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An artificial neural network is a biologically-inspired system that can be trained to perform compu-

tations. Recently, techniques from machine learning have trained neural networks to perform a variety of

tasks. It can be shown that any continuous function can be approximated by an artificial neural network with

arbitrary precision. This is known as the universal approximation theorem. In this thesis, we will introduce

neural networks and one of the first versions of this theorem, due to Cybenko. He modeled artificial neural

networks using sigmoidal functions and used tools from measure theory and functional analysis.
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1 Introduction

Artificial neural networks are computing systems vaguely inspired by the biological neural networks that

constitute animal brains. As mostly used in machine learning, an area recently further developed by the

increasing data collection ability and computation ability, artificial neural networks play a crucial role in the

development of machine learning.

Fascinated by the variety of applications of artificial neural networks in the real world, we sometimes

have a shallow understanding of why and how artificial neural network could be a such useful tool in the

real world applications. This thesis provides a mathematical background of why artificial neural networks

are such powerful computing systems to perform approximation.

The main theorem that shows this ability of artificial neural network is called universal approximation

theorem. The theorem states that given a continuous function defined on a certain domain, we are able to

use a single hidden layer neural network to approximate this continuous function to arbitrary precision.

The proof of this universal approximation theorem uses two main theorem from real analysis: the

Riesz Representation Theorem and the Hahn-Banach Theorem. Thus, this thesis will begin by building up

the knowledge and mathematical background from measure theory to integration with respect to a given

measure. Then we will show how to prove the Riesz Representation theorem and the Hahn-Banach Theorem

using the background knowledge we state and prove at first.

In order to prove this excellent property of artificial neural network, we need to first have a basic

understanding of artificial neural network and the component that is crucial to it. Then, we need to have

a mathematical definition of neural networks and the definition of the type of continuous function we are
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trying to approximate.

Finally, by stating the fundamental construction of the artificial neural network in our context and

knowing the statement and proof of the basic two theorem, we are able to illustrate what we mean by

approximating any continuous function by an artificial neural network with arbitrary precision. This will

be the formal statement of the universal approximation theorem and we will utilize the tools we built up to

eventually prove this theorem.

In this thesis, we will closely follow [2].
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2 Measure and its construction

2.1 Why we need measure

Suppose we are given a subset of E ⊆ Rn with n ∈ N, and that we want to have a function µ with

µ(E) ∈ [0,∞], such that µ holds the following properties:

(i) If E1, E2, E3, ... is a finite or infinite sequence of disjoint sets, then µ(E1 ∪ E2 ∪ E3 ∪ ...) =

µ(E1) + µ(E2) + ...

(ii) If E is congruent to F (that is, if E can be transformed into F by translations, rotations, and

reflections), then µ(E) = µ(F )

(iii) µ(Q) = 1, where Q is the unit cube Q = {x ∈ Rn : 0 ≤ xj < 1 for j = 1, ..., n}.

These properties follow our intuition of measuring daily objects, when you want to measure the total

volume of two individual balls you should add up the volume of each to get the result, and if you kick the

ball or move the ball into somewhere else, the volume should be the same. Also, to measure the volume of

the ball you also need to have metric like cm3 or m3.

However, these nice properties of µ are not able to be fulfilled when we choose the domain of the µ

to be the power set of Rn, this is because Rn has a lot of messy subsets that are not easy for us to measure.

(See the section 1.1 in Folland’s real analysis text for a concrete counter-example.) So, instead of trying to

use a measure to take measurement of every subset of Rn, we try to construct µ on class of subsets of Rn

that includes all the sets that we normally deal with. These new classes or families of subsets of Rn are

called the σ-algebra.

2.2 σ-algebra

Definition 2.1. An algebra of sets on X is a nonempty collection A of subsets of X that is closed under

finite unions and complements. If E1, .., En ∈ A, then ∪n1Ej ∈ A; and if E ∈ A, then Ec ∈ A.

Definition 2.2. σ-algebra is an algebra that is closed under countable unions.

Since ∩jEj = (∪jEcj )c, algebras are also closed under finite intersections. Also, if A is an algebra,

then ∅ ∈ A and X ∈ A since ∅ = E ∩ Ec and X = E ∪ Ec for E ∈ A.

Example 2.3. σ-algebra

1. If X = {a, b, c, d}, one possible σ-algebra on X is A = {∅, {a, b}, {c, d}, {a, b, c, d}}. In general, a finite

algebra is always a σ-algebra.
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2. If {A1, A2, A3, ...} is a countable partition of X then the collection of all unions of sets in the partition

(including the empty set) is a σ-algebra.

Definition 2.4. If X has a topology, then we define a Borel σ-algebra on X , as the σ-algebra generated

by the family of open sets in X, which is denoted by BX .

2.3 Measure

We follow Folland [2] that we want the range of our measure to be [0,∞], and we just defined a family of

sets algebra for the domain of the measure. Let’s define measure.

Definition 2.5. Let X be a set that is able to generate a σ-algebra M from it. A measure on M (or on

(X,M)) is a function µ : M→ [0,∞] such that

i µ(∅) = 0,

ii If {Ej}∞1 is a sequence of disjoint sets in M, then µ(∪∞1 Ej) =
∑∞

1 µ(Ej).

Property (ii) is called countable additivity and implies finite additivity: If {Ej}n1 is a sequence of

disjoint sets in M, then µ(∪n1Ej) =
∑n

1 µ(Ej).

If X is a set and M ⊆ P(X) is a σ-algebra, (X,M) is called a measurable space and the sets in M

are called measurable sets. If µ is a measure on (X,M), then (X,M, µ) is called a measure space.

If µ(X) <∞, then µ is called finite.

If X = ∪∞1 Ej where Ej ∈M and µ(Ej) <∞ for all j, µ is called σ-finite.

Theorem 2.6. Let (X,M, µ) be a measure space.

1. (Monotonicity) If E,F ∈M, and E ⊆ F , then µ(E) ≤ µ(F )

2. (Subadditivity) If {Ej}∞1 ⊆M, then µ(∪∞1 Ej) ≤
∑∞

1 µ(Ej)

3. (Continuity from below) If {Ej}∞1 ⊆M and E1 ⊆ E2 ⊆ ..., then µ(∪∞1 ) = limj→∞ µ(Ej).

4. (Continuity from above) If {Ej}∞1 ⊆ M, E1 ⊇ E2 ⊇ ..., and µ(E1) < ∞, then µ(∩∞1 Ej) =

limj→∞ µ(Ej).

Proof. See Folland’s proof of Theorem 1.8.

Definition 2.7. If (X,M, µ) is a measure space, a set E ∈ M such that µ(E) = 0 is called a null set. A

measure whose domain includes all subsets of null sets is called complete.
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In this section, we define what a measure is. It is a map from a σ-algebra to [0,∞]. It evaluates the

empty set as 0 and has the additivity property. Let’s summarize the material we introduced up to now.

We want to have a function that gives a value to every subset of an abstract set (like Rn), then we

found out that there are some subsets that are not easy to be measured by the properties we want for our

function. We call this function a “measure”. To make this measure have a suitable domain, we defined a

family of subsets from a set that we are able to measure and this family of sets is called σ-algebra. Then,

we define our measure µ to map from M which is the σ-algebra of the set X to [0,∞]. X is the set that we

want to measure its subsets, M is a family (collection) of sets that we are able to assign value on and all

the elements in M is a subset of X.

Now that we have the definition of measure, however, it’s hard for us to construct a concrete example

of a measure using this definition. Since we first need to come up with the σ-algebra of the set and come up

with the function that fulfills the two properties in the definition.

In the next section, we will describe a way (Caratheodory’s Theorem) to use some functions with a

“loose” definition from which it will be easier to get the measure we want.

2.4 Outer Measure

Before introducing the idea of outer measure, it’s good to make an analogy to how we can try to measure

a area of a region, we first wrap a bigger shape out side this region that is easy to measure and then we

shrink this region little by little then finally we make the bigger region as same as the region we first want

to measure. We also do this from inside the region to match up with the region value from outside.

The outer measure has the same intuition of this area measurement approach from the outside.

Definition 2.8. An outer measure on a nonempty set X is a function µ∗ : P(X)→ [0,∞] that satisfies:

i µ∗(∅) = 0,

ii µ∗(A) ≤ µ∗(B) if A ⊆ B,

iii µ∗(∪∞1 Aj) ≤
∑∞

1 µ∗(Aj).

The domain of the outer measure is easier to find since is just the power set of X. We now show that

why it’s also easy to fulfill the properties of a outer measure. The intuition is that we take arbitrary subset

family ε of X like those “bigger regions” and then we use countable unions of sets in ε to form a closer and

closer region to the desired one.
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Proposition 2.9. Let ε ⊆ P(X) be arbitrary and ρ : ε → [0,∞] be such that ∅ ∈ ε, X ∈ ε, and ρ(∅) = 0.

For any A ⊆ X, define

µ∗(A) = inf{
∑∞

1 ρ(Ej) : Ej ∈ ε and A ⊆ ∪∞1 Ej}

Then µ∗ is an outer measure.

Proof. We first want to show that µ∗ here is well-defined. Since X ∈ ε, we can have a {Ej}∞1 ⊆ ε when all

the Ej = X. Thus, we have that A ⊆ ∪∞1 Ej . Then µ∗ here is well-defined.

Since A ⊆ X is arbitrary and the result of µ∗(A) is the sum of the function ρ whose range is [0,∞],

then the range of the µ∗ is also [0,∞]. We know that ρ(∅) = 0 so if we take Ej = ∅,∀j, then
∑∞

1 ρ(Ej) = 0

which means µ∗(A) = 0 since 0 is the smallest element in the set.

Then we want to show property (ii), if A ⊆ B, then {
∑∞

1 ρ(Ej) : Ej ∈ ε and B ⊆ ∪∞1 Ej} ⊆

{
∑∞

1 ρ(Ej) : Ej ∈ ε and A ⊆ ∪∞1 Ej} since there exists Ej such that A ⊂ Ej ⊂ B.

To prove property (iii), suppose {Aj}∞1 ⊆ P(X) and let ε > 0. For each j, ∃{Ekj }∞k=1 ⊆ ε such that

Aj ⊆ ∪∞k=1E
k
j and

∑∞
k=1 ρ(Ekj ) ≤ µ∗(Aj) + ε ∗ 2−j since µ∗(A) is the infimum of the set. If A = ∪∞1 Aj , then

A ⊆ ∪∞k=1E
k
j and

∑∞
j,k ≤

∑
j µ
∗(Aj)+ ε. Since µ∗(A) is the infimum of the set, then µ∗(A) ≤

∑
j µ
∗(Aj)+ ε.

Since we say that ε > 0 is arbitrary, we are done.

Now, we show that we can basically use any function ρ and any family of subsets of X to generate a

outer measure. We will then use µ∗ to generate our measure µ. Before that we need to define a crucial term

for our next proof.

Definition 2.10. If µ∗ is an outer measure on X, a set A ⊆ X is called µ∗- measurable if

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac),∀E ⊆ X.

Since E ⊆ (E ∩A) ∪ (E ∩AC), by the definition of outer measure, ∀E ⊆ X,

µ∗(E) ≤ µ∗((E ∩A) ∪ (E ∩AC)) ≤ µ∗(E ∩A) + µ∗(E ∩Ac).

Thus, to show that A is µ∗-measurable, it suffices to show that the reverse inequality and if µ∗(E) =∞,

then the reverse inequality works, so A is µ∗-measurable iff

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac)∀E ⊆ X s.t µ∗(E) <∞.
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This plays in our intuition of constructing the measure is that µ∗(E)−µ∗(E ∩Ac) = µ∗(E ∩A) which

is the “inner measure” of A is as same as “outer measure” of A. Now, with everything in our hand, let’s

show how to construct measure using an outer measure.

Theorem 2.11 (Caratheordory’s Theorem). If µ∗ is an outer measure on X, the collection M of µ∗-

measurable sets is a σ-algebra, and the restriction of µ∗ to M is a complete measure.

Proof. (Follows the proof of Caratheordory’s Theorem in Folland [2].)

We want to show that M is an algebra by first showing that M is closed under complement since

definition of A ∈M as a µ∗-measurable set is symmetric. Then we want to show that it’s closed under finite

unions.

Let A,B ∈M and E ⊆ X, apply definition of µ∗-measurable two times,

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac)

= µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc) + µ∗(E ∩Ac ∩B) + µ∗(E ∩Ac ∩Bc)

Since (A ∪B) = (A ∩B) ∪ (A ∩Bc) ∪ (Ac ∩B), so by property (iii) of µ∗, we have that,

µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc) + µ∗(E ∩Ac ∩B) ≥ µ∗(E ∩ (A ∪B)),

so that

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c) since (A ∪B)C = (Ac ∩Bc).

Then by definition of µ∗-measurable, we have that A∪B ∈M, by induction,M is closed under finite

union, so M is an algebra.

If A ∩B = ∅, we have that µ∗(A ∪B) = µ∗((A ∪B) ∩A) + µ∗((A ∪B) ∩Ac) = µ∗(A) + µ∗(B), so µ∗

is finitely additive on M.

To show that M is a σ-algebra, it will suffice to show that M is closed under countable disjoint

unions, since we already have an algebra. If {Aj}∞1 is a sequence of disjoint sets in M, let Bn = ∪n1Aj and

B = ∪∞1 Aj . Then for any E ⊆ X,
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µ∗(E ∩Bn) = µ∗(E ∩Bn ∩An) + µ∗(E ∩Bn ∩Acn)

= µ∗(E ∩An) + µ∗(E ∩Bn−1)

=

n∑
1

µ∗(E ∩Aj) by induction

Therefore,

µ∗(E) = µ∗(E ∩Bn) + µ∗(E ∩Bcn) ≥
n∑
1

µ∗(E ∩Aj) + µ∗(E ∩Bc),

since Bn ⊆ B by property (ii).

If we take the let n→∞ we obtain

µ∗(E) ≥
∞∑
1

µ∗(E ∩Aj) + µ∗(E ∩Bc)

≥ µ∗(∪∞1 (E ∩Aj)) + µ∗(E ∩Bc)

= µ∗(E ∩B) + µ∗(E ∩Bc)

≥ µ∗(E),

by property (ii), (iii) and the definition of B.

Thus, µ∗(E ∩B) + µ∗(E ∩Bc) = µ∗(E). It follows that B ∈M and then M is a σ-algebra.

We already showed that µ∗ is finitely additive. If we let E = B, then

µ∗(B) =

∞∑
1

µ∗(E ∩Aj) + µ∗(∅) =

∞∑
1

µ∗(Aj),

then µ∗ is countable additive in on M. By definition of the outer measure, µ∗(∅) = 0. Thus, µ∗ is a

measure restricted on M (µ∗ is a measure when the domain is M).

We then want to show that µ∗ is complete measure on M. Let µ∗(A) = 0 for arbitrary A, then for

any E ⊆ X, we have

µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩Ac) = µ∗(E ∩Ac) ≤ µ∗(E),
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by property (ii) of outer measure, so that µ∗(E) = µ∗(E ∩A) +µ∗(E ∩Ac). Thus, A ∈M. Therefore, µ∗|M

is a complete measure.

In this section, we provide a easier and concrete way to construct measure from an outer measure. By

Proposition 2.9, we are able to generate an outer measure for an arbitrary subset. This provides us an easy

way to find an outer measure.

Then by applying Caratheodory’s Theorem, we are able to get a measure that we want by restricting

the easily generated outer measure on a collection of µ∗-measurable sets.

By combining the proposition and the theorem, given an arbitrary set X, we are able to find a measure

on X in an relatively easier way than just using the definition of measure itself.

3 Integration with measure

In the previous section, we introduced measure and its construction. In this section, we are trying to define

integration with respect to a measure over a measure space. Recall integration in a calculus class,
∫ b
a
f(x)dx

is defined as a limit of Riemann sums, which add up the area under the curve of f from a to b. It turns out

that we are also able to integrate with respect to different measure spaces. The reason of introducing this

new definition of integration is that there are some functions that Riemann integral cannot calculate.

We also need to be able to integrate with respect to the measure µ for the Riesz Representation

Theorem. The measure µ here is a special measure called Radon measure that is a restricted version of the

Borel measure which we will introduce in the next section. In this section, we will introduce the integration

on abstract measure spaces for the future use of the integration of a radon measure in the Riesz representation

theorem.

3.1 Measurable Functions

Since we are trying to find the integration of a function with respect to a measure, the functions we choose

should have some desired property for the convenience of the definition. These functions are called measurable

functions.

We recall that any mapping f : X → Y between two sets have a inverse mapping f−1 : P (Y )→ P (X)

which is defined by f−1(E) = {x ∈ X : f(x) ∈ E}. This inverse mapping preserves unions, intersections and
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complements. Recall that as introduced in the last section, algebra and σ-algebra are closed under unions

and complements. Thus, if N is a σ-algebra on Y , then {f−1(E) : E ∈ N} is also a σ-algebra on X.

Definition 3.1. If (X,M) and (Y,N ) are measurable spaces, a mapping f : X → Y is called (M,N )-

measurable, or just measurable, if f−1(E) ∈M, ∀E ∈ N

We should know that the composition of measurable mapping is measurable.

Corollary 3.2. If X and Y are metric spaces, every continuous f : X → Y is (BX ,BY )-measurable.

Proof. To show that f is (BX ,BY )-measurable, we need to show that ∀E ∈ BY , f−1(E) ∈ BX . Let E ∈ BY

be arbitrary. Since BY is a σ-algebra of open sets. Thus, E is a open set. Since f is continuous, by definition

of definition of continuous in real analysis class (f is continuous iff f−1(U) is open in X for every open

U ⊆ Y ), we have that f−1(E) is open. Then f−1(E) ∈ BX , as desired.

If (X,M) is a measurable space, a real- or complex-valued function f on X will be called M-

measurable, or just measurable, if it is (M,BR) or (M,BR) measurable.

With the definition of measurable function, we are able to yield a lot of nice propositions of the

measurable functions.

Proposition 3.3. 1. A function f : X → C is M-measurable iff Ref and Imf are M-measurable.

2. If f, g : X → C are M-measurable, then so are f + g and fg.

3. If f, g : X → R̄ are measurable, then so are max(f, g) and min(f, g).

Proof. See Folland Chapter 2.

For future reference, we present two useful decompositions of functions.

Definition 3.4. If f, g : X → R̄ where R̄ = R∪ {−∞,∞}, we define the positive and negative parts of f to

be

f+(x) = max(f(x), 0),

f−(x) = max(−f(x), 0).

Then by this definition f = f+ + f−. If f is measurable, so are f+ and f−, by Proposition 2.3.

11



We just defined the measurable function and now we try to discuss functions that are building blocks

for the theory of integration. These functions are called the characteristic function and simple function.

Simple function will be used later to approximate any arbitrary measurable functions.

Definition 3.5. (Folland Section 2.1) Suppose that (X,M) is a measurable space. If E ⊆ X, the charac-

teristic function XE of E (sometimes called indicator function of E denoted by 1E) is defined by

XE(x)


1 if x ∈ E

0 if x /∈ E

Since the image of the characteristic function is {0, 1}, then XE is measurable iff E ∈M.

Definition 3.6. (Folland Section 2.1) A simple function on X is a finite linear combination, with complex

coefficients, of characteristic functions of sets in M. Equivalently, f : X → C is simple iff f is measurable

and the range of f is a finite subset of C. The standard representation of f is:

f =

n∑
1

zjXEj
, where Ej = f−1({zj}) and range(f) = {z1, ..., zn}.

This definition show that f is a linear combination of characteristic functions and the union of these

characteristic functions is X. By definition of simple function, f + g and fg are simple function if f and g

are simple function. We defined the simple function using characteristic function and now try to show that

simple functions can approximate measurable functions.

Theorem 3.7. Let (X,M) be a measurable space.

a If f : X → [0,∞] is measurable, there is a sequence {φn} of simple functions such that 0 ≤ φ1 ≤ φ2 ≤

... ≤ f , φn → f point-wise, and φn → f uniformly on any set on which f is bounded.

b If f : X → C is measurable, there is a sequence {φn} of simple functions such that 0 ≤ |φ1| ≤ |φ2| ≤

... ≤ |f |, φn → f point-wise, and φn → f uniformly on any set on which f is bounded.

Proof. (a) For n = 0, 1, 2, ... and 0 ≤ k ≤ 22n − 1 and k ∈ Z, let

Ekn = f−1((k2−n), (k + 1)2−n]) and Fn = f−1((2n,∞]),
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and define

φn =

22n−1∑
k=0

k2−nXEk
n

+ 2nXFn

The definition of the φn is easier to understand graphically. By every increment of n, we increase the the

value where range is (2n,∞] and increase the number of separation on the domain by dividing the domain

sets into smaller and smaller intervals corresponding to the range. We can see that φn ≤ φn+1∀n since both

of the terms of the φn are increasing with increasing of n. From the first term of the equation, we can see

that 0 ≤ f − φn ≤ 2−n where f ≤ 2n. Thus, with the increasing n, the difference between φn and f will

decrease. Thus, φn → f point-wise.

(b) If f = g + ih, then we can apply part (a) on positive and negative part of g and h. We will have

sequences ψ+, ψ−, ζ+, ζ− of nonnegative simple functions that increase (approach) to g+, g−, h+, h−. Let

φn = (ψ+ − ψ−) + i(ζ+ − ζ−), since each of these sequence converge to f then φn → f point-wise.

In this section, we showed the measurable function that we need to integrate on. We also showed that

we can use simple functions which are easy to construct to approximate any arbitrary nonnegative functions

by Theorem 3.7. In the next section, we try to define the integration of nonnegative measurable functions

with respect to a measure µ.

3.2 Integration of nonnegative functions

In this section we fix a measure space (X,M, µ), and we define

L+ = {f |f : X → [0,∞], f measurable.}

Definition 3.8. If φ is a simple function in L+ with standard representation φ =
∑n

1 ajXEj
, we define the

integral of φ with respect to µ by ∫
φdµ =

n∑
1

ajµ(Ej)

We note that
∫
φdµ may equal to ∞ since µ(Ej) may be infinite. If A ∈ M, then φXA

is also simple

by definition (φXA
=
∑
ajXA∩Ej

), and we define
∫
A
φdµ =

∫
φXA

dµ =
∫
A
φ =

∫
A
φ(x)dµ(x) and

∫
=
∫
X

.

Proposition 3.9. Let φ and ψ be simple functions in L+

a If c ≥ 0,
∫
cφ = c

∫
φ

b
∫

(φ+ ψ) =
∫
φ+

∫
ψ

13



c If φ ≤ ψ, then
∫
φ ≤

∫
ψ

d The map A→
∫
A
φdµ is measure on M.

Proof. See Folland Chapter 2.

After defining the integration of simple functions, we now extend the integral to all functions f ∈ L+

be defining

Definition 3.10. ∫
fdµ = sup

{∫
φdµ : 0 ≤ φ ≤ f, φ simple

}
The above definition makes sense because the family of simple functions over which the supremum is

taken includes f itself. By the definition of
∫
f and Proposition 3.9, we have that

∫
f ≤

∫
g whenever f ≤ g, and

∫
cf = c

∫
f for all c ∈ [0,∞)

However, like what we did for measure, it is nice to have a definition of the integral of all the f ∈ L+,

but the definition of
∫
f takes a supremum over a huge family of simple functions, so it is difficult to calculate

or evaluate
∫
f directly from the definition. We will now show and prove a convergence theorem that allows

us to compute
∫
f in a relatively easier way.

Theorem 3.11. The Monotone Convergence Theorem. If {fn} is a sequence in L+ such that fj ≤ fj+1 for

all j, and f = limn→∞ fn, then
∫
f = limn→∞

∫
fn

Proof. (Follows from Folland’s proof of Theorem 2.14.)

Assume {fn} is a sequence in L+ such that fj ≤ fj+1 for all j, and f = limn→∞ fn, we want to show

that
∫
f = limn→∞

∫
fn. Since

∫
f ≤

∫
g whenever f ≤ g, we have that {

∫
fn} is an increasing sequence

of numbers. Thus, {
∫
fn} has a limit which may be ∞. Moreover, since f = limn→∞ fn(supnfn), we have

that fn ≤ f∀n, so limn→∞
∫
fn ≤

∫
f . We remain to show that limn→∞

∫
fn ≥

∫
f .

To achieve the reverse inequality. We let α ∈ (0, 1), be arbitrary, let φ be a simple function with

0 ≤ φ ≤ f , and En = {x : fn(x) ≤ αφ(x)}. Since fn is increasing, we have that {En} is an increasing

sequence of measurable sets and ∪∞1 En = X. Since En ⊆ X, we have that
∫
f ≥

∫
En
fn ≥ α

∫
En
φ. By

Proposition 2.11d, we have that map En →
∫
En
φdµ is a measure on M. By theorem 1.5c, we have that

E1 ⊆ E2 ⊆ ... and
∫
En
φdµ is the image of the measure, we have that limn→∞

∫
En
φ =

∫
∪∞1 En

φ =
∫
X
φ =

∫
φ.
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Thus,if we take the limit of both side for
∫
f ≥ α

∫
En
φ, we will have that

lim
n→∞

∫
fn ≥ α

∫
φ.

Since α is arbitrary, then the above inequality works for all α < 1. If we take the supremum of over all

simple function φ ≤ f , by the definition and the inequality above, limn→∞
∫
fn ≥

∫
f , as desired.

Now, with the Monotone Convergence Theorem, we can compute
∫
f by computing lim

∫
φn where

{φn} is a sequence of simple functions that increase to f , in Theorem 2.7 shows that this kind of sequence

must exists.

After developing a way to compute integration of any non-negative functions, we now establish the

additivity of the integral.

Theorem 3.12. If {fn} is a finite or infinite sequence in L+ and f =
∑
n fn, then

∫
f =

∑
n

∫
fn.

Proof. (Follows Folland’s proof of Theorem 2.15.)

Let f1, f2 ∈ L+, by Theorem 2.7, we can find {φn} and {ψn} of nonnegative simple functions that

increase to f1 and f2. Then {φn + ψn} increases to f1 + f2, so by the monotone convergence theorem and

Theorem 2.9b, we have that

∫
(f1 + f2) = lim

∫
(φj + ψj) = lim

∫
φj + lim

∫
ψj =

∫
f1 +

∫
f2

By induction, we have that
∫ ∑N

1 fn =
∑N

1

∫
fn for any finite N . Letting N → ∞ and applying the

monotone convergence theorem, we have that
∫ ∑∞

1 fn =
∑∞

1

∫
fn.

We now defined the integration of all nonnegative functions. In the next section we are going to define

the integral on any real-valued measurable functions f .

3.3 Integration of Complex Functions

We continue to work in a measure space (X,M, µ). We now want to define the integral of complex functions.

Definition 3.13. If f+ and f− are the positive and negative parts of f and at least one of
∫
f+ and

∫
f−

is finite, we define, ∫
f =

∫
f+ −

∫
f−

15



If both f+ and f− are finite, we say that f is integrable. Since |f | = f+ + f−, we know that f is

integrable iff
∫
|f | < ∞. Now we defined the integral of all the real-valued functions. Let us find out what

do these integrable real-valued functions on X look like.

Proposition 3.14. The set of integrable real-valued functions on X is a real vector space, and the integral

is a linear functional on it.

Before proving this proposition, let’s look at the term in this proposition. We want to show that that

the set of integrable real-valued functions f that we defined above to be a vector space. To show that a set

is a vector space, it must have to operations: scalar multiplication and addition and also follows axioms like

closure, commutativity and associativity, etc. We want to show that the integral as a linear functional which

is a relative new term that also shows up in the Riesz Representation theorem that we are trying to prove.

Thus, let’s first have a brief introduction on linear functional.

Definition 3.15. Let X be a vector space over K, where K = R or C. A linear map from X to K is called

a linear functional on X .

We will show more of linear functionals in the future sections about proving Hahn-Banach Theorem.

For now, from the definition of the linear functional, we can tell that a linear functional maps a vector in

the vector space to real or complex number. This follows naturally that if the set of all integrable real-value

linear functions is a vector space, then the integral we defined is always a value in R or C. Thus, the integral

would be a linear functional. Now, we have want we need for the proof of Prop 2.14.

Proof. It is quite straight-forward to show that the set of integrable real-valued functions on X is a real

vector space since we have |af + bg| ≤ |a||f |+ |b||g|. We know that f + (−f) = 0, f + (g+ h) = (f + g) + h,

f + g = g + h, 1f = f , (ab)f = a(b)f , a(f + g) = af + ag, 0 + f = f + 0 = f and (a + b)f = af + bf . To

show that it is closed under addition, suppose f, g are integrable and let h = f + g. Then

h+ − h− = f+ − f− + g+ − g−

h+ + f− + g− = h− + f+ + g+∫
h+ +

∫
f− +

∫
g− =

∫
h− +

∫
f+ +

∫
g+ by Theorem 2.14

Then, we have that

∫
h =

∫
h+ −

∫
h− =

∫
f+ −

∫
f− +

∫
g+ −

∫
g− =

∫
f +

∫
g
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To show that the set is closed under scalar multiplication, we just need to show that
∫
af = a

∫
f , ∀a ∈ R

which follows from the definition and proposition 2.9a.

The integral is a linear functional since the image of the integration is a real number.

After defining the integral of real-valued measurable function, we move on to complex-valued measur-

able function f .

Definition 3.16. If f is a complex-valued measurable function, we say that f is integrable if
∫
|f | < ∞.

More generally, if E ∈ M, f is integrable on E if
∫
E
|f | < ∞. Since |f | ≤ |Ref | + |Imf | ≤ 2|f |, f is

integrable, and in this case we define ∫
f =

∫
Ref +

∫
Imf

The space of complex-valued integrable functions is a complex vector space and the integral is a

complex-linear functional on it. We denote this space L1.

In this section, we defined the integral on measurable functions that will be useful for understanding

the Riesz Representation Theorem. We also give a definition of linear functional. In the next section, we

are going to state and prove the Riesz Representation Theorem.

4 Riesz Representation Theorem

In the beginning of this thesis, we said that we need two major theorems to prove the theorem in Cybenko’s

paper [1]. We then used two sections to build up what we need to prove the first theorem, Riesz Repre-

sentation Theorem which connects linear functionals and measures. In this section, we will prove the Riesz

Representation Theorem. However, before that we need to introduce some background knowledge for that

we will use in the proof of Riesz Representation Theorem.

4.1 Radon Measure and Point Set Topology

In the previous section, we found out that measurable functions can be approximated by continuous func-

tions when we explored how to compute the integration of a measurable function. We want to show the

measures that have something similar holds for more general spaces. We also want to show that certain

linear functionals on spaces of continuous functions are gives by integration against such measures which is

essentially the Riesz Representation Theorem.
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In this section, we will define our X as a special space called Locally Compact Hausdorff (LCH) space.

The measure that we will focus on are the Borel measures, the σ-algebra generated by open sets that we

mentioned in section 1 and its behavior on X.

Definition 4.1. X is Hausdorff Space if ∀x, y ∈ X, if x 6= y, then there exist disjoint open sets U, V such

that x ∈ U and y ∈ V .

Definition 4.2. A Hausdorff Space is said to be locally compact if every point has a compact neighborhood

(an compact set that contains this point).

There is a important lemma on the LCH that will help us to prove Riesz Representation.

Lemma 4.3. Urysohn’s Lemma for LCH

Let K ⊆ U ⊆ X and X be a LCH space. Let U be a open set and K be a compact set. Then

∃f : X → [0, 1] continuous such that f is 1 on K and f is 0 outside of a compact subset of U .

Proof. See Folland Chapter 3.

Riesz Representation also deals with a specific set of functions that are in the set CC(X).

Definition 4.4. If f is a function on a topological space X, then the support of f , written supp(f), is the

smallest closed subset of X outside of which f is zero.

Cc(X) = {f : X → C| supp(f) is compact, f is continuous}

Cc(X) is called the space of continuous functions on X with compact support.

The following are some definitions and propositions from point-set topology and will be used to prove

the Riesz Representation Theorem.

Definition 4.5. If U is open in X and f ∈ Cc(X), then

f ≺ U

means that 0 ≤ f ≤ 1 and supp(f) ⊂ U . Read as “f is subordinate to U”.
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The following definition and proposition will help us define a collection of interesting functions that

will be useful for the proof and understanding of the Riesz Representation Theorem.

Definition 4.6. If X is a topological space and E ⊂ X, a partition of unity on E is a collection {hα}α∈A

of functions in C(X, [0, 1]) such that

1. ∀ x ∈ X, x has a neighborhood on which only finitely many hα’s are nonzero;

2.
∑
α∈A hα(x) = 1 for x ∈ E.

A partition of unity {hα} is subordinate to an open cover U of E if for each α there exists U ∈ U with

supp(hα) ⊂ U

Proposition 4.7. (Folland 4.41)

Let X be an LCH space, K a compact subset of X, and {Uj}n1 an open cover of K. There is a partition

of unity on K subordinate to {Uj}n1 consisting of compactly supported functions.

Recall that a linear functional is a map from a vector space to a scalar.

Definition 4.8. A linear functional I on Cc(X) is positive if I(f) ≥ 0 whenever f ≥ 0.

Now, we start to develop the measure that we Riesz Representation use which is called the Radon

Measure.

Definition 4.9. Let µ be a Borel measure on X and E a Borel subset (subset of a Borel σ-algebra on X)

of X. The measure µ is called outer regular on E if

µ(E) = inf{µ(U) : E ⊆ U , U open}

and inner regular on E if

µ(E) = sup{µ(K) : K ⊆ E, E compact}

If µ is outer and inner regular on all Borel sets, µ is called regular.

Here, we define the Radon measure based on inner and outer regularity for the future use in the Riesz

Representation Theorem.

Definition 4.10. A Radon measure on X is a Borel measure that is finite on all compact sets, outer regular

on all Borel sets, and inner regular on all open sets.
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Now we have everything we need to understand (section 1 and 2) and prove (section 3.1) the Riesz

Representation. Let’s prove it.

4.2 Proof of Riesz Representation

Riesz Representation is one of the two crucial theorems that we need to prove the Universal Approximation

Theorem in Cybenko’s paper. This theorem describes that certain linear functionals of continuous functions

are given by integration against Radon measures. This gives us an important link between measure theory

and functional analysis. We will introduce more about functional analysis when we prove the other important

theorem called Hahn-Banach Theorem in the future.

Theorem 4.11. The Riesz Representation Theorem

If I is a positive linear functional on Cc(X), there is a unique Radon measure µ on X such that

I(f) =
∫
fdµ for all f ∈ Cc(X). Moreover, µ satisfies

(a) µ(U) = sup{I(f) : f ∈ Cc(X), f ≺ U} for all open U ⊂ X

(b) µ(K) = inf{I(f) : f ∈ Cc(X), f ≥ XK} for all compact K ⊂ X.

Proof. Assume I is a positive linear functional on Cc(X).

We start by showing the uniqueness of the Radon measure µ since the proof of the uniqueness suggests

how we going to prove the existence.

Assume the Radon measure µ on X such that I(f) =
∫
fdµ for all f ∈ Cc(X), and let U ⊂ X be

open. We want to show that µ is determined by I on all Borel sets. Then, given a linear functional I, there

is only one µ.

We will show part (a) to show that µ is determined by I. To show part (a), we need to show that

µ(U) = sup{I(f) : f ∈ Cc(X), f ≺ U} for all open U ⊂ X.

We first want to show that I(f) ≤ µ(U) whenever f ≺ U . Since U is open and µ is a Radon measure,

µ is inner regular on all open sets. Then, we have that

µ(U) = sup{µ(K) : K ⊂ U,K compact}.

Since f ∈ Cc(X), we have that the supp(f) is compact. Since f ≺ U , we have that supp(f) ⊂ U . Thus, by

inner regularity of U , we have that µ(supp(f)) ≤ µ(U). We remain to show that I(f) ≤ µ(supp(f)). Since
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f ≺ U , we have that 0 ≤ f ≤ 1. By the assumption and the definition of the integration with respect to

measure, we have that

I(f) =

∫
fdµ =

n∑
1

ajµ(Ej) ≤
n∑
1

µ(Ej)

where ∪n1Ej ⊂ X and f(x) 6= 0 when x ∈ Ej . Since supp(f) is by definition the closure of {x : f(x) 6= 0}.

Thus, ∪n1Ej ⊂ supp(f). By finite additivity and monotonicity of measure, we have that

I(f) ≤
n∑
1

µ(Ej) ≤ µ(∪n1Ej) ≤ µ(supp(f)),

as desired.

We now need to show that µ(U) is the supremum of the set of I(f). Let K ⊂ U be compact, by

Urysohn’s Lemma for LCH (3.3), we have a f ∈ Cc(X) such that f ≺ U and f = 1 on K. Thus, we have

that µ(K) ≤
∫
fdµ = I(f) since K ⊂ A where A = {x : f(x) 6= 0}. Then we have that I(f) is an upper

bound of {µ(K) : K ⊂ U,K compact}. By the inner regularity of U , we have that I(f) ≥ µ(U) (µ(U) is the

least upper bound of the set {µ(K)}). Since we show in the previous part that I(f) ≤ µ(U) when f ≺ U

and f ∈ Cc(X). Thus,

µ(U) = sup{I(f) : f ∈ Cc(X), f ≺ U} for all open U ⊂ X.

By showing part (a), we show that µ is determined by I on open sets. µ is also determined by all

Borel sets because Radon measure is outer regular on all Borel sets and outer regularity says that measure

of the Borel set is the infimum of measure of open sets.

After showing the uniqueness, we know that we show part (a) along the way. Thus, we will show the

existence of such a Radon Measure µ by defining it using part (a).

We define

µ(U) = sup{I(f) : f ∈ Cc(X), f ≺ U} for all open U ⊂ X.

We then try to show that this µ is a Radon Measure which is the proof of the existence.

The outline of proving such µ is a Radon Measure is by proving µ is a Borel measure on X and then

show that µ is outer regular on all Borel sets and inner regular on all open sets. Then show that such µ has

the property of I(f) =
∫
fdµ.
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After defining µ, for arbitrary E ⊆ X, we define

µ∗(E) = inf{µ(U) : E ⊂ U , U open }.

By definition of µ, we have that µ(U) ≤ µ(V ) if U ⊆ V , hence µ∗(A) = µ(A) if A is open by the definition

of µ∗(A).

We then show that

(i) µ∗ is an outer measure.

(ii) Every open set is µ∗-measurable.

At this point, we can apply Caratheodory’s Theorem to construct our measure. Since BX is a collection of

open sets and open sets are µ∗-measurable, BX is a Borel σ-algebra and µ∗|BX is a Borel measure. Since

µ∗(A) = µ(A) when A open, we have that µ∗|BX = µ a Borel measure. By the definition of µ∗, with the

restriction here that E ∈ BX , we have that µ is outer regular. We then show that

(iii) µ satisfies part (b).

Part (b) implies that µ is finite on the compact set since I(f) is finite and implies µ is inner regular on all

open sets since let U be open, let α < µ(U). We choose f ∈ Cc(X) such that f ≺ U and I(f) > α and

let K = supp(f). Thus, supp(f) ⊂ U . If g ∈ Cc(X) and g ≥ XK , then g − f ≥ 0. By property of linear

functionals, we have that I(g) ≥ I(f) > α. By part b, since µ(K) is a infimum, then µ(K) > α. Since

µ(supp(f)) ≥ I(f), we have that µ(K) ≥ I(f). Thus, by definition of µ(U), µ(U) ≤ µ(K). However, K ⊂ U

by f ≺ U . Then we have that µ(U) is the supremum of {µ(K) : K ⊆ E, K compact }. Thus, µ is inner

regular on U . Finally, we need to prove that

(iv) I(f) =
∫
fdµ

With all above, this completes the proof of the Riesz representation Theorem.

Proof of (i):

We want to show that µ∗ is an outer measure by using Proposition 1.8. By the definition of µ, we

have that µ : C → [0,∞] where C is a collection of open sets. (Since f ≺ U , 0 ≤ f ≤ 1, then I(f) ≥ 0. The

range of µ is [0,∞].) Also, since X and ∅ are open, we have that X, ∅ ∈ C. We also have that µ(∅) = 0 by

the definition of µ.
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It suffices to show that if {Uj} is a collection of open sets and U = ∪∞1 Uj where U ⊂ X is an arbitrary

open set, then µ(U) ≤
∑∞

1 µ(Uj). Since by the definition of µ∗, for arbitrary E ⊂ X, we have that

µ∗(E) = inf{µ(U) : E ⊂ U,U open}

Since U ⊂ C and µ(U) ≤
∑∞

1 µ(Uj) and U = ∪∞1 Uj , we have that

µ∗(E) = inf

{ ∞∑
1

µ(Uj) : Uj open, E ⊂ ∪∞1 Uj = U

}

Thus, by Proposition 1.8, µ∗ is an outer measure.

We remain to show that if {Uj} is a collection of open sets and U = ∪∞1 Uj where U ⊂ X is an

arbitrary open set, then µ(U) ≤
∑∞

1 µ(Uj).

Assume {Uj} is a collection of open sets and U = ∪∞1 Uj . By the definition of µ, we have that

f ∈ CC(X), and f ≺ U . Since f ≺ U , we have that supp(f) ⊂ U . Then supp(f) ⊂ ∪∞1 Uj . Let K = supp(f),

since f ≺ U , we have that K is compact. Thus, relabeling if necessary K has an finite open cover ∪n1Uj .

By Proposition 4.7, we have that there exits a partition of unity on K subordinate to ∪n1Uj consisting of

compactly supported functions.

By the definition of partition of unity, we have g1, ..., gn ∈ Cc(X) with gj ≺ Uj and
∑n

1 gj = 1 on K.

Then we have that f = f
∑n

1 gj =
∑n

1 fgj . Since f ≺ U , then 0 ≤ f ≤ 1. Then fgj ≤ gj , we have

that fgj ≺ Uj . Thus, by the definition of µ, we have that

I(f) =

n∑
1

I(fgj) ≤
n∑
1

µ(Uj) ≤
∞∑
1

µ(Uj).

Since by definition of µ, µ(U) is the least upper bound of I(f) and f ∈ CC(X) is arbitrary. Thus, we have

that µ(U) ≤
∑∞

1 µ(Uj), as desired.

Proof of (ii):

Let U ⊂ X be open, we want to show that U is µ∗-measurable. We must show that, with any E ⊂ X

such that µ∗(E) <∞,

µ∗(E) ≥ µ∗(E ∩ U) + µ∗(E ∩ UC).

First, we suppose E is open. Then E ∩ U is open. By the definition of µ(E ∩ U), given a ε > 0,

we can choose a f ∈ CC(X) such that f ≺ E ∩ U and I(f) > µ(E ∩ U) − ε. Since supp is closed, then
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supp(f)C is open. Thus, E\(supp(f)) is open, then we have a function g ∈ CC(X) such that f ≺ E\supp

and I(g) > µ(E\supp(f))−ε. Since g is defined on E\supp(f), then when g > 0, f = 0. Thus, 0 ≤ f+g ≤ 1.

Since supp(f) ⊂ E∩U and supp(g) ⊂ E\supp(f), we have that supp(f)∩supp(g) = ∅. Thus, supp(f+g) ⊂ E.

Since supp(f + g) ⊂ E, we have that f + g ≺ E and

µ(E) ≥ I(f + g)

= I(f) + I(g)

> µ(E ∩ U) + µ(E\supp(f))− 2ε

≥ µ∗(E ∩ U) + µ∗(E\supp(f))− 2ε

≥ µ(E ∩ U) + µ(E\U)− 2ε

since supp(f) ⊂ U , then E\supp(f) ⊆ E\U . Let ε→ 0, we have desired inequality.

For general E ⊂ X, since µ∗(E) < ∞ and by the definition of µ∗(E) (µ∗ is the infimum of µ), given

a ε > 0, we can choose an open set V ⊃ E such that µ(V ) < µ∗(E) + ε. Thus, we have that

µ∗(E) + ε > µ(V )

≥ µ∗(V ∩ U) + µ∗(V \U) by the previous paragraph

≥ µ∗(E ∩ U) + µ∗(E\U) since E ⊂ V.

Let ε→ 0, we have the desired inequality.

Proof of (iii):

We want to show that µ satisfies part (b). Let K ⊂ X be arbitrary compact set. Let f ∈ CC(X)

and f ≥ XK . We want to show that µ(K) = inf{I(f)}. Given ε > 0, let Uε = {x : f(x) > 1 − ε}. Since

f ≥ XK , we have that K ⊂ Uε. Since f ∈ CC(X), f is continuous, since {f(x) > 1 − ε} is open, we have

that f−1({f(x) > 1− ε}) = Uε is open. Thus, Uε is open. If g ≺ Uε, then 0 ≤ g ≤ 1. Thus, f
1−ε − g ≥ 0 on

Uε. By the linear property of linear functional, we have that

I(g) ≤ I(f)

1− ε

Thus, I(f)1−ε is an upper bound of I(g), then by definition of µ from part (a), we have that µ(Uε) ≤ I(f)
1−ε . Since

K ⊂ Uε, we have
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µ(K) ≤ µ(Uε) ≤
I(f)

1− ε

Let ε→ 0, then µ(K) ≤ I(f). Thus, we’ve shown that µ(K) is an lower bound of I(f).

On the other hand, for any open set U ⊃ K, by Urysohon’s Lemma on LCH, we can choose an

f ∈ CC(X) such that f ≥ XK and f ≺ U . Thus, by part a, we have that I(f) ≥ µ(U). Since µ is

outer regular on K, we have that µ(K) = inf{µ(U)}. Since µ(K) is the greatest lower bound of µ(U) and

µ(K) ≤ I(f) ≤ µ(K), we have that µ(K) is the greatest lower bound of I(f), as desired.

Proof of (iv): (Follows Folland [2].)

We want to show that for a Radon measure µ on X and a positive linear functional I on CC(X),

I(f) =
∫
fdµ for all f ∈ CC(X). Since CC(X) is the linear span of CC(X, [0, 1]). It suffices for us to show

that I(f) =
∫
fdµ, for all f ∈ CC(X, [0, 1]).

Let f ∈ CC(X, [0, 1]) be arbitrary, we want to show that I(f) =
∫
fdµ. We have that 0 ≤ f ≤ 1.

Given N ∈ N, for 1 ≤ j ≤ N , let Kj = {x : f(x) ≤ j
N } and let K0 = supp(f). Define f1, ..., fN ∈ CC(X)

such that

fj =


0 if x /∈ Kj−1

f(x)− j−1
N if x ∈ Kj−1\Kj

fj(x) = 1
N if x ∈ Kj

In other words,

fj = min

{
max

{
f − j − 1

N
, 0

}
,

1

N

}
.

Given this definition, we have that K0 ⊇ K1 ⊇ K2 ⊇ ... ⊇ KN and Kj is compact. We also see that∑N
1 fj = f and

XKj

N
≤ fj ≤

XKj−1

N

Thus, by definition of integration with respect to measure (Definition 3.8), we have that

µ(Kj)

N
≤
∫
fjdµ ≤

µ(Kj−1)

N

Since

XKj

N
≤ fj ≤

XKj−1

N
,

we have that Nfj ≤ XKj−1 . Thus 0 ≤ Nfj ≤ 1 and Kj ⊆ supp(Nfj) ⊆ Kj−1. For any open set U that
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contains Kj−1, we have that supp(fj) ⊂ U . Thus, Nfj ≺ U . By part (a),

I(Nfj) ≤ µ(U)

NI(fj) ≤ µ(U)

I(fj) ≤
µ(U)

N

Since µ is outer regular on Kj−1, we have that

I(fj) ≤
µ(Kj−1)

N

Since

XKj

N
≤ fj ≤

XKj−1

N
,

we have that XKj
≤ Nfj . Thus, by part (b),

µ(Kj) ≤ I(Nfj)

µ(Kj) ≤ NI(fj)

µ(Kj)

N
≤ I(fj)

Combine the above two inequality, we have

µ(Kj)

N
≤ I(fj) ≤

µ(Kj−1)

N
.

Since f =
∑N

1 fj , we have that

N∑
1

µ(Kj)

N
≤
∫
fdµ ≤

N−1∑
0

µ(Kj−1)

N
(4.12)

N∑
1

µ(Kj)

N
≤ I(f) ≤

N−1∑
0

µ(Kj−1)

N
. (4.13)

Subtract 4.13 by 4.12, we know that

0 ≤ I(f)−
∫
fdµ ≤ µ(K0)− µ(KN )

N
≤ µ(supp(f))

N
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Since f ∈ CC(X, [0, 1]), we have that µ(supp(f)) <∞, then let N →∞, we have that

0 ≤ I(f)−
∫
fdµ ≤ 0.

Thus,

I(f) =

∫
fdµ.

Now, we prove the Riesz Representation Theorem which connects the measure theory and the linear

functionals. This theorem is crucial for the proof of theorem in Cybenko’s paper[1]. We are now going to

explore the second theorem we need for the Cybenko paper [1] which is more related to functional analysis.

Functional analysis includes the linear functionals we briefly defined before. In the next section, we will

introduce elements in functional analysis and state and prove the second important theorem called the

Hahn-Banach Theorem. Then we will use these two theorem to prove the theorem in Cybenko’s paper [1]

by way of contradiction.

5 Elements of Functional Analysis with Hahn-Banach Theorem

Functional Analysis is the study of infinite-dimensional vector spaces over R or C and the linear maps

between them. This area is related to linear algebra but different in that the study of functional analysis

consider topology related to the vector spaces. In order to show the Universal Approximation Theorem,

we also need another crucial theorem called Hahn-Banach Theorem. In this section, we will introduce the

material that will help us prove the Hahn-Banach Theorem.

5.1 Normed Vector Spaces

In this section, we will associate vector spaces with a special function called a norm. With such a function,

we are able to define a topology on vector space with norm by giving it a metric. This essentially connects

linear algebra together with topology which gives us a more powerful tool to consider.

Definition 5.1. Let K denote either R or C, and let X be a vector space over K. We denote the zero

element of X by 0. If x ∈ X , we denote by Kx the one-dimensional subspace spanned by x. Also, if M and

N are subspaces of X , M+N denotes the subspace {x+ y : x ∈M, y ∈ N}.
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A semi-norm on X is a function x→ ||x|| from X to [0,∞) such that

1. ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ X (triangle inequality)

2. ||λx|| = |λ|||x|| for all x ∈ X and λ ∈ K.

The second property of the semi-norm implies that ||0|| = 0.

Definition 5.2. A semi-norm such that ||x|| = 0 only when x = 0 is called a norm, and a vector space

equipped with a norm is called a normed vector space (or normed linear space.)

If X is a normed vector space, then d(x, y) = ||x− y|| is a metric on X .

5.2 Linear Functionals and the Proof of Hahn-Banach Theorem

In this section, we will state and prove the Hahn-Banach Theorem.

Definition 5.3. Let X be a vector space over K, where K = R or C. A linear map from X to K is called

a linear functional on X .

Definition 5.4. If X is a real vector space, a sub-linear functional on X is a map p : X → R such that

p(x+ y) ≤ p(x) + p(y) and p(λx) = λp(x) for all x, y ∈ X and λ ≥ 0.

For example, every semi-norm is a sub-linear functional.

We now introduce our second important theorem, the Hahn-Banach Theorem. The theorem guarantees

us that there will be interesting linear functional exists outside the subspace of the vector space.

Theorem 5.5. The Hahn-Banach Theorem

Let X be a real vector space, p a sub-linear functional on X , M a subspace of X , and f a linear

functional on M such that f(x) ≤ p(x) for all x ∈M.

Then there exists a linear functional F on X such that F (x) ≤ p(x) for all x ∈ X and F |M = f .

Proof. (Follows from Folland Chapter 5 [2].)

We begin by showing that if x ∈ X\M, f can be extended to a linear functional g on M + Rx

satisfying g(y) ≤ f(y) where y ∈ X .

In other words, assume the set up, we first show that there exits a linear functional g onM+Rx such

that g(a) ≤ p(a) for all a ∈ X and g|M = f .

Let y1, y2 ∈M and x ∈ X\M. We have that

f(y1) + f(y2) = f(y1 + y2) ≤ p(y1 + y2) = p(y1 − x+ x+ y2) ≤ p(y1 − x) + p(x+ y2),

28



or

f(y1)− p(y1 − x) ≤ p(x+ y2)− f(y2)

Since y1, y2 ∈M are arbitrary, we have that

sup{f(y)− p(y − x) : y ∈M} ≤ inf{p(x+ y)− f(y) : y ∈M}

Let α be the number such that

sup{f(y)− p(y − x) : y ∈M} ≤ α ≤ inf{p(x+ y)− f(y) : y ∈M}

Thus,

α ≤ p(x+ y)− f(y)for y ∈M

α ≥ f(y)− p(y − x)for y ∈M

We now define g :M+ Rx→ R by g(y + λx) = f(y) + λα for y ∈M.

If λ > 0 and y ∈M, then

g(y + λx) = λ[f(y/λ) + α] ≤ λ[f(y/λ) + p(x+ (y/λ))− f(y/λ)] = p(y + λx)

If λ = −µ < 0,

g(y + λx) = µ[f(y/µ)− α] ≤ µ[f(y/µ)− f(y/µ) + p((y/µ))− x)] = p(y + λx)

Thus, g(z) ≤ p(z) for all z ∈M+ Rx and by definition of g, g is linear and g|M = f , as desired.

Since x ∈ X\M is arbitrary, we can applied the above reasoning to any linear extension F of f

satisfying F ≤ p on its domain. We know that the domain of maximal linear extension of such linear

extensions must be X . By applying Zorn’s Lemma here, we can find the desired F we want.
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Figure 1: An example of an artificial neural network.

6 Universal Approximation Theorem

In the previous sections, we stated and proved the Riesz Representation Theorem and the Hahn-Banach

Theorem. With both theorems in hand, we are now able to show the reason that artificial neural networks can

approximate continuous functions to arbitrary precision by proving the Universal Approximation theorem.

6.1 Mathematical Representation of Artificial Neural Network

First, we want to give a mathematical representation of the one hidden layer neural network.

Before that, we need to have an basic understanding on what is an artificial neural network. It turns

out that it is a learning algorithm that is vaguely inspired by neural networks. In examples of artificial neural

network, you can find there are nodes which represents the “neurons” and they are grouped by layers and

connected from each layer to the next layer. Each artificial neural network has an input layer, an output layer

and some hidden layers, each layer has different number of nodes in them. By connecting each node from

each layer to the nodes in the next layer, we can form a “network”. It is fine that one doesn’t understand the

intuition of the neural network, you can basically view it as a map from RN → Rn where N is the dimension

of (number of nodes in) the input layer and n is the dimension of the output layer. For instance, in Figure

1, the input layer has dimension R3 and output layer has dimension R and this neural network has 2 hidden

layers. For this thesis, we are only interested in artificial neural network with one hidden layer.

With an idea that an artificial neural network is a mapping, let’s define this neural network with one

hidden layer in a formal way.

Definition 6.1. G(x) =
∑N
j=1 αjσ(yTj x+ Θj) where x, yj ∈ Rn and αj ,Θ ∈ R
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Here, we regard the one hidden layer neural network as a function G(x) which is a map from Rn to

R. N represents the number of nodes in the one hidden layer network. The input of the network is x. We

call yj weights and Θ bias which are numbers acting with the input on each neuron of the hidden layer, we

called σ the activation function on each neuron. Then after applying weights of output of each neuron of

the hidden layer, we sum the output to get the result of the neural network.

6.2 Universal Approximation Theorem

Since the universal approximation theorem is trying to show that the artificial neural networks with such

form would be able to approximate continuous functions in arbitrary precision. We would like to let the

set of our form of artificial neural networks be similar or close to the set of the continuous functions we are

trying to approximate. In this section, after introducing some definitions that prepare us for the theorem,

we are able to understand how this approximation works.

Definition 6.2. A function σ is discriminatory if for a measure µ ∈M(In)

∫
In

σ(yTx+ Θ)dµ(x) = 0

for all y ∈ Rn and Θ ∈ R implies that µ = 0.

Theorem 6.3. Let σ be any continuous discriminatory function. Then finite sums of the form

G(x) =

N∑
j=1

αjσ(yTj x+ Θj)

are dense in C(In). In other words, given any f ∈ C(In) and ε > 0, there is a sum, G(x), of the above form,

for which

|G(x)− f(x)| < ε for all x ∈ In

Proof. We prove by way of contradiction. Let S be the set of functions of the form G(x). Assume that the

closure of S is not all of C(In). Then the closure of S, say R, is a closed proper subspace of C(In).

By Hahn-Banach Theorem, there is a bounded linear functional on C(In), call it L, with the property

that L(C(In)) 6= 0 but L(R) = 0.
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By the Riesz Representation Theorem, this bounded linear functional, L, is of the form

L(h) =

∫
In

h(x)dµ(x)

for some µ ∈M(In), for all h ∈ C(In). In particular, since σ(yTx+ Θ) is in R for all y and Θ, we must have

that ∫
In

σ(yTx+ Θ)dµ(x) = 0

for all y and Θ.

However, we assumed that σ was discriminatory so that this condition implies that µ = 0 contradicting

our assumption. Hence, the subspace S must be dense in C(In).

Lemma 6.4. Any continuous sigmoidal function is discriminatory. (Cybenko [1])

Theorem 6.5. (Universal Approximation Theorem (Cybenko [1]))

The functions of the form G(x) =
∑N
j=1 αjσ(yTj x+Θj) are dense in the space of continuous functions

on the unit cube if σ is any continuous sigmoidal function.

Proof. Combine Theorem 1 and Lemma 1.
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