingerprinter used be-

cause different scripts use various attributes to create users’ fingerprints. Because Fingerprintjs2 is an open
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Fingerprinter Privaricator Repeatabiity Rate Canvas Repeatabiity Rate # Trials (Each)
Fingerprintjs2 0% 0% 500

Hidester 0% 0% 500
Browserprint 0% 0% 200
Fingerprint.js 0% 0% 100

BlueCava 100% 100% 200
PetPortal 100% 100% 150

Figure 5: Repeatability rates for Privaricator and our countermeasure found using manual testing.

source fingerprinter, with its code available on Github, we do know that they do not use offsetHeight or

offsetWidth. But their script does include taking the value of plugins and canvas once, concatenating

them with the values of the other attributes gathered, then hashing this long string to create a fingerprint.

In this case, both countermeasures effectively change the fingerprint every time. Because the Fingerprintjs2

uses such a simple approach for creating a fingerprint, it is easy to change the whole fingerprint with just

one change in any of the attributes. Fingerprintjs2 does check if the user is lying about their operating

system, browser family, language, and screen resolution but does not check for lying in the other attributes.

Fingerprintjs2 is easily susceptible to small changes, making the randomization in Privaricator and our

countermeasure effective. We do not have access to the code for fingerprinting scripts used in Hidester,

Browserprint, or Fingerprint.js but we have reason to believe they work in similar ways to Fingerprintjs2

due to their repeatability rates of 0%. These fingeprinters represent very simple approaches to fingerprint-

ing which can easily be broken. Also, Fingerprintjs2 and Fingerprint.js do not behave differently as we

suspected telling us that Fingerprint.js’s fingerprinting technology does not appear to be significantly more

advanced than Fingerprintjs2’s. Since they are different versions of almost the same code, any additional

features in Fingerprint.js (if they exist) still do not work against our countermeasures.

For our countermeasure, we can calculate the number of possible fingerprints that can be returned to

the fingerprinter. Based on our modifications R, G, and B have 76 possible values, A has 50 possible values,

and x and y each have 10 possible values we get (76 ∗ 76 ∗ 76 ∗ 50 ∗ 10 ∗ 10) = 2, 184, 880, 000 different

combinations of values and resulting fingerprints. So, we would only expect to repeat a fingerprint after

about this many runs. Similarly, Privaricator has billions of possible combinations of plugins so it would

also take a significant amount of runs to repeat a fingerprint. Due to the number of possible fingerprints

Privaricator and our countermeasure can theoretically create, it makes sense that we would not repeat a

fingerprint after only a couple of hundred of runs especially since their fingerprinting algorithms are so

simple. Since we are testing fingerprints manually, we are only able to collect hundreds of fingerprints for

each fingerprinter this explains the repeatability rates of 0%. It would be useful to develop an automated

script that could run repeated tests on fingerprinters continuously and record the returned fingerprints as
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well as a program that would calculate repeatablility rates for very large datasets. Due to time constraints

we are unable to create such programs, but we realize their benefits in this study.

When we test BlueCava and PetPortal we obtain repeatability rates of 100%, meaning that they return

the same fingerprint every time showing that the randomizations do not have any effect on fingerprintabil-

ity. We do not know which attributes are used in the BlueCava fingerprinter, but PetPortal does list the at-

tributes they use in theirs. Among the attributes PetPortal lists, offsetHeight, offsetWidth, plugins,

and canvas are not included. This explains why our fingerprint does not change and we receive a repeata-

bility rate of 100%; the randomizations are not being used at all. We assume that BlueCava’s fingerprinter

works similarly and does not include any of the attributes modified by Privaricator or our countermeasure

or that they implement a clever workaround to randomizations. It could also be the case that BlueCava and

PetPortal utilize cookies to recognize repeated visitors. While running our fingerprinting tests, we do not

disable cookies so it is possible websites were storing them on our device. If BlueCava and PetPortal store

cookies then they would not need to generate new fingerprints each time but would be able to recognize us

immediately and return our original fingerprint. The 100% repeatability rates highlight the wide spectrum

of existing fingerprinting scripts. As mentioned before, some fingerprinters only use attributes very simply

by combining them all into one string and thus are easy to break. But some fingerprinters like BlueCava and

PetPortal may not include the attributes Privaricator or our countermeasure modify. Or they may interpret

the values in a clever way, like getting values multiple times to check for randomization.

It is interesting to note that PetPortal, BlueCava and Fingerprint.js have differing repeatability rates in

our study and in Privaricator’s. There could be several explanation for this discrepancy. One reason could

be that Privaricator utilized automated scripts to run repeated tests while we run our test manually. They

do not specify how many tests they run for each fingerprinter, but it is possible that they ran billions of

trials to achieve higher repeatability rates for Fingerprint.js. Another difference between our testing is that

we gather fingerprints by navigating to a fingerprinting page, record the fingerprint, leave the page, and

then return to the fingerprinting page to repeat the process. We are also uncertain of how Privaricator re-

peatedly gathered their fingerprints, as it is not explained in the article. If the method in which fingerprints

are gathered differs, then repeatability rates may also consequently differ. Finally, Privaricator performed

better against (had a lower repeatbility rate for) BlueCava and PetPortal. This may be caused by an im-

provement in BlueCava’s and PetPortal’s fingerprinting scripts. We know PetPortal does not use any of the

attributes modified by Privaricator or our countermeasure, but it could be the case that they did use them

when Privaricator ran their study in 2015. BlueCava is a commercial fingerprinter that sells its services

to websites, so it is also likely that their fingerprinting technology has since improved in the last 4 years.

Iteratively improving their products is imperative for broswer fingerprinting, as it is a constant arms race

18



Figure 6: On the left side of the image above is a screenshot of Twitter’s homepage taken on an unmod-
ified browser. The right side contains a screenshot of Twitter’s homepage taken on a browser with our
countermeasure implemented. There is no noticeable difference in their appearances.

of offense (fingerprinters) vs defense (countermeasures).

4.2 Visual Breakage

Our modifications change the color and text of canvas so we must be careful to not negatively impact

the users’ normal online experience. We analyzed the implications of our modifications by assessing

screenshots of webpages from an unmodified Chromium browser and a Chromium browser containing

our changes. First we compared the differences of popular websites. Some of the websites from the Alexa

Top 500 Global sites included Google, Facebook, Amazon, Twitter, Wikipedia, Reddit, Youtube, Baidu, and

Qq. Figure 6 illustrates one of these screenshots. Comparing the screenshots of these websites from the two

browsers, we were unable to detect any difference caused by our modifications besides normal, expected

variation. This variation was due to different ads that populated on the page, suggestions, or changing

images and text (typically seen in suggested articles or videos). There was no noticeable difference because

popular websites tend to not use visible canvases, thus our modifications are seen only by fingerprinters

and not by users.

Next, we purposely visited websites that contained visible canvases. When the screenshots are com-

pared side by side, there is a noticeable difference in color. Figure 7 shows an example of the visible effects

of our modifications on canvas. We conclude that these random changes could potentially annoy users who

need to use canvas functionality. But we argue that looking at the website with the two browsers open

side by side would show a noticeable difference yet if the user was only viewing the modified browser, they

would not necessarily know that the color is different from its true value. Unless the user frequently visited
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Figure 7: On the left side of the image above is a screenshot of an animation on www.blobsallad.se taken
from an unmodified browser. On the right is a screenshot of the same animation taken from a browser with
our countermeasure implemented. There is a noticeable difference in color of the figure.

this website, they would have no reason to believe that the color of the canvas was changed. This could

irritate users that do visit websites with canvas visible often, for example if they play a certain online game

frequently or enjoy drawing images online and saving their artwork.

4.3 Detectability

To test for detectability, we visited Panopticlick’s website with Privaricator and our countermeasure sep-

arately. Panopticlick is the project that spearheads the browser fingerprinting movement by being one of

the first to explore fingerprinting techniques in depth and now advertises their own prevention counter-

measure. Since they lead much of the browser fingerprinting industry, we visited their online fingerprinter

because we assume it has up-to-date and comprehensive tests that check for every kind of known counter-

measure technique. Upon visiting the website (50 times each), we found that Privaricator’s randomizations

specifically in plugins does not appear in Panopticlick’s test results. The website outputs the attribute

that was tested and the value that it received. For Privaricator, different sets of plugin were returned at

each run (due to their randomizations), but Panopticlick did not indicate that they were being randomized.

This could mean that Panopticlick does not check for randomization in plugins or that Privaricator’s im-

plementation protects them from being caught. When we ran our countermeasure against Panopticlick, the

outputted value for canvas was labeled ”randomized” for 48 of the runs and outputted a hash of the canvas

for 2 of the runs. The 2 outputted hashes were different from each other, showing randomization worked

both of those times. But the 48 runs that returned ”randomized” were concerning because this tells us that

Panopticlick was able to detect our modifications. Detectability is particularly harmful and defeats the en-

tire purpose of installing a countermeasure. We suspect Panopticlick checks for randomization by calling
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rendering the canvas fingerprint several times. We know this because we added a print statement within

the toDataURL function and this statement was printed several times, but it is also noticeable to users on

the website because the page seems to reload several times before the fingerprinting test is complete. We

discuss future changes to our countermeasure to prevent detectability in Section 6.3.

5 Future Work

5.1 Minimizing Visual Breakage

A possible way to minimize visual differences in legitimate, non-fingerprinting canvas functionality would

be to check whether or not the canvas is visible on a webpage or not upon its initialization. If the canvas

was visible, it would not randomize the color or position values and not impact usability. But if the canvas

was invisible or hidden, this indicates that it is being used for fingerprinting. In these instances, random-

izations should occur to spoof the fingerprinter.

5.2 Avoiding Detectability

Fingerprinters can detect randomization by calling functions repeatedly and comparing the returned re-

sults. If the returned values differ every time, this reveals that a countermeasure is randomizing that func-

tion. To circumvent this detection, we propose implementing a lie cache. This lie cache would work by

storing the first randomized value and returning it for a certain amount of function calls. The amount of

times it would return this value would be determined by a threshold, found by comparing the number of

accesses are typically used in fingerprinting scripts. Only after this threshold is met (indicating that the

current fingerprinting script is finished running), the function would then find a new randomized value

and return that the next time it was called (and repeat this process over again). This would protect the

countermeasure against detectability because the returned values of the function would match within a

fingerprinting run, yet look different across different runs.

5.3 Combining Privaricator and Canvas Randomizations

There are benefits and limitations to using either Privaricator or canvas modifications. Privaricator is

advantageous because the attributes it randomizes have no direct impact on usability for users. The +/-

5% noise in offsetHeight and offsetWidth result in changes so small that they are deemed negligible

[7]. Randomizing plugins does not change the appearance of webpages nor does it affect the usage of

plugins. On the other hand, offsetHeight and offsetWidth are not widely used in fingerprinting
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scripts, making the modifications to these attributes useless in protecting against fingerprinters most of the

time. For canvas modifications, there is an impact on visual appearance of webpages that could dissatisfy

users that need to use legitimate canvas functionality. There are also potential fingerprinters that could

not include either plugins or canvas or both in their scripts at all, making both sets of randomizations

unhelpful in protecting users. We argue that the ideal fingerprinting countermeasure would be to combine

Privaricator and canvas randomizations into one countermeasure, with the capability of turning canvas

randomization off. This would protect users in the case that the fingerprinter does not use either plugins

or canvas and would allow the Privaricator modifications to protect users against fingerprinting if they

needed to turn our modifications off in order to use canvas. The combination of both countermeasures

randomizations would make it extremely unlikely for a user to repeat a fingerprint.

6 Conclusion

Overall, we found that our countermeasure performs the same against most fingerprinters in terms of

achieving similar repeatability rates. One significant difference is that Privaricator was not detected, while

our countermeasure’s randomization was detected against Panopticlick. Detectability is not a trivial issue,

though. In order for our countermeasure to be useful it must not be detected by fingerprinters so we ac-

knowledge the importance of implementing a lie cache for canvas randomizations. We argue that with a

lie cache implemented, our countermeasure would perform as well as Privaricator on average. There are

instances where fingerprinters do not use plugins, or do not use canvas, or do not use either. While

canvas modifications can potentially annoy users who need to use the canvas functionality for legitimate

purposes, we believe our modifications would not negatively impact general users who visit typical, pop-

ular websites. Because our countermeasure was able to spoof some fingerprinters well, we believe that

canvas modifications are a useful area to focus on when attempting to spoof fingerprinters and that this

study highlights some of the possible ways to do so.
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