

Gesture-Controlled Quadcopter System
Anthony Yang Xu, Kendra Crawford, Wenhao Yang

ECE:499 Capstone project
Advisor: Professor Cherrice Traver

March 21st, 2019

Gesture Controlled Quadcopter System

Report Summary

As UAV technology advances, it is used in an increasing number of applications. For

instance, a quadcopter with a camera could be used by the police to survey the inside of a

building to avoid a dangerous situation. However, the complexity of the joystick-button

controllers requires a long training time. In addition, the joystick-button controller occupies both

hands of the operator. In this project, we will address the problem by designing and building a

one-handed gesture-controlled quadcopter. Our design will give police the ability to use one

hand for other tasks and an intuitive controller that is easy to learn. In our design, we split it up

into three subsystems to be able to solve the specifications for the problem.

The goals and performance of the gesture-controlled quadcopter system are targeted to be

able to solve the problem defined above. The first goal is that the system will be lightweight so

that it is easy to transport. The system also needs to have less than 5 minutes set up time and will

fly for at least 10 minutes. The gestures need to be intuitive this will be measured by the ability

to learn how to fly the system in less than an hour. The range from the pilot to the quadcopter

must be at least 30 meters and the system must provide video feedback to the pilot so the

quadcopter can go out of site.

To be able to solve this problem as stated before we split the system into three

subsystems the hand controller, the communication base and the quadcopter. The hand controller

reads positional data and special commands from the user and transmits the information to the

communication base. The communication base takes the information from the hand controller

and converts it to a PPM (Pulse-Position Modulation) signal that can be sent to the quadcopter.

The quadcopter receives the PPM signal as a PWM (Pulse-Width Modulation) signal then

converts it to an s-bus signal that goes to the flight controller. The flight controller on the

quadcopter controls the ESC (Electronic Speed Control) that then controls the motors.

The result was a system that was lightweight and converted the positional data of the

pilot’s hand to a PPM signal. The video signal was produced by the quadcopter and received by

the communication base. The receiver on the quadcopter broke before we could test the full

system and we did not have enough time to order a new part, so the full system did not work.

1

Gesture Controlled Quadcopter System

Table of Contents
Initial of the student who wrote the section is after the header

Report Summary 1

1. Introduction 7

2. Background 8
2.1 Application of UAV in the Police Force 8
2.2 Previous Work in Gesture Controlled Quadcopter Systems 8
2.3 Potential Project Impacts 9

3. Design Requirements 10
3.1 Hand Controller 10
3.2 Communication Base 11
3.3 Quadcopter 12

4. Design Alternatives 14
4.1 Hand Controller 15
4.2 Communication Base 17
4.3 Quadcopter 20

5. Preliminary Proposed Design 23
5.1 Hand Controller 24

5.1.1 General Design 24
5.1.2 Gesture Design 25
5.1.3 Hardware Design 26
5.1.4 Software Design 27

5.2 Communication Base 30
5.2.1 General Design 30
5.2.2.Hardware Design 31
5.2.3 Software Design 32

5.3 Quadcopter 35
5.3.1 General Design 35
5.3.2 Hardware Design 35
5.3.3 Software Design 38

5.4 Data Flow 39

6. Final Design and Implementation 40
6.1 Hand Controller 40

6.1.1 General Design 40

2

Gesture Controlled Quadcopter System

6.1.2 Gesture Design 40
6.1.3 Hardware Design 41
6.1.4 Software Design 42

6.2 Communication Base 47
6.2.1 General Design 47
6.2.2 Hardware Design 48
6.2.3 Software Design 49

6.3 Quadcopter 53
6.3.1 General Design 53
6.3.2 Hardware Design 54
6.3.3 Software Design 56

7. Performance Estimates and Results 59
7.1 Hand Controller 59
7.2 Communication Base 59
7.3 Quadcopter 60

8. Production Schedule 63
8.1 Overview 63
8.2 Hand Controller 63

8.2.1 Hardware 63
8.1.2 Software 64
8.2.3 Full System 65

8.3 Communication Base 65
8.4 Quadcopter 65

9. Cost Analysis 66

10. User’s Manual 67

11. Discussion & Conclusions 68
11.1 Recommendations 69

11.1.1 Hand Controller 69
11.1.2 Communication Base 69
11.1.3 Quadcopter 70

11.2 Lessons Learned 70

12. References 72

13. Appendices 74
Appendix 1 - Complete Parts List with Prices 74

3

Gesture Controlled Quadcopter System

Appendix 2 - Full Hand Control Code 75
Appendix 3 - Testing code for Take off, Hover and Landing with Emergency Stop 81

4

Gesture Controlled Quadcopter System

Table of Figures and Tables

Table 1. Design Requirements for the System 9

Table 2. Decision Matrix for Motion/Position Sensor for the Hand Controller 10

Table 3. Decision Matrix for Microcontroller for the Hand Controller 12

Table 4. Decision Matrix for the Communication between the Hand Controller and Base 14

Table 5. Decision Matrix for the RC receivers between the Quadcopter and Base 15

Table 6. Decision Matrix for Flight Controller for the Quadcopter 17

Table 7. Components List for the Quadcopter

Table 8.

Table 9. Cost List for the System

Table 10. Instructions for using the Special Commands

Figure 1. The Top-Level Diagram for the Gesture-Controlled Quadcopter System 20

Figure 2. The Block Diagram of the Hand Controller 21

Figure 3. Hand Gestures Instruction for Aura 21

Figure 4. Schematic of the Hand Controller 23

Figure 5. The Pseudocode Describing the Functionality of the Hand Controller 26

Figure 6. Overall Hardware Diagram of Communication Base 27

Figure 7. Pin Diagram of Communication Base 28

Figure 8. States in Software Level of Communication Base 29

Figure 9. Pseudocode of Communication Base Main Loop 30

Figure 10. Schematic of the Quadcopter 34

Figure 11. Diagram of the Data Flow of the System 35

Figure 12. Hand Gestures Instruction for Aura 41

Figure 13. Schematic of the Hand Controller

Figure 14. Hardware Implementation of the Hand Controller

Figure 15. State Diagram for the Special Commands

Figure 16. Stop Interrupt Function

5

Gesture Controlled Quadcopter System

Figure 17. Hover Interrupt Function

Figure 18. Take Off Function

Figure 19. Positional Data Code used to Read the Hand’s Position

Figure 20. Code Used to Send a Message to the Communication Base

Figure 21. Data Flow for User-Input Controls to Flight Data

Figure 22. Data Flow for Video Stream

Figure 23. Final design Diagram for Communication Base

Figure 24. Byte to Float Conversion Code

Figure 25. Generated PPM Example from Base Measured by Logic Analyzer

Figure 26. Timer Interrupt Function for PPM Generation

Figure 27. Data collection and position calculation 55

Figure 28. Position to flight command 55

Figure 29. The movement control datapath 56

Figure 30. The Live Video Streaming Datapath 56

Figure 31.Quadcopter Hardware Schematic

Figure 32. Final Hardware Implementation for the Quadcopter

Figure 33. Receiver Configuration

Figure 34. Channel Mapping and Configuration

Figure 35. ARM Mode Configuration

Figure 36. Receiver Accuracy Result

Figure 37. Video Live Streaming Test Result

Figure 38. Weight Result for the Quadcopter

Figure 39. Pert Diagram for the Overall Production Schedule

Figure 40. Pert chart for communication base

Figure 41. Precedence Diagram for the Quadcopter Subsystem

Figure 42. Hand Gestures Instruction for Aura

6

Gesture Controlled Quadcopter System

1. Introduction

The police force is one of the humble building blocks of any functional society in every

country. The main duty of a police officer is to maintain public order and enforce the law when

needed. This spans from giving tickets to speeding drivers to handling a situation with violence.

Needless to say, the life of a police officer is often dangerous. According to the statistic given by

the National Law Enforcement Officers Memorial Fund, 514 police officers casualties have been

attributed to gunfire in the last decade(2008-2017)[6]. It is the leading cause of death among

police officers and accounts for more than a third of the total 1511 police casualties in the past

decade.

In this project, we want to provide a safer solution to police officers that are surveying a

building for one or multiple potential dangerous personnel. We are working to design and build a

gesture-controlled quadcopter that can scout ahead of the officer and provide information about

the area so the officers can avoid a dangerous situation. This gestured-controlled quadcopter

system will be compact and lightweight, offering greater mobility and ease-of-use over

joystick-based systems. We hope that our system’s simple, intuitive design will allow a user to

learn how to pilot it in less than an hour. These goals are targeted to create a system that is

useful for any police officer, regardless of their technical skills.

This paper will outline the application of UAV (Unmanned Aerial Vehicle) in the police

force, and previous work in the field of gesture-controlled quadcopter systems, followed by the

ethical and security concerns that come with the use of quadcopters for police surveillance. We

will then go over the design requirements that our project must meet to be functional for our

application, followed by a discussion of alternative designs we considered. After design

alternatives have been explored, the current design of the system and its components will be

explained. Since we are building this system, the implementation schedule of the design is then

presented.

7

Gesture Controlled Quadcopter System

2. Background

The website Unmanned Aerial wrote an article that said :

“A growing number of studies show unmanned aerial vehicles (UAVs) are disrupting the

status quo across industries. From agriculture and construction to equipment inspection

and mining, industry and business leaders are using drones to save time, money and

effort, as well as lives.” [7]

As stated above, UAV technology is being used increasingly for many different types of fields

including the police force.

2.1 Application of UAV in the Police Force

UAV technology is increasingly being used in the police force for many different types of

situations, including search and rescue, traffic collision reconstruction, investigating active

shooters or suspects, crime scene analysis, and surveillance [10]. As a team, we had

informational meetings with people who currently work in the field of UAV, including Ed

Capovani from In Sky Aerial, who works closely with the Police Department of Albany. His

company actually helps the police perform search and rescue missions in our region[5]. He

discussed the difficulty that the police departments, at least in our area, face when it comes to

using UAV technology. Even though many police departments have access to the technology,

they do not have the time to become familiar with the complicated controls. Also, since they are

on rotating shifts, it would be the most effective if all police officers learned how to use the UAV

technology, which would take more time in training than the officers have to offer.

2.2 Previous Work in Gesture Controlled Quadcopter Systems

At the time that we began this project, some companies and individuals had already

developed gesture controlled quadcopter products. MIT students Ben Schreck and Lee Gross

proposed the creation of a gesture-controlled quadcopter using the video supplied from an Xbox

Kinect system[13], which would sit stationary and read the movements of the person in the feed

to control the quadcopter. There was also a group of students based out of Lanzhou University of

8

Gesture Controlled Quadcopter System

Technology, in Lanzhou, China who submitted a paper outlining the use of a Kinect video sensor

in much the same way[16]. The problem is that these designs are not portable. Moreover, Yucan

Liu, a computer engineering student who graduated from Union College in 2017, designed a

single-handed gesture controller for quadcopters[9]. His goals were for the quadcopter in his

system to be able to pitch, yaw, roll and change in altitude smoothly when using his controller.

As results for his project, the quadcopter used in his system was able to respond to yaw, pitch,

and roll commands within 0.3 seconds. The project we are working on is based on Yucan Liu’s

project.

Among all the gesture controlled quadcopter products we researched into, the mostly

used control instructions are listed as follows: tilting the hand forward, backward, to the left and

to the right to instruct the quadcopter to fly forward, backward, to the left and to the right. Lifting

the hand vertically up or down to increase or decrease the altitude of the quadcopter. For

example, a company called KD Interactive USA has produced a toy called Aura [2] that takes the

hand movements above to guide the quadcopter. Thus, we are building up our own control

gestures using the popular gestures for quadcopter controlling as a basis. Aura also supports auto

take-off, auto-hover, 360-degree flip, head lock mode, and auto landing, which inspired us when

designing our own special commands for combinational movements.

2.3 Potential Project Impacts

Since our project is intended for police departments, the questions of privacy and security

are two important aspects we have to consider for a final product. When researching drone laws,

we found that one is prohibited from taking photos or videos of others without their consent

anywhere they have the right to expect privacy[15]. Since this system would be used by the

police department it would have the same rights as the police officers when it comes to invading

privacy, which is outlined by the 4th Amendment :

“The right of the people to be secure in their persons, houses, papers, and effects, against

unreasonable searches and seizures, shall not be violated, and no warrants shall issue, but

upon probable cause, supported by oath or affirmation, and particularly describing the

place to be searched, and the persons or things to be seized.[8]”

9

Gesture Controlled Quadcopter System

This means that the police would not be able to use the quadcopter on a person’s property

without first getting a warrant or having probable cause of illegal or dangerous activities

happening within the property.

Since the quadcopter will be used specifically for indoor surveillance there are not many

quadcopter laws that apply to it. The applicable laws detail having to register the quadcopter and

needing to take a quadcopter safety training course before being able to use it in the field. Other

laws that apply to quadcopter all have to do with visibility and making sure that the quadcopter

does not interfere with other aircraft vehicles. When it comes to our actual system, security

measures will have to be included to protect the system from receiving interfering signals.

3. Design Requirements

In order for this project to function efficiently and serve its purpose well, it needs to

satisfy requirements that are defined by the problem. As we had discussed in previous sections,

the controller needs to be intuitive to operate because the police officers cannot afford to have

long training sessions. The controller and the drone need to operate together and transmit live

video in an indoor setting up to a range of at least 30 meters to ensure a versatile usage. The

controller and the drone should be lightweight so they do not hinder the movement and carrying

capabilities of the officers in action. Last but not least, the setup time for the system must be

within five minutes since timing is always important in every emergency situation.

We decided to divide the project into three parts: the gesture controller, communication

base, and quadcopter. Our design separates the controller and communication base to minimize

the weight of the gesture controller, thereby minimizing the fatigue and reduction in mobility of

the wearer. Instead, the communication base will do the “heavy lifting” in terms of calculation

and interpretation of the gesture and data transmission between the controller and quadcopter. In

the following paragraphs, we will elaborate on the requirements for each part.

3.1 Hand Controller

The hand controller is what most greatly sets our system apart from traditional

joystick-based quadcopter systems. This controller offers a very intuitive, simple method of

10

Gesture Controlled Quadcopter System

piloting such that those without any experience with UAV can fly it within an hour of receiving

the system. The hand controller needs to be able to run for at least ten consecutive minutes

without requiring a battery change, so the system must function on very little power to avoid a

bulky battery. The hand controller will be able to fit most adult human hands and will be robust

enough to fall from 1.5 meters without breaking. Any setup for the hand controller, which will

include calibrating the motion/position sensor, will take less than 5 minutes, as speed is of great

significance in an emergency situation. The controller will weigh less than 250 grams so as not

to fatigue the pilot while they are controlling the quadcopter. There will be specialized

commands such as take-off, stop, and hover, which will simplify difficult quadcopter functions.

While the pilot is controlling the quadcopter the specialized commands, which are indicated by

buttons and a flex sensor, should take priority over the movement controls. For example, when

the quadcopter is in hover mode the pilot will be able to move their hand without sending the

movement to the quadcopter. Most importantly, the hand controller must be able to take

information from the movement/position sensor, buttons, and flex sensor and convert it into

strings, which fit the decided format, then send it over radio communication at 433 MHz to the

communication base where it will parse the information sent.

3.2 Communication Base

The main goal for the communication base is twofold. First, as the name suggests, the

base is responsible for communication between the other parts of this system. Secondly, the

communication base needs to calculate and interpret the motion data and translate it into the

corresponding control signal for the quadcopter.

The communication base needs to handle three lines of communication, that is from the

hand controller to the communication base, flight control from the communication base to

quadcopter and video data from quadcopter back to communication base. Since an operator will

wear both the controller and communication base, the communication range needed is 5 meters

at most. However, the communication between base and quadcopter is more complicated. The

quadcopter needs to operate at a range of at least 30 meters indoors from the communication

base in order to scout and survey efficiently. For the operator to get visual feedback, the

11

Gesture Controlled Quadcopter System

live-stream video transmission needs to have a similar range. In addition, the resolution for the

camera needs to be high enough in quality for the operator to distinguish the age, gender, and

potential weapon carried by the suspect, especially in dim light. This requires the camera to have

at least a resolution of 960p for a digital camera or 900TVL(TV Line) for an analog camera. TV

Lines are a measure of horizontal resolution[14]. The delays from the controller to the

quadcopter and from camera to base need to be shorter than 0.6 seconds, the minimum human

reaction time.

The communication base needs to interpret and decode the motion data from the gesture

controller. The decoding time would contribute to the overall delay between gesture and flight

command, thus the hardware needs to have a fast processing speed and the algorithm needs to be

efficient. For now, we are estimating the processing time should be less than 0.3 seconds. This

timing would not be hard to keep for basic hand movement, but definitely will be more

challenging as we add in more complicated gestures.

Finally, since the communication base will be carried by a police officer in action, it can

not be cumbersome or heavy. Rather, it should be a small box that can be hooked on a belt. In

order to achieve this, the communication base should be smaller than a 10𝗑10𝗑5cm and lighter

than 4 kilograms. The maximum operating time for the base should be at least an hour.

3.3 Quadcopter

The quadcopter will be piloted using the hand controller and it will live-stream video

back to an FPV (first person view) monitor. In order to accomplish those tasks, the quadcopter

should meet the following requirements.

First, the gesture controlled quadcopter should be able to fly just like a traditional

quadcopter and support basic quadcopter movements: roll, pitch, yaw, and throttle. In addition,

the quadcopter should also be able to conduct special movements such as emergency stop and

take off. With the special commands, the gesture controlled quadcopter system can be more

intuitive and safer to fly.

12

Gesture Controlled Quadcopter System

Second, the quadcopter should respond to any instruction from the gesture controller

within 0.6 seconds when it is within the operating range from the communication base. The short

response time allows the pilot to have more precise control over the quadcopter.

Third, since high-speed UAV crashes can cause severe injuries, the maximum speed of

the quadcopter in this system will be limited to 10 meters per second. This will allow the

quadcopter to fly fast enough for its intended application while not being dangerous to people.

The body of the quadcopter should be smaller than a 25𝗑25𝗑25 so that it will becm3

portable enough for a police officer to carry in his or her bag. The weight of the quadcopter will

be less than 1.5 kilograms to maximize its agility and minimize power consumption. To survey

the inside of a building, 10 minutes would be sufficient; thus, each battery pack will is estimated

to require at most 3 hours to be fully charged and support at least 10 minutes of flying time.

Finally, it will take no more than 5 minutes to pair the radio receiver on the quadcopter

with the radio transmitter on the communication base, providing easy setup between the

quadcopter and the rest of the system.

Specification Value Unit

Hand Controller

Basic Movements Gestures Measured by
Sensors

-

Special Movements Emergency Stop; Takeoff,
Hover

-

Weight 250 Grams

Falling Height 1.5 Meters

Communication Frequency 433 MHz

Fly time 10 Minutes

Set up Time 5 Minutes

Communication Base

Operating range with 5 Meter

13

Gesture Controlled Quadcopter System

controller

Operating range with
quadcopter

30 Meter

Video Resolution 900 TVL

Latency 0.6 second

Weight 4 Kg

Size 10*10*5 cm

Quadcopter

Basic Movements Yaw; Row; Pitch; Throttle -

Special Movements Emergency Stop; Takeoff -

Instruction Responding Time 0.6 second

Maximum Speed 10 meter per second

Volume 253 cubic centimeter

Weight 1.5 kilogram

Operating Time 10 minute

Charging Time 3 hour

System Setup Time 5 minute

Table 1. Design Requirements for the System

4. Design Alternatives

In this project, there are multiple choices for each component that would allow the

quadcopter system to achieve the desired functionalities. For example, both of the radio based

and the bluetooth based communication modules would allow the communication between the

subsystems. In this section, each component choice for the most critical components will be

evaluated by how well the system built with it will achieve the design requirements.

14

Gesture Controlled Quadcopter System

4.1 Hand Controller

There are several ways people have implemented similar gesture-controlled systems.

Some have done it with video recognition such as the students who worked with the Kinect

sensor [16], some have done it using proximity sensors and others have done it with a glove-like

controller as we plan to do. We started with a glove design because this project started out as a

continuation of a past student Yucan Liu’s senior project. This makes sense in the use-case of the

police force in the field. Once the hand controller’s general design was selected, we broke the

design down into four major component decisions: the motion/position sensor, the

microprocessor to read and convert the signals, and the specialized command indicators.

The most important component is the motion/position sensor because this is what the

quadcopter’s movement is relying on. The criteria for the position sensor include the ability to

sense the hand’s position and speed, being low powered, not being larger than 5x5 andcm2

compatibility with Arduino. To define compatibility with the Arduino program is to have a

library that can be downloaded and used in the program. This will allow the communication

between the program and the sensor to be simple then the focus can be on interpreting the data.

An example of a function that would be useful is a data reading functions since most motion

sensors are recording multiple types of data it can be sent over a bus and having a function that

can read the information from the bus and parse it into readable data such as a string is very

useful. The table below shows the breakdown of three alternative components and the sensor that

was chosen:

Component Senses

Position and

Movement

(40)

Low

Powered

(20)

Smaller

than

5x5 cm2

(20)

Works with

Arduino

(20)

Total

(100)

KIONIX - Accelerometer 20 20 20 20 80

NXP Semiconductors -

MMA8453QT

20 20 20 20 80

15

Gesture Controlled Quadcopter System

Accelerometers Sensors

Adafruit LSM9DS1

Accelerometer + Gyro +

Magnetometer 9-DOF

Breakout

40 10 18 20 88

Table 2. Decision Matrix for Motion/Position Sensor for the Hand Controller

The Adafruit 9-Degrees Of Freedom Breakout sensor was the one that was chosen

because it is able to sense the position relative to the strongest magnetic field, which is normally

true north, acceleration in 3D space, and rotation measured from the center of the board of the

object it’s attached [1]. Having both the position and motion allows for more precise control of

the quadcopter because both can be used in computing the direction the quadcopter should go in.

The next major decision was the “brain” of the hand controller. The important criteria for

the microcontroller to meet are the ability to communicate with the Adafruit 9-DOF sensor,

having a way to be powered without a bulky battery, having a way to have secure wiring without

using a breadboard, and having a compatible device library for the Arduino IDE. The table

below shows the breakdown of three alternative components and the microcontroller that was

chosen:

Component Easily

Communicates

with the

sensor (40)

Powered

without Bulky

Battery

(10)

Wiring

other than a

Protoboard

(30)

Library

in

Arduino

(20)

Total

(100)

Adafruit Trinket -

Mini Microcontroller

0 10 15 20 45

Sparkfun AVR Pro

Micro

30 5 15 20 70

16

Gesture Controlled Quadcopter System

LilyPad USB Plus 40 10 30 20 100

Table 3. Decision Matrix for Microcontroller for the Hand Controller

The LilyPad USB Plus is the best choice for a microcontroller for the hand controller it

has an Arduino library and the required SDA and SCL pins to work with the Adafruit 9-DOF

sensor. The other interesting aspect of the LilyPad is that it works with conductive thread so the

entire circuit can be sewn into the fabric of a glove reducing the bulkiness of having a soldered

breadboard. The LilyPad USB Plus is also a low powered microcontroller that can be powered

by a separate LilyPad compatible coin cell battery holder.

One of the final decisions of the hand controller was what would control the specialized

command signals. The components had to be low powered, simple, and attachable to the

conductive thread. These criteria eliminated components like a touchpad on the palm of your

hand because it would be difficult to attach to the conductive thread and the pressure required to

trigger it could fatigue the pilot’s hand. The final choice was a flex sensor along a finger to

trigger the Take Off function and LilyPad buttons to trigger the Hover function and the Stop

function. The final aspect of the hand controller that was considered was the communication

between it and the communication base that will be discussed more in the communication base

section.

4.2 Communication Base

The most important decision for the communication base is the selection for transmitter

and receiver. The main consideration for communication would be latency, type of data

input/output, range, power consumption, and price. For the communication between the gesture

controller and the communication base, the operating range is a lesser concern as the two parts

will work in a close range. On the other hand, the latency and power consumption are more

important because we want to minimize the overall delay and the glove is not capable of

supporting a lot of power. The two potential choices are using a short-range radio

communication module or Bluetooth module. The strength and weakness can be found in the

following table:

17

Gesture Controlled Quadcopter System

Component Latency

(20)

Data

Reliability(25)

Range

(10)

Power Consumption

(25)

Price

(20)

Total

(100)

433Mhz RF

Transmitter and

Receiver

Module[433]

15 25 8 22 18 88

Bluefruit LE -

Bluetooth Low

Energy (BLE

4.0) - nRF8001

Breakout -

v1.0[bluetooth]

15 20 8 25 12 65

Table 4. Decision Matrix for the Communication between the Hand Controller and Base

Low power Bluetooth is great in terms of power consumption, but it suffers from having

less reliability in terms of data transmitting and the price is more than double the price of the

433Mhz radio module.

The requirements for the communication base to quadcopter has different requirements.

Both the communication base and quadcopter will have a larger power supply that means the

power consumption will be less of a concern. The latency and range indoor becomes our major

concern as the quadcopter needs to navigate across rooms and move outside the line of sight.

In the world of quadcopters, 2.4Ghz radio communication is used most frequently as it

offers a good range of operation and penetration without requiring a huge antenna to receive the

signal. Once we narrow our scope to 2.4Ghz radio communication, we have two transmitters to

choose from, hobby level DIY transmitters and Xbee. The hobby level DIY transmitter is a

specialized transmitter that is tailored for flying hobbyist quadcopters. We can use the

configuration and performance that are preset on the transmitter without too much work. The

18

Gesture Controlled Quadcopter System

downside is that we need to decode the mapping between the input signal and the output signal.

Xbee is an industry level wireless communication that can be fully configured by the users. This

opens up a lot of availability and potential for our project. However, since our focus is on gesture

control, we are not going to use Xbee since the work of building a control system for quadcopter

from the ground up is too much and overthrows the benefit that Xbee can offer. We pick FrSky

DHT 8ch since it is the only available DIY transmitter module on market.

After the transmitter is being picked, we can narrow our selection of receiver as there are

only a handful of receivers that are compatible with it. The following table shows the options:

Component Latency

(30)

Data

Feedback

(20)

Range

(30)

Power

Consumption

(10)

Price(10) Total (100)

FrSky

D8R-II plus
25 20 25 8 8 86

FrSky

V8FR-HV

25 0 25 8 8 66

Table 5. Decision Matrix for the RC receivers between the Quadcopter and Base

The D8R-II is better than its counterpart because it can send the status of the quadcopter

back to the transmitter on time, a feature called telemetry. Telemetry enables us to monitor the

status of the quadcopter during flight, which can valuable in multiple scenarios. V8FR-HV does

not have telemetry, which means we can not receive feedback at all during the flight.

The third type of the communication is the video stream from the camera mounted on the

quadcopter to the monitor included in the base. In this project, we are using the already

established hobby level FPV(first person view) camera. This special kind of camera can be

connected to video transmitters and broadcast the image via radio signal. The signal will be

received by an FPV monitor as long as the video transmitter and the monitor are on the same

channel. For the monitor we picked the cheapest 7’’ monitor on the market since the main

19

Gesture Controlled Quadcopter System

difference among the monitors is the resolution. The selection of camera and video transmitter

will be discussed in the last part of the quadcopter section.

We picked an Arduino Uno as the base microprocessor that would analyze the input

command and output the correct radio transmitter signal. Although there are faster and smaller

microprocessors than Uno, it is a good starting point as it offers enough processing power with

its 16Mhz clock speed. Uno also has 14 digital pins and 6 analog pins that enable further

potential expansion for the communication base. More importantly, it is the most used

microprocessor in Arduino microprocessor family so a lot of libraries are available for the use of

this project.

4.3 Quadcopter

In order to design a quadcopter that meets the design requirements, the quadcopter

should at least have the following components: frame, flight controller, four ESCs (Electronic

Speed Controllers), four rotational motors, four propellers, a lipo battery, a lipo battery charger, a

FPV camera, a FPV video transmitter, a radio receiver and a signal converter. For each

component, there are a fair number of alternative choices in the market. Thus, the design choices

for the pivotal components are described below.

The flight controller is the most important component which works as the “brain” of the

quadcopter. More specifically, it translates the radio signal from the radio receiver to PWM

(Pulse Width Module) signals and pass them to the ESC and motors to actuate the desired

movements of the quadcopter. To evaluate how well a flight controller fits in this system, there

are six major criteria: (1)if allows source code modification, (2)if it supports an FPV camera, (3)

safety, (4)responsiveness, (5)availability of resources, and (6)cost. Among the criteria, if

supports source code modification and if the quadcopter supports an FPV camera are the most

important criteria. Normally, a flight controller is pre-programmed to support basic movements

of a quadcopter. However, in order to conduct special movements command and limit the

maximum speed of a quadcopter, modifications have to be made to the source code installed in

the flight controller. Thus, for the desired application, it is important for us to have access to

20

Gesture Controlled Quadcopter System

modify the source code of the quadcopter to implement special movements such as take-off. The

responsiveness and available resources are the second most important criteria.

 The responsiveness is important since the quadcopter has to respond to a instruction

within 0.6 seconds. The availability of resources is also important since resources such as

exhaustive user manual and guidance in different formats allow us to have a comprehensive

understanding of the target component. If there is very limited resource for a flight controller,

there is a much larger chance of failure of the system. Based on the importance of each feature of

the desired flight controller, the weights for each criterion are shown in the table below.

Product Source Code

Modification

(25)

FPV

camera

(25)

Responsiveness

(15)

Availability of

resources(15)

Safety

(10)

Cost

(10)

Total

Score

(100)

DJI

Naza

MV 2

0 25 12 8 10 2 57

3DR

Pixhawk

Mini

25 25 12 8 10 3 83

Kakute

F4 V2

AIO

25 25 12 14 6 8 90

Table 6. Decision Matrix for Flight Controller for the Quadcopter

For the flight controller, three popular models in the market are considered: DJI Naza

MV 2 [11], 3DR Pixhawk Mini [12], and Kakute F4 V2 [17]. In terms of modifiable source

code, the 3DR Pixhawk Mini and Kakute F4 V2 AiO allow customized programs, but DJI Naza

MV 2 does not allow the user to customize installed code. Thus both Kakute F4 V2 AIO and

3DR Pixhawk Mini get 25 points for this criteria, and DJI Naza MV 2 gets 0 points. All of the

21

Gesture Controlled Quadcopter System

flight controller choices have ports for FPV camera, so all of them get 25 points for the FPV

camera criteria. In terms of responsiveness, all of the flight controller choices are widely used

for racing quadcopters, and in this way, they all get 12 points out of 15 points. For the next

criteria, availability of resources, all alternatives have a well-documented user manual, but only

Katute F4 V2 AIO has a great number of tutorials written by hobbyists. Thus the Katute F4 V2

AIO gets 14 points and the others get 8 points. For safety aspect, both DJI Naza MV 2 and 3DR

Pixhawk Mini have predefined functions to avoid the quadcopter from crashing, thus they both

get 10 points. However, for Kakute F4 V2 AIO, it allows the user to customize the source code,

users can have their own functions to ensure safety thus, it gets 6 points. In terms of cost, DJI

Naza MV 2 costs $159, 3DR Pixhawk Mini costs $138, and Kakute F4 V2 AIO costs $41. Thus,

the alternatives described above get 2, 3 and 8 points for the cost criteria respectively.

The second design choice to make is the ESC (Electronic Speed Controller). There are a

lot of available quadcopter ESCs in the market such as the 30A ESC Simonk, DJI E310, and

Racerstar 30A V2. All of them are powerful enough to support race quadcopters. In terms of

compatibility, DJI E310 is mostly used to work with DJI flight controller, while both Simonk

and Racerstar are widely used for a broader range of flight controllers. Thus, Simonk and

Racerstar could be the better choices. In terms of price, Racerstar is $14 each and Simonk is $25

each. This price difference makes Racerstar the preferred component.

The third design choice to make is the FPV camera and video transmitter. The main

requirement for the FPV camera is resolution and performance in dim light since many potential

scenarios for this project is for indoor use without light. In the world of analog camera, the unit

to measure resolution is TV line or TVL. 900 TVL roughly equals to 960p for a digital camera.

We need a camera with at least 900 TVL in order to distinguish the face of our target and the

potential weapons carried at a range of 5 meters. In order to have a tolerance for low light, we

picked a 1200 TVL camera from Foxeer, which is Foxeer Falkor.

For the video transmitter, we picked EACHINE VTX03 due to its small size, and balance

between its power consumption and range. One major benefit of VTX03 is the ability to switch

to four different power consumption modes. A higher power consumption means a better

transmission range, but that would drain the battery faster and would potentially overheat and

22

Gesture Controlled Quadcopter System

damage the circuit. The ability to switch power consumption gives us a better solution under

different situations.

For the frame of the quadcopter, the frame Frame Wheel F450 and frame Martin II are

considered. Both frames can mount an FPV camera and are robust and lightweight. However,

the F450 costs $33 while Martin II costs $27. Thus, the frame Marin II is preferred.

For the rest of the components, they have less interesting design alternatives to discuss, and most

of the alternative component choices are rated in terms of compatibility with other components

and cost. The full list of components chosen can be seen in Appendix 1.

5. Preliminary Proposed Design

The gesture-controlled quadcopter system will have three parts: the hand controller,

communication base, and quadcopter. The hand controller will detect the gestures of the pilot

and send them to the communication base. The communication base will then convert the data

that it receives from the hand controller into sendable instructions for the quadcopter, then it

sends the data to the quadcopter. The quadcopter responds to the information sent from the

communication base and moves in the correct manner. The quadcopter also takes live video data

from an FPV camera and transmits it back to the communication base’s monitor.

23

Gesture Controlled Quadcopter System

Figure 1.The Top-Level Diagram for the Gesture-Controlled Quadcopter System

5.1 Hand Controller

5.1.1 General Design

The hand controller is broken up into three general tasks, one is reading the hand’s input

this includes the position and motion, and specialized commands. The second task is converting

that into a string that the communication base can read. The final task is to take the string with

the data, whether that be a specialized command or a motion reading, and send it to the

communication base via radio communication. Below is a block diagram showing the system

and the types of communication between them.

24

Gesture Controlled Quadcopter System

Figure 2. The Block Diagram of the Hand Controller

The actual hand controller will be sewn, using conductive thread, into a glove that

stretches so most hand sizes can control the quadcopter. The buttons will be placed on the palm

so the thumb can reach them to press them. The flex sensor will be lining the middle finger with

the hope the glove will be able to be used on either hand. The LilyPad, the 9-DOF sensor, and

the radio transmitter will be on the back of the hand to not impede motion. How the hardware is

actually connected is outlined in the next section.

5.1.2 Gesture Design

As described in the background of the paper there has been companies that have created

other gesture controlled quadcopter products. The one that was thoroughly discussed the the

Aura produced by KD Interactive USA [2]. This product uses a hand controller band that slips

on to the hand and then the pilot can do the movements outlined in the manual to move the

quadcopter. We have decided to base our gesture design on this product’s controls. They are

outlined in the table below.

25

Gesture Controlled Quadcopter System

Figure 3. Hand Gestures Instruction for Aura

Though there will be some key differences between our gesture design and the picture

from the manual above. The first being our quadcopter will not have a flip function, for our

purposes the flip function is not needed and could cause disorientation to the pilot when using

the camera. Secondly, as you may have noticed the up and down controls and the same as the

front and back controls and a button is used to differentiate them. In high stress environment like

the one we are trying to design this system for the lack of differentiation could cause the pilot to

mistake one direction for another and crash the quadcopter. Instead of having the two commands

be so similar the pilot will move their hand up and down to move the quadcopter. We will adjust

the movement of the pilot to be amplified so the quadcopter has more range than the pilot. Also

we have the enable button which allows the pilot to keep the quadcopter hovering in the place it

was left and the pilot will be able to readjust their hand position.

5.1.3 Hardware Design

As mentioned in the previous section the wiring for the system will be done with

conductive thread so the components can be sewn into a glove for ease of use and transportation.

The brain of the system is the LilyPad USB Plus this is the microcontroller that is going to read

the sensors and also facilitate the communication between the communication base and the hand

controller. The actual microprocessor running in the LilyPad USB Plus is an Arduino Mega this

means it's compatible with Arduino and Adafruit products [4]. The Arduino microprocessors

have SDA and SCL pins that allow for easy communication between the processor and the

sensor, all that is needed is a downloadable library from the Adafruit website [1]. The SDA and

SCL are the data and clock line respectively for I2C communication. The library provided by

Adafruit for the SCL pin setup means that the programmer will not have to set up the clock for

communication manually. The other two types of inputs are the flex sensor and the buttons. The

flex sensor also has a downloadable library for the Arduino IDE and the connection type is a

simple analog reading pin. The buttons also are designed to work with LilyPad products and only

require a simple digital input pin when setting up the circuit. The final part of the circuit is the

26

Gesture Controlled Quadcopter System

radio communication transmitter this requires a digital output pin. The schematic for the

hardware components of the hand controller can be seen below:

Figure 4. Schematic of the Hand Controller

5.1.4 Software Design

The program being used design the software as discussed in the design specifications

section is Arduino. Arduino communicates with the LilyPad USB Plus by using a downloadable

library and also had built in libraries for all of the components which need one. Below is the

outline of the software design, this includes the continuous functions and the specialized

commands that the hand controller will be performing. The continuous functions include reading

the data from the 9-DOF sensor which will be done using a library function called

lsm.getEvent(), and then the controller will take this information and send it with the 433 MHz

radio transmitter. The transmitter takes a buffer that has strings in it, the communication can be

unreliable so the messages will be short. The continuous functions will continue happening or

won’t start until a specialized command is sent.

27

Gesture Controlled Quadcopter System

The specialized commands will be triggered by using interrupt pins for the two buttons

and making an interrupt in the software for the analog read for the flex sensor. The specialized

commands have the priority of Take-Off, Stop, and then Hover. Take-Off has the highest priority

because it is what starts the quadcopter initially and after the Stop command has been given.

Though if the Take-Off command is pressed during flight it would not affect the quadcopter. The

Stop command is the second highest priority this is because we want the quadcopter to stop what

is it doing during the flight and land for safety reasons. The Hover command is the interrupt with

the least priority because it is non-essential to the safety of flying the quadcopter. The reason it is

also a programmed interrupt and not a hardware interrupt is because it requires an analog pin,

which cannot trigger an hardware interrupt. The software based interrupt will react slower than a

hardware based interrupt because it will depend on the system reading the pin and then

processing the change that the value makes on it. All of the specialized command are going to

control one variable which is called enable. When enable is equal to one the hand controller will

send the position information to the radio communication when it is equal to zero the hand

controller will not send the information. The Take-Off function will set the enable pin to one and

send a special command to the base to tell the quadcopter to take off then wait for hand

movement controls. The Stop command will turn enable to zero and send the specialized

command to land the quadcopter. Finally, the Hover when initially pressed will set enable to zero

and send the specialized hover command to the communication base, then when pressed again it

will set enable to one and start sending the position data from the 9-DOF sensor again. The

software design outline and pseudocode are described below.

Hand Controller

● Periodically sends the motion to the base

○ Receives input from the 9-DOF sensor, Pin Type: I2C protocol (SDA and SCL)

○ Uses Arduino library to get the information from the sensor

○ Converts the information into a sendable String

○ This is cyclic and does it every couple of ms

○ Controlled by an enable variable

● Hover Button

28

Gesture Controlled Quadcopter System

○ Interrupt message, Pin Type: Digital I/O

○ A specialized message that is sent to the base that tells the quadcopter to hover if

it is currently in the air

○ Signal LED on the microcontroller to show the controller is disabled

○ Movement of the hand will not be sent to the controller until it is taken out of

Hover mode

○ The quadcopter can be instructed to land from this mode

● Stop Button

○ Interrupt message, Pin Type: Digital I/O

○ A specialized message that is sent to the base that tells the quadcopter to land if it

is currently in the air

○ Will disable the movements of the controller

● Take Off Flex Sensor

○ Interrupt message, Pin Type: Analog

○ Since the data is Analog there will be a threshold of “bentness” that will indicate

the start function

○ This function enables the hand controller to read the motion of the hand after the

quadcopter has finished the task

○ This will start the quadcopter with an initial takeoff function that will go to up

about meter then hover

The pseudo code that implements the functions described above is listed below:

29

Gesture Controlled Quadcopter System

Figure 5. The Pseudocode Describing the Functionality of the Hand Controller

5.2 Communication Base

5.2.1 General Design

There are four sub-functions in the communication base section. The first one is

accepting controlling information from the hand controller via the 433MHz radio communication

receiver. The Arduino Uno in the base will interpret the command and convert it into

corresponding flight command. The third one is to send the flight command to quadcopter via the

transmitter. The last part is to use the monitor to accept and display the video signal from the

quadcopter. The high-level hardware connection is shown below：

30

Gesture Controlled Quadcopter System

Figure 6. Overall Hardware Diagram of Communication Base

The final product for the communication base should be soldered and contained in a

closed box with a size roughly of 50x50x50 cm3. There will be an intuitive user interface to turn

on power and bind the transmitter with the receiver on the quadcopter. The monitor will be a

separate component as it does not require any physical connection with other components in the

communication base.

5.2.2.Hardware Design

The physical wiring is simple as the data flow is one way and there is no feedback. The

hardware is composed by only four parts: a 433 MHz radio receiver, an Arduino Uno, a FrSky

DHT 8ch DIY radio transmitter and a FPV monitor that is isolated from the previous three parts.

The data flow is as follows: the controller command is sent to Uno via 433 MHz radio signal

received from the radio receiver. The command is interpreted by the Uno and translated to the

corresponding flight command. The flight command is transferred to the FrSky transmitter in

form of PPM signal and transmitted to the quadcopter in 2.4GHz radio signal. The FPV monitor

receives the 5.8GHz radio signal from the camera mounted on quadcopter and displays the video.

Below is a pin diagram for the hardware layout. Note the symbol for the receiver is not the

correct one for FrSky DHT 8ch DIY as the correct symbol is not included in the library of the

drawing software.

31

Gesture Controlled Quadcopter System

Figure 7. Pin Diagram of Communication Base

5.2.3 Software Design

The software development will be focused on processing the incoming data from the

gesture controller and passing the interpreted flight command to the transmitter. The information

from the gesture controller consists of two types: motion data collected from a 9-DOF sensor and

special commands such as land, hover and takeoff. If the input is motion data, the processes will

try to interpret the meaning of the gesture and send corresponding flight command. If the input is

a special command, a preset command will be sent to the transmitter.

However, after the Hover and Land commands are sent to the base, the hand controller

will stop outputting command until a different command is called. This requires that the

communication base be able to memorize the last command given. Thus the overall software

structure in the communication base will take the form of a finite state machine. There are three

states in the code: landing state, hover state and flight state. The three states will be tracked by

two boolean variables: land and hover. If hover == 1, the code is in hover mode. If land == 1, the

code is in land mode. If both variables are 0, the code is in flight mode. There is no situation

were the two variables can be both equal to 1. The state transfer diagram and the pseudo code are

32

Gesture Controlled Quadcopter System

shown below.

Figure 8. States in Software Level of Communication Base

33

Gesture Controlled Quadcopter System

Figure 9. Pseudocode of Communication Base Main Loop

The pseudocode above shows the high-level implementation of the main loop in the base.
Under land and hover mode the code will only change output if certain instructions are given.
The basic functions we are going to use in the base are:

● stringIn(): take in the input 433MHz radio signal and convert it into a string
● initiateReceiver(): initiate the 433MHz radio receiver
● initiateTransmitter(): initiate the FrSky DIY 2.4 GHz radio transmitter
● gestureInterpretation(): Interpret the given motion data, convert it into the ppm signal.
● land(): Send the PPM signal that instructs the quadcopter to land
● hover(): Send the PPM signal that instructs the quadcopter to hover

34

Gesture Controlled Quadcopter System

5.3 Quadcopter

5.3.1 General Design

The desired behavior of the quadcopter in the gesture-controlled quadcopter system is to

fly according to the signals received from the communication base and live stream video data to

the FPV monitor. Thus, there are two paths of data flows within the quadcopter. The first is the

control data flow. The control flow starts from the 2.4 GHz radio signal received from the

communication base. Then the radio receiver module forwards its PWM data to PWM-SBUS

converter, which converts a PWM signal to a Sbus signal and passes the signal to a flight

controller. Once the flight controller receivers the Sbus signal from the converter, it will decode

the data and send four PWM signals to four ESCs(Electronic Speed Controls) that are connected

the flight controller, and each ESC will generate signals to the motor connected to it. In this way,

the actuation of the flight instruction from the communication base is accomplished. The second

data path is designed to allow the FPV camera on the quadcopter to live stream video data. Thus,

the data flow starts from the output of the FPV camera. Once the FPV camera has generated

video data, it sends the data to the flight controller. When the flight controller receives the video

data, the flight controller forwards it to the FPV transmitter. Once the video content reaches the

FPV transmitter, it will be carried to the FPV monitor through 5.8 GHz radio signal.

5.3.2 Hardware Design

In order to receive 2.4 GHz radio signals from the communication base, the quadcopter

will carry a radio receiver module. The radio receiver module chosen for the quadcopter is FrSky

D8R-II plus. However, since D8R-II can only output PWM signal and our flight controller only

takes sbus as input protocol, we added a PWM-PPM-SBUS converter to enable a correct data

flow. To translate the signal received from the radio transmitter to readable PWM signals for the

ESC(Electronic Speed Control) and Motors, the quadcopter will have flight controller.

 A flight controller is the most important component on the quadcopter. It is a

microprocessor that controls the movements of the quadcopter. For this project, the flight

controller is a Kakute F4 AIO V2 [17]. First of all, the Kakute F4 FC (Flight Controller) has the

35

Gesture Controlled Quadcopter System

F4 type of CPU, which has the processing speed of 168 MHz. This feature allows the quadcopter

to be responsive and be able to react to any instruction within 0.6 seconds. Moreover, the Kakute

FC has a built-in gyroscope chip and an accelerometer. The two components allow the

quadcopter to fly smoothly and safely with the pre-installed program on the flight controller. The

Kakute F4 FC is an open source flight controller, which means users are able to have access to

the source code that defines the behavior of the quadcopter. This allows us to customize the

flight controller and allow special commands such as landing and take off. Also, we will also be

able to set the maximum speed of the quadcopter in this system to be 10 meters per second. In

addition, the Kakute supports both FPV camera and FPV video data transmitter. This feature

allows the quadcopter to carry an FPV camera and live stream video to the FPV monitor.

However, the Kakute FC does not take PWM signals as input from the radio receiver. Thus, in

order to convert the PWM signals generated by the 2.4 GHz radio receiver to a readable Sbus

signal by the flight controller Kakute F4 FC, a signal converter module SBUS-PPM-PWM is

necessary.

After the flight controller successfully receives the instructions from the communication

base, it will start to generate PWM (Pulse Width Module) signals to the ESCs. An ESC is an

electrical speed control that controls and regulates the speed of an electric motor. For the

quadcopter in the gesture-controlled quadcopter system, the ESC will be Racerstar 30A V2. The

ESC Racerstar 30A V2 is widely used with the flight controller Kakute F4. It allows for the

smooth throttle response and silent operation of the quadcopter. Finally, the ESC will pass the

ESC signals to each motor. In this way, the quadcopter could move according to the instruction

from the communication base. The motors used for the quadcopter in this system is Racerstar

2207 which has maximum power of 482 watt that allows to quadcopter to be highly responsive.

In order to support all the electrical devices on the quadcopter, there will be a battery

installed on it. The battery chosen for this quadcopter is XILO 1500mAh 4s 100c Lipo Battery.

This battery is chosen because it is the cheapest possible Lipo battery that supports at least 10

minutes of flying time for the quadcopter in this system. To charge the battery, a battery charger

EV-Peak E3 Falcore Edition 35W 3A LiPo Battery Balance Charger will be needed as well. This

charger would allow the battery to be fully charged within 3 hours and is relatively cheap. To

36

Gesture Controlled Quadcopter System

carry all the components on the quadcopter, a quadcopter frame will also be needed. The frame

selected for this quadcopter is Martin II. This frame is a lightweight made with carbon fiber

material which allows the quadcopter to be robust enough to not break if it falls from 3 meters

high. Also, the diagonal of the frame is 220mm long, which meets our design requirement for the

size of the quadcopter: less than a 25x25x25 . More importantly, an FPV camera can becm3

mounted on the Martian II frame. Thus, this frame suits the designed quadcopter very well.

For the video feedback, we are wiring our FPV camera, flight controller and video

transmitter together. We wire the video out pin on our Foxeer Falkor to the video in pin on the

flight controller. The raw video data is sent from the camera to the flight controller. The flight

controller will compress and organize it into a sendable format. The processed video signal is

sent to the video transmitter from video out to video pin on the video transmitter.

In sum, the hardware connection of the electronic components of the quadcopter in this project is

shown below:

37

Gesture Controlled Quadcopter System

Figure 10. Schematic of the Quadcopter

5.3.3 Software Design

For the design of the quadcopter, there is very little software design involved. For

example, components such as radio receiver, and PWM to Sbus signal converter only

manipulates the taken data in hardware level. For components such as a flight controller and

ESC, they only need to be configured before use by downloading the software drive provided by

the companies for those products through a USB port. However, we can modify the source code

of the flight controller and download it into it in order to limit the maximum speed of the

quadcopter.

38

Gesture Controlled Quadcopter System

5.4 Data Flow

The data flow in this project can be rather convoluted due to the different communication

protocols input and output by different communication components. Overall we can divide the

data flow into three section: gesture controller to communication base, communication base to

quadcopter and quadcopter to communication base.

The data flow originated from the sensor mounted on the gesture controller. The

microprocessor will collect the data and convert it into a string that can either be the current

motion data or special command such as land or take off. The string is then sent to the

communication via a 433Mhz radio signal.

For the second part of the communication, the base will take in the string received from

the 433Mhz module. The base will follow the internal finite state machine to interact with the

input string and transmit the flight command to the radio transmitter in the form of PPM signal.

The transmitter would convert the information in the PPM signal into flight command and sent it

to the quadcopter through 2.4GHz radio. On the quadcopter the information is received and

decoded into eight PWM signals. However, for the requirement for the flight controller on

quadcopter the eight PWM signals are changed into S-Bus protocol. The flight controller

interpret the command and change the speed and direction of its motor.

The last communication is simple. The video is transmitted back to the monitor on base

in 5.8Ghz radio signal by the video transmitter mounted on quadcopter.

Figure 11. Diagram of the Data Flow of the System

39

Gesture Controlled Quadcopter System

6. Final Design and Implementation

6.1 Hand Controller

6.1.1 General Design

The general design for the hand controller has not had any severe changes from the

original design. It is still broken up into three distinct tasks reading the hand’s position and

specialized commands. The hand controller still converts the information but instead of into a

string it does it into a series of unsigned integers which will be discussed further in the software

design. Finally, the third task is to send the information to the communication base via the radio

communication modules. The final product uses conductive thread to connect the components

with the intention of the hand controller being able to be used on both hands. The hardware does

not impede the motion of the hand when reading the positional data.

6.1.2 Gesture Design

The gestures are still based on the Aura toy produced by KD Interactive USA [2]. The

figure below shows the gestures we adapted to our system.

Figure 12. Hand Gestures Instruction for Aura

The previous design showed that the throttle would be controlled by pressing a button

and repeating the forward and backward commands. We originally decided that the throttle

would have been controlled by the vertical movement of the hand. We decided against the

original design because we had difficulty getting a steady signal from the gyroscope from the

9-DOF board. To solve this problem we decided to utilize the flex sensor since it’s the only

function is to initialize the take-off function. While the hand controller is enabled and reading

positional data if the flex sensor is engaged the throttle will increase until the flex sensor is

40

Gesture Controlled Quadcopter System

unengaged or the hand is flipped and it will decrease the throttle. This will increase the range

which the quadcopter can go without having to engage the hover special command.

6.1.3 Hardware Design

The previous design included a schematic of the hardware design that was implemented.

It is included below:

Figure 13. Schematic of the Hand Controller

The physical system is designed exactly as the schematic is laid out. There are two

LilyPad buttons, an analog flex sensor (bend resistor), a 433MHz Radio Transmitter, the 9-DOF

sensor, and the LilyPad USB Plus. This is sewn onto a piece of stiff felt fabric with conductive

thread. The conductive thread is covered in craft fabric paint to insulate the wires. This is

important because skin contact between the threads is conductive enough, over short distances,

to pull a pin to ground. Below the implementation of the system can be seen.

41

Gesture Controlled Quadcopter System

Figure 14. Hardware Implementation of the Hand Controller

6.1.4 Software Design

The biggest changes from the preliminary design wherein the software design. The

system still uses Arduino because of the libraries that could be downloaded to use with the

components purchased. The software design is split into three major components the first being

the specialized commands, the second is the positional data reading and the third is the radio

communication.

The specialized commands are a series of software-based interrupts. Though this is not

the best way to implement this system because it can cause delay when a button is pressed, read,

and processed. This impact and ways of solving it will be discussed later in the results section.

The three specialized commands are take off, hover, and stop as mentioned before in the

preliminary proposed design. The state diagram below shows how the system is implemented:

42

Gesture Controlled Quadcopter System

Figure 15. State Diagram for the Special Commands

The reason that Stop and Hover interrupts have to be implemented with software-based

interrupts is that the LilyPad USB Plus is a modified ATMega32 chip and the only interrupt pins

available are designated SDA and SCL Pins. Ways to solve this problem will be discussed later

in the results and discussion section of the paper. The functions designed to be the interrupt are

shown below.

Figure 16. Stop Interrupt Function

43

Gesture Controlled Quadcopter System

Figure 17. Hover Interrupt Function

As shown both the stop and hover functions edit the enable variable this enable variable

controls whether or not the system reads the positional data. Both the Stop State and Hover State

have variables that show whether or not that is the current state. The stop function can be enacted

at any point even if the system is in the hover state. The full hand controller code can be seen in

Appendix 2. In that code, you can see every couple of lines an if statement reads the stop and

hover buttons and if they’re pressed they jump into the stop or hover functions.

The take-off function is a bit different than the other two special commands. It is not the

same because it cannot be enacted at any point it is only a viable option when the system is not

enabled and the HoverState is also low. Both of these things mean that the system landed and

ready for taking off. The flex sensor wouldn’t be enacted until the resistance is greater than a

certain BEND_RESISTANCE. Currently, it is set to activate when the bend is greater than 90

degrees. Below is the code that uses the flex sensor to indicate the take-off function.

44

Gesture Controlled Quadcopter System

Figure 18. Take Off Function

The second component of the software design is the ability to read the positional data of

the hand and convert it to data that can be sent. Below shows the code that does that.

Figure 19. Positional Data Code used to Read the Hand’s Position

45

Gesture Controlled Quadcopter System

The library that is used to read the data from the 9-DOF board is the LSM9DS1 Library

provided by Adafruit. It has built-in functions that allow for easy access of the data on the I2C

bus that the 9-DOF board uses. The library has the ability to access all the information needed to

be able to tell the position of the hand. As can be seen in the code above both the gyroscope and

the accelerometer are adjusted by different values. For both accelerometer and the gyroscope, the

number that is dividing 32768 and 128 respectively is the max values we were able to achieve by

movements of the hand with the minimum being the negative version of the number. For the

communication the values they need to be 8-bit unsigned integers. The range of the gyroscope

needed to be much larger than that to encapsulate a large range of data. Since we needed more

space for the gyroscope data we adjusted it for 16-bit values, the 32768 is half the bit value that

can be represented by 16 bits. Since the accelerometer can be represented by a smaller range it is

only represented by 8 bits.

 The final major component of the hand controller software is the communication between

the hand controller and the communication base. This achieved by the 433MHz radio

communication we used the Radiohead library to facilitate the communication. The code used

for communication is seen below.

46

Gesture Controlled Quadcopter System

Figure 20. Code Used to Send a Message to the Communication Base
By using the RadioHead library the function send requires a list of unsigned 8-bit integers

and the length of the array. The system we made needed 10 bytes of data to be sent to the

communication base. We decided that the first index of the array would hold the special

command values, 0 being no special command, 85 being hover, 170 being stop, 255 being

take-off, 50 being the disable command, and 1 being the throttle read. They’re all allowed to be

represented by one index because the value can range from 0-255 distinct values. We found that

even though the communication isn’t the most stable it does not change the values of the

messages received. The next three indices are the unsigned 8-bit integers that represent the

accelerometer data. The next six indices represent the gyroscope data the concurrent indices

represent the upper 8 bits and the lower 8 bits of each x, y, and z. The library also has a function

that waits for the system to send the package of data before it would have the ability to send

another package of data.

6.2 Communication Base

6.2.1 General Design

The overall design for the communication base had not changed much from the original

design either. The functionality of communication base remains a two one-way data processing.

One that receive controller data from the hand controller, decode and transmit the corresponding

flight command to the quadcopter, whereas the other one receive and display the video signal on

the monitor. On the hardware level, not much are changed beside a 5.8GHz radio receiver is

added to receive the 5.8Ghz video signal, a component missed during the original design. More

changes are made in terms of software. As the finite state machine for special command is

implemented in the hand controller, the communication base would only need to cover the

special command handling, gesture interpretation and conversion of user intention to flight data.

The changes will be discussed more detaily in following subsection session.

47

Gesture Controlled Quadcopter System

Figure 21. Data Flow for User-Input Controls to Flight Data

Figure 22. Data Flow for Video Stream

6.2.2 Hardware Design

Figure 23. Final design Diagram for Communication Base

48

Gesture Controlled Quadcopter System

As we mentioned in the previously, the communication has not changed much beside a

5.8 FPV video receiver is added. There is a 433MHz radio receiver to acquire data from hand

controller, an Arduino Uno to interpret user intention, a FrSky DHT 2.4 GHz radio transmitter to

send flight data to drone, and 5.8 Ghz FPV receiver and monitor for video streaming. The wiring

is simple as there is only five components involved and each components only needs three

wiring connection. However, currently the communication is still implemented on a breadboard

and not in a condition to be compacted into a portable device. We will discuss the reason behind

this in the conclusion section.

6.2.3 Software Design

The software design had been modified to adjust to the change in the hand controller and

hardware limitations. As the finite state machine is implemented on the hand controller, the base

does not need to memorize which state the quadcopter is in anymore. Thus the base can be more

focused on its main tasks: data conversion and user intention interpretation.

Data conversion is necessary as we have different components that provide/require data

in different format. The 433MHz radio receiver will return an array of byte for every

transmission whereas FrSky DHT transmitter need PPM signal, a special data format that is used

to compress data from multiple channel to one channel.

The part fetch data from 433MHz receiver is simple. There is a library “radiohead” that

provide the function that return the received byte array from the radio receiver. And as we had

seen in hand controller section, the data is formatted in 10 byte per transmitter where the first

byte is an indicator for special command, the next three byte for the three axis reading from

accelerometer, and the last six byte for the three axis reading from gyroscope as the range of

possible data is wider and need more precision. Thus the conversion from byte back to the actual

data is just the reverse of the conversion in hand controller. The implementation is listed below:

49

Gesture Controlled Quadcopter System

Figure 24. Byte to Float Conversion Code

The PPM signal generation is a bit more complex. As we had mentioned before, PPM

signal combines multiple channel of data, in our case, eight, into one channel. It compress the

data by having the number of channels plus 1 pulses in each period. The length of the pulse

represent the corresponding channel value. The longest extra pulse marks the end of current

period and the beginning of the next period.

Figure 25. Generated PPM Example from Base Measured by Logic Analyzer

After knowing the structure of the PPM signal, the signal generation becomes trivial. The

value for each channel is stored in an array. A timer interrupt function is used to periodically

visit the array and create the corresponding pulses. This implementation allow us to separate the

PPM generation function from the main loop to achieve a cleaner design. The interrupt function

is shown below:

50

Gesture Controlled Quadcopter System

Figure 26. Timer Interrupt Function for PPM Generation

An interesting side note for the data conversion is that both radiohead library and the

PPM generation interrupt function use the build-in timer in the microcontroller. By default both

function uses timer1, which will create a failure when compiling the code. While changing

RadioHead library to use timer2 is easy, it is something to notice when choosing microcontroller

for communication base as some microcontrollers do not have 2 build-in timer.

Once we setup the infrastructure for the communication base, we can start to use the data

to understand the user’s intention and translate the intention to the correct flight data. Once

receiving a new array of data, the base would first check if the given command is a special

command or not. If it is a special command, the corresponding function will be called. If it is not

51

Gesture Controlled Quadcopter System

a special command, the base would attempt to interpret the gesture with the data from

accelerometer and gyroscope. Thus we can divide this part to two smaller components: function

mapping for special commands and gesture interpretation.

As a reminder, for now there are four special commands: take off, hover, land and stop,

which is a kill switch that shut down the quadcopter immediately. We plan to have one function

for each special command, but we do not have a command for land yet. The reason behind this

will be discussed later in detail. Also we have not tested out the correct value for the special

command so here we are only providing the general ideas for the functions that corresponding to

the special commands.

To successfully implement the kill switch function, we need to introduce the arm mode

on the quadcopter first. Arm mode is a safety feature to protect both the quadcopter itself and the

surrounding. When a quadcopter is not armed, all the motor is automatically shutted down. So

we can simply set a channel to present the arm mode and when switch the arm channel to off to

shut down the quadcopter. A button with the same function is also implement to ensure minimal

delay. However this also means introducing a state in the PPM generation interrupt function so

the arm channel does not automatically turn back on.

We also need to use our knowledge of arm mode in take off function. Take off function

will only be triggered when the quadcopter is landed. This means that the arm mode is going

from off to on. However, the arm mode will not be turned on unless the arm mode is off for a

few seconds. This implementation is used to prevent the noise in the controller to accidentally

move the drone. But this also means that we need to set the arm mode to off first before we turn

on the arm mode and put in the correct throttle value.

For the hover function, we will just have the quadcopter to retain a certain value of

throttle, to make the quadcopter hover in the air. However we do not have the exact number for

the quadcopter yet as we do not have a chance for testing. In the future we can add in a GPS

module for a stabler hover.

Last but not least, as I mentioned above, we have not implement the landing function as

there is not a component on the quadcopter that can measure it’s distance to the ground. To

52

Gesture Controlled Quadcopter System

implement this function we also need the quadcopter be able to send feedback to the

communication base. This is definitely a useful feature for the future work.

The other part of user intention interpretation is connecting the user gesture to the

corresponding flight command. We have a naive algorithm that uses the data generated by

accelerometer and gyroscope to estimate the position and orientation of the hand. Again due to

connection issues we do not have a chance to test the effectiveness of the algorithm in real life.

However, before we can discuss the algorithm, we need a short introduction to what data

do accelerometer and gyroscope provide. Accelerometer measures the net acceleration, or

equivalently, force, on each axis. Provided that the hand controller is at rest, we know the only

force that is exerted on the accelerometer is gravity. Thus we know the magnitude of the

accelerometer reading on the three axis is 9.8m/s2. By calculating the ratio of acceleration on

each axis to the total magnitude, we can find out the angle on each axis, and thus the current

position and orientation of the hand.

Gyroscope, on the other hand, measures the rotation speed on each axis. Thus given an

initial position and the time interval between each probing, we can keep track of the current

angle on each axis by integration.

If we combined the position measured by the accelerometer and gyroscope, we can have

a relatively accurate reading for the position of the hand. If the hand is at rest, the reading for x,y

direction is close to 0, where as when value on x, y axis changed near to 1 or -1 means the hand

is tilted in that direction, which can be converted to a corresponding value in pitch or roll.

However currently the gyroscope have a big noize in its reading and we cannot find out a

way to clean the data so we are currently only relying on the accelerometer to estimate the hand

position. Below is our naive algorithm:

53

Gesture Controlled Quadcopter System

Figure 27 Data collection and position calculation

Figure 28. Position to flight command

6.3 Quadcopter

6.3.1 General Design

There are two general design goals for the quadcopter subsystem. First, the quadcopter

has to fly according to the signals received from the communication base. Second, the

quadcopter has to live stream video data to the FPV monitor on the communication base. Since

the design goals remain unchanged, the two datapaths are the same from the preliminary design:

one for quadcopter control, the other for live video streaming.

54

Gesture Controlled Quadcopter System

Figure 29. The movement control datapath

Figure 30. The Live Video Streaming Datapath

6.3.2 Hardware Design

For the hardware implementation, there is no major change from the preliminary design

has been made. All the components needed remain to be the same. Below is the schematic of the

quadcopter, the component list and the final hardware implementation.

55

Gesture Controlled Quadcopter System

Figure 31. Quadcopter Hardware Schematic

Component Chosen Model

FPV Camera Foxeer Falkor 1200TVL 1.8mm FPV Camera - Limited Edition White

56

Gesture Controlled Quadcopter System

FPV Transmitter
EACHINE VTX03 Super Mini FPV Transmitter 5.8G 72CH

0/25mW/50mw/200mW Switchable Transmission

Frame Martian II

Flight Controller Kakute F4 V2 AIO FC

Motors Racerstar 2207

ESC Racerstar 30A V2

Propeller DALPROP T5045C Cyclone

Battery XILO 1500mAh 4s 100c Lipo Batter

Signal Converter SBUS-PPM-PWM(S2PW)

Radio Receiver FrSky D8R-II PLUS 2.4GHz 8CH Receiver with Telemetery

Table 7. Components List for the Quadcopter

Figure 32. Final Hardware Implementation for the Quadcopter

6.3.3 Software Design
As mentioned in the preliminary design, there is very little software design involved in

the quadcopter subsystem. However, there are some important configurations needed to be made

for flight controller for the quadcopter to be properly manipulated by the communication base. A

57

Gesture Controlled Quadcopter System

USB cable can be used to make the physical connect between a computer with Betaflight

Configurator[19] installed and a flight controller.

In order to notify the flight controller that a SBUB signal is used in this system to carry

the control signal, in the Betaflight configurator, the receiver type has to be selected as SBUS in

the Configuration page.

Figure 33. Receiver Configuration

The second configuration is for the receiver channel mapping. In the Receiver page of the

configurator, there are receiver channels with values on the left side of the user interface, and

configuration options on the right side of the user interface. Because the receiver of this

quadcopter subsystem is a 8-channel receiver, it only receivers value for 8 channels, which are:

Roll, Pitch, Yaw, Throttle, AUX1, AUX2, AUX3, and AUX4. Each channel has valid value

varying from 1000 to 2000. The Roll, Pitch, Yaw, Throttle channel are used to specify the basic

movements of the quadcopter, and the other AUX channels are used for different modes of the

quadcopter. For current design, the Channel Map is set as AETR1234, which means the first four

channels on the left side are mapped to control the Poll, Pitch, Throttle, Yaw values. On the right

side of this interface, there are options can be set such as “Stick Low” and “Stick High”

58

Gesture Controlled Quadcopter System

Threads. Those configurations can be used to set maximum speed of the quadcopter.

Figure 34. Channel Mapping and Configuration

The last configuration needed for this subsystem design is the ARM mode configuration.

ARM mode is set to prevent users from sending any control signal to the quadcopter without

recognitions. In the Modes page of the configurator, first the ARM mode has to be added. After

that, the channel for the ARM mode and the range for triggering ARM mode can be set. In this

design, the channel for ARM mode is set as AUX1, which is the 5th channel of the receiver. The

range for ARM mode is from 1800 to 2000.

With above setting, in order to user the communication base to fly the quadcopter, the

first step is to set Throttle channel value to below 1000, Roll, Pitch and Yaw channel value to

1500, and AUX 1 channel value to any value outside of the ARM mode range, such as 1100.

The second stop to do is to set the AUX1 channel value so that it is in the ARM mode range,

such as 1900. In this way, the ARM mode is triggered and the quadcopter is ready for further

movement commands from the communication base.

Figure 35. ARM Mode Configuration

59

Gesture Controlled Quadcopter System

7. Performance Estimates and Results
At the end of this project, we had not achieved the goal of controlling the quadcopter by

hand gestures, but we were very close to it. The communication base was able to interpret the

gestures performed on the gesture controller and instruct the quadcopter how it should fly. The

sections below are the detailed results for each subsystem.

7.1 Hand Controller
As the design specifications stated the hand controller must weigh less than 250 grams,

be able to fall from 1.5 meters, have a flight time of at least 10 minutes, a setup time of fewer

than 5 minutes, and be able to send positional hand data and special commands. The hand

controller setup time is definitely within 5 minutes. The only setup that has to be done for the

system to run properly is to flip the on-off switch on the LilyPad microcontroller. The fly time

for the hand controller is determined by how long it can send data to the communication base.

The hand controller from our tests can easily send positional information to the communication

base for over an hour. The overall weight of the system is around 18 grams which are well below

the 250-gram limit. Since the system is so light and the fabric is flat which allows the hand

controller to not pick up speed when falling. It has been dropped from at least 1.5 meters and did

not break. As outlined in the software design the implementation of the system has the ability to

send positional data and specialized commands.

The system has the specification of having a less than 0.6-second display. This is so the

pilot does not see a latency when sending an instruction to the quadcopter. One of the issues with

the hand controller is the fact, from what we can measure, there is a 2.2-second latency. This is a

much greater latency than we intended on having. If our system was operational there would be a

major delay in the system from when the pilot would make the motion and the quadcopter would

react. If this project would be continued this would have to be addressed with a change of the

communication modules. Or figuring out a way to make the 433 MHz radio transmitter work

more reliably by the use of a different library or another method.

60

Gesture Controlled Quadcopter System

7.2 Communication Base
The communication base has meet the minimal functionality we originally planned as it

can transmit and receive data with rather short latency and good accuracy. We achieved a

communication range of 2 meter between hand controller and base and 30 meter near line of

sight in door communication between the video transmitter mounted on drone and base.

Although the video signal has trouble penetrate through thick obstacles like doors, it can go

through short wall in close distance. The video displayed on the monitor is clear overall and only

degrade when a thick obstacle is presented.

However currently the communication is still operate on a breadboard, which is far from

the final goal to fit the base into a small box. The biggest challenge currently is there are a lot of

different components that require different voltages. If we can have a hardware design with

better voltage regulation, packing the base would be a lot more easier. But overall, the

requirement for the base is mostly actualized.

7.3 Quadcopter
Overall, the quadcopter subsystem has achieved the most important goals.

First, the quadcopter is able to fly just like a traditional quadcopter product, and it

supports the four basic movements: roll, yaw, pitch and throttle tested by a Frsky transmitter as

well as the communication base. Also, quadcopter supports special commands, such as take off,

hover and landing. This functionality is tested by the communication base with running arduino

testing code. In terms of receiver accuracy, each receiver channel only has a error rate of 0.05%,

which means according to the tests conducted so far, compared to the expected value for each

channel, the actual received value for each channel only has upto 1 value difference out of the

2000 value range.

61

Gesture Controlled Quadcopter System

Figure 36. Receiver Accuracy Result

Second, the quadcopter subsystem is able to deliver the live video data back to the

communication base, and the video data is able to be displayed on the monitor of the

communication base.

62

Gesture Controlled Quadcopter System

Figure 37. Video Live Streaming Test Result

Moreover, the size of the quadcopter subsystem is a 25.6𝗑25.6𝗑12.8 ,which is muchcm3

smaller than a 25𝗑25𝗑25 space. The weight of the quadcopter is 570.19 gram, which iscm3

much lighter than the proposed 1.5 kg. In addition, it only takes around 45 minutes to fully

charge the quadcopter subsystem, which is much shorter than the proposed 3 houses charging

time. In terms of setting up time, it only takes less than 30 seconds to pair up the quadcopter and

the communication base, which is much shorter than the proposed 5 minutes.

63

Gesture Controlled Quadcopter System

Figure 38. Weight Result for the Quadcopter

However, there is one design goal not achieved for current design and implementation.

Even though communication between the communication base and the quadcopter subsystem is

almost immediate, the communication delay between the gesture controller and the quadcopter is

around 2.2 seconds, which is much longer than the proposed 0.6 second whole system delay.

64

Gesture Controlled Quadcopter System

Due to the broken components and long waiting period for receiving new components at

in end of this project, the maximum speed and the total operation time for this subsystem are not

tested yet.

8. Production Schedule

8.1 Overview
The overall production schedule for the gesture-controlled quadcopter system was to test

the individual components of each subsystem, then if necessary create the software for

controlling the subsystem and then finally integrate the three subsystems together. Below shows

the pert diagram for the whole system.

Figure 39. Pert Diagram for the Overall Production Schedule

8.2 Hand Controller
The phases of the hand controller production schedule were hardware testing and

implementation, software production, and full system integration.

8.2.1 Hardware

The production schedule for the hardware part of the hand controller we wanted to test

each component individually. This was done by using prototyping techniques, such as alligator

clips and single core wires instead of the sewn circuit board. This allowed for the testing of the

buttons, transmitter, flex sensor, and 9-DOF board before creating a circuit that would have to be

65

Gesture Controlled Quadcopter System

resewn if a connection needed to be changed. The buttons worked well with the alligator clips

and were able to control the led which meant that they could trigger an event. The flex sensor

was a bit more complex because it was a voltage divider and setting it up as a prototype was

difficult. The same issues arose when testing the 9-DOF board the pins were close together and

the alligator clips would touch and ground the data pins. The next step is creating the actual sewn

circuit using the components mention before. The buttons had to be set up with an internal

pull-up resistor because when the resistor was sewn into the system it did not read the correct

state of the button. The flex sensor, once the correct second resistor was calculated, worked with

the sewn system was affected by the fact that skin was a conductor and worked seamlessly when

the wires were insulated. The 9-DOF board had it’s difficulty when in prototyping but when

sewn into the circuit it would not take any readings. Though many different sewing

configurations were attempted the system would not work with the conductive thread. The

component needed to have wires soldered into the pin so the data could be read correctly. The

last component is the radio transmitter, this component worked when in the prototype stage and

even more consistently when the system was a sewn circuit.

8.1.2 Software

After the components had been tested and were working with the LilyPad USB Plus the

software that was used to test the components had to be integrated and modified to work

together. The button and flex sensor was simple to integrate after learning the LilyPad did not

have an interrupt pin beside the SDA and SCL. They both used software based interrupts which

are discussed in the software design section of the hand controller. The 9-DOF freedom board

used the LSM9DS1 Library, which as described in the software design has functions that can be

used to read the data in. When integrating it into the system it just needed to be placed in the

correct loop such that it only read data when the pilot wanted it to. The last component

considered was the communication it took us a long time to decide on what was going to be sent

and how it was going to be sent. The RadioHead library can only take information as multiples

of 8 bits, meaning you can send a list with four 8 bit integers as an example. We were originally

going to send the information as strings but we wanted to cut down on the information sent to cut

down on the latency of the system. That's when we decided to send 8-bit unsigned integers, we

66

Gesture Controlled Quadcopter System

spoke of how the data is formatted in the software design. The information was integrated into

the system and the function to send information was set up to send positional data as frequently

as it could if the system was enabled and to send the special commands when triggered. The

software was complete and worked with every component of the system as intended.

8.2.3 Full System

The last part of the system production schedule was to integrate the three subsystems

together. This was done with the hand controller by testing the communication to the base and

making sure that the values computed were the values sent. As the communication base has

described the values were then used and converted into signals that could be sent to the

quadcopter as commands.

8.3 Communication Base
The work required by the communication base is a bit fragmented as the base has

working pieces with both two other parts. The different components and task also furthered the

fragmentation. The scheduling is rather simple: layout the infrastructure of a functional

communication from hand to base to quadcopter first, help the other two parts when needed, and

develop the user intention interpretation algorithm at the end.

Figure 40. Pert chart for communication base

67

Gesture Controlled Quadcopter System

8.4 Quadcopter
Before week 6, the work progress of the quadcopter subsystem were mainly towards two

goals: control of motors from the flight controller, and receiving correct control signals form the

communication base. On week 6, the two control paths were assembled into one, and the main

focus shifted to how to control the quadcopter from the communication base. On week 9, due to

the unexpected accident with the radio receiver of the quadcopter, the control of the quadcopter

from the gesture controller could not be implemented, and the focus of the work shifted to tests

for individual implemented features and functionalities of this subsystem. The details of the

progress of each week is shown in the picture below.

Figure 41. Precedence Diagram for the Quadcopter Subsystem

9. Cost Analysis
The total cost of the quadcopter was around $730, $437 was covered by the SRG funding

we received and the rest was covered by department funds. A full list of the components and the

amount of each one bought can be seen below in the table. The amount is greater than anticipated

68

Gesture Controlled Quadcopter System

this was because a few more expensive components were accidentally burnt out or faulty and

needed replacement. Quadcopters can run from $10 to over $1,000 so a professional quadcopter

being in the $400 to $500 range isn’t unreasonable. Though for application for police force

using these systems it might be more expensive than expected.

Part of the
System Name of Component Vendor

Number
Ordered

Cost
Including
Shipping

Total Spent on
Part

Hand Controller Lilypad USB Plus Sparkfun 1 $28.45 $28.45

Hand Controller Adafruit LSM9DS1 9-DOF Board Adafruit 1 $22.70 $22.70

Hand Controller Flex Sensor Sparkfun 1 $10.44 $10.44

Hand Controller Sewable Lilypad Button x 2 Amazon 1 $6.39 $6.39

Hand Controller Conductive Thread x 3 Sparkfun 1 $11.34 $11.34

Hand Controller Coin Cell Battery Holder Amazon 1 $6.89 $6.89

Hand Controller Coin Cell Batteries x 5 Amazon 1 $4.95 $4.95

Hand Controller
Base

433Mhz RF Transmitter and Receiver
Module Amazon 1 $10.55 $10.55

Quadcopter Foxeer Falkor FPV Camera getFPV 1 $39.90 $39.90

Quadcopter FPV Transmitter Amazon 3 $19.99 $59.97

Quadcopter Frame: Martian II Amazon 1 $26.99 $26.99

Quadcopter Flight Controller: Kakute F4 V2 AIO FC
Google
Express 1 $40.99 $40.99

Quadcopter Motors: Racerstar x 4 Banggood 1 $42 $42

Quadcopter Racerstar 30A V2 x 4 banggood 1 $50.35 $50.35

Quadcopter Propeller: DALPROP T5045C Cyclone banggood 3 $3 $9

Quadcopter
Battery: XILO 1500mAh 4s 100c Lipo
Batter getFPV 1 $22.99 $22.99

Quadcopter Battery Charger getFPV 1 $12.99 $12.99

Quadcopter
Signal Converter Module
SBUS-PPM-PWM (S2PW) hobbyking 2 $10.42 $20.84

Base
Elegoo EL-CB-001 UNO R3 Board
ATmega328P ATMEGA16U2 Amazon 1 $10.86 $10.86

Base
FrSky DHT 8ch DIY Telemetry Compatible
Transmitter Module hobbyking 2 $23 $46

Base
RC FPV Monitor 7 Inch 1024x600 LCD
Display Video Screen HD Monitor Amazon 1 $49.99 $49.99

69

https://www.sparkfun.com/products/14631
https://www.adafruit.com/product/3387
https://www.sparkfun.com/products/10264
https://www.amazon.com/Lilypad-Arduino-Button-Board-Momentary/dp/B01GBOS910/ref=sr_1_1?ie=UTF8&qid=1541872423&sr=8-1&keywords=lilypad+button
https://www.sparkfun.com/products/10867
https://www.amazon.com/LilyPad-Coin-Battery-Holder-CR2032/dp/B01BYGAY90
https://www.amazon.com/Energizer-2032-Battery-CR2032-Lithium/dp/B0042A9UXC/ref=sr_1_3?s=electronics&ie=UTF8&qid=1540864257&sr=1-3&keywords=CR2032
https://www.amazon.com/UCEC-XY-MK-5V-Transmitter-Receiver-Raspberry/dp/B017AYH5G0/ref=sr_1_6?ie=UTF8&qid=1541872358&sr=8-6&keywords=433Mhz+RF+Transmitter+and+Receiver+Module
https://www.getfpv.com/foxeer-falkor-1200tvl-1-8mm-fpv-camera-limited-edition-white.html?cmid=eHZ3Y2tBWGYrQWM9&afid=M1RXSkVIZ2tWV1E9&ats=UWtYMXVzNm5Tb1U9
https://www.amazon.com/Transmitter-EACHINE-VTX03-Switchable-Transmission/dp/B075FQ96QY/ref=sr_1_1?ie=UTF8&qid=1540865329&sr=8-1&keywords=eachine+vtx03
https://www.amazon.com/Martain-Drone-Racing-Carbon-Quadcopter/dp/B07B4SCBLM/ref=sr_1_cc_2?s=aps&ie=UTF8&qid=1541689443&sr=1-2-catcorr&keywords=Martian+II
https://express.google.com/u/0/product/9761532012624299010_3816767242162098011_100003215?utm_source=google_shopping&utm_medium=tu_cu&utm_content=eid-lsjeuxoeqt,eid-dqdncagwvd,eid-lcjybysgxm>im=CP2O7c73lZHGBhC1k-XVl4b1yUQYsOrFEyIDVVNEKKDh4t8FMI_b1y8&utm_campaign=100003215&gclid=EAIaIQobChMI34iGg4nF3gIViVuGCh3Yjg0LEAQYASABEgIi6fD_BwE
https://express.google.com/u/0/product/9761532012624299010_3816767242162098011_100003215?utm_source=google_shopping&utm_medium=tu_cu&utm_content=eid-lsjeuxoeqt,eid-dqdncagwvd,eid-lcjybysgxm>im=CP2O7c73lZHGBhC1k-XVl4b1yUQYsOrFEyIDVVNEKKDh4t8FMI_b1y8&utm_campaign=100003215&gclid=EAIaIQobChMI34iGg4nF3gIViVuGCh3Yjg0LEAQYASABEgIi6fD_BwE
https://www.banggood.com/Racerstar-2207-BR2207S-Fire-Edition-1600KV-2200KV-2500KV-3-6S-Brushless-Motor-For-RC-Drone-Frame-Kit-p-1280475.html?rmmds=buy&ID=518683&cur_warehouse=CN
https://www.banggood.com/Racerstar-RS30A-V2-30A-Blheli_S-ESC-OPTO-2-4S-Support-Oneshot42-Multishot-for-FPV-Racer-p-1072073.html?cur_warehouse=CN
https://www.banggood.com/2-Pair-DALPROP-T5045C-5-Inch-3-Blade-Propeller-Clover-Prop-Black-Red-Orange-Green-p-1110019.html?rmmds=search&ID=515406&cur_warehouse=USA
https://www.getfpv.com/xilo-1500mah-4s-100c-lipo-battery.html
https://www.getfpv.com/ev-peak-e3-falcore-edition-35w-3a-lipo-battery-balance-charger.html
https://hobbyking.com/en_us/signal-converter-module-sbus-ppm-pwm-s2pw.html
https://hobbyking.com/en_us/signal-converter-module-sbus-ppm-pwm-s2pw.html
https://www.amazon.com/Elegoo-EL-CB-001-ATmega328P-ATMEGA16U2-Arduino/dp/B01EWOE0UU/ref=sr_1_6?ie=UTF8&qid=1540865684&sr=8-6&keywords=arduino+uno
https://hobbyking.com/en_us/frsky-dht-8ch-diy-telemetry-compatible-transmitter-module.html
https://hobbyking.com/en_us/frsky-dht-8ch-diy-telemetry-compatible-transmitter-module.html
https://www.amazon.com/Monitor-1024x600-Display-Screen-Connector/dp/B07568FY43

Gesture Controlled Quadcopter System

Quadcopter
FrSky D8R-II PLUS 2.4GHz 8CH Receiver
with Telemetery hobbyking 2 $27.20 $54.40

Quadcopter pwm to sbus translator ebay 1 $20.75 $20.75

Base
5.8G 32CH FPV Wireless Av Receiver W/
Led Channel Display Rc832 for RX Amazon 1 $21.45 $21.45

Base

GOLDBAT 4S 1500mAh 100C 14.8V Lipo
Battery Pack with XT60 Plug for RC Car
Boat Truck Heli Airplane UAV Drone FPV
Racing Amazon 1 $19.99 $19.99

Quadcopter

Padarsey 2 Pair XT60 Connector
Female/Male W/Housing 10CM Silicon
Wire 14AWG Amazon 1 $6.99 $6.99

Base FrSky D8R-II PLUS Amazon 1 $36.50 $36.50

Base Frsky DHT DIY transmitter module Amazon 1 $36.08 $36.08

Total Spent $730.84

SRG Funding $437.00

Department Funding $293.84

Table 9. Cost List for the System

10. User’s Manual
Before using the quadcopter, connect the flight controller to a computer with Betaflight

Configurator and calibrate the accelerometer on the quadcopter.

If it is the first time the user uses the system, they need to bind the transmitter on the

communication base to the receiver on the quadcopter. The user need to follow the given

instructions:

1. Power off other the drone and the communication base

2. Turn on the communication base while holding the transmitter’s binding button, the led

light of the transmitter will start flashing and beeping.

3. Turn on the quadcopter while holding the binding button of the receiver, both the red and

green led light on the receiver will turn on to indicate a successful binding.

4. Turn off both devices. Turn on the two devices. Now the red light on the receiver will

emit a constant red light to show a constant data flow

70

https://hobbyking.com/en_us/frsky-d8r-ii-plus-2-4ghz-8ch-receiver-with-telemetery.html
https://hobbyking.com/en_us/frsky-d8r-ii-plus-2-4ghz-8ch-receiver-with-telemetery.html
https://www.ebay.com/itm/Signal-Converter-Module-SBUS-PPM-PWM-S2PW-/291784137911
https://www.amazon.com/Wireless-Receiver-Channel-Display-Rc832/dp/B012AD864G/ref=asc_df_B012AD864G/?tag=hyprod-20&linkCode=df0&hvadid=198079365003&hvpos=1o1&hvnetw=g&hvrand=14660311388677426143&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9004745&hvtargid=pla-349177525642&psc=1#customerReviews
https://www.amazon.com/GOLDBAT-1500mAh-Battery-Airplane-Racing/dp/B07GDX15XT/ref=asc_df_B07GDX15XT/?tag=hyprod-20&linkCode=df0&hvadid=241976201237&hvpos=1o6&hvnetw=g&hvrand=10435189937059457671&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9004745&hvtargid=pla-555515109807&th=1
https://www.amazon.com/Padarsey-Connector-Female-Housing-Silicon/dp/B07BF8154S/ref=pd_day0_hl_23_1?_encoding=UTF8&pd_rd_i=B07BF8154S&pd_rd_r=d0f6462f-1548-11e9-ba73-3f18b729ac20&pd_rd_w=zU9ZR&pd_rd_wg=mbaNY&pf_rd_p=ad07871c-e646-4161-82c7-5ed0d4c85b07&pf_rd_r=QNE26X6JZ64T6PYZ2T3D&refRID=QNE26X6JZ64T6PYZ2T3D&th=1
https://www.amazon.com/FrSky-D8R-II-Plus-Receiver-Telemetry/dp/B00K5GTBM2
https://www.amazon.com/FrSky-Telemetry-Compatible-Transmitter-Module/dp/B014IYRWXQ

Gesture Controlled Quadcopter System

Once the binding is done, the transmitter and the receiver are paired up until the next

binding process, which follows the same instruction as above.

To turn on the hand controller you simply use the switch on the LilyPad USB Plus. There

is no pairing necessary between the communication base and the hand controller. Below is a

table of the instructions and the figure for gesture controls.

Instruction Action

Take Off System is landed bend finger with flex sensor
greater than 90 degrees

Stop Press the button closest to the snap on the
palm on your hand

Hover Press the button furthest from the snap

Increase Throttle While enabled (light is green) bend the flex
sensor greater than 90 degrees

Decrease Throttle While enabled (light is green) bend the flex
sensor greater than 90 degrees and flip the
hand so the LilyPad is parallel to the floor

Table 10. Instructions for using the Special Commands

Figure 42. Hand Gestures Instruction for Aura

11. Discussion & Conclusions
Current UAV technology allows quadcopters to become helpful tools for many scenarios.

For instance, a quadcopter with a camera could be used by the police to survey the inside of a

building to avoid a dangerous situation. However, features of the joystick-button controller such

as requiring long training time and demanding both hands for operations are preventing

71

Gesture Controlled Quadcopter System

quadcopters to be applied to those scenarios. Thus we designed and implemented a

gesture-controlled quadcopter to solve this problem.

The gesture-controlled quadcopter system is separated into three subsystems: the hand

controller, communication base and the quadcopter. The hand controller is a glove-like

controller that sends the positioning information to the communication base. The communication

base is designed to figure out the current gesture based on the information from the hand

controller, and send corresponding signals to the quadcopter . The quadcopter is designed to fly

according to the instructions of the communication base and send back live video content.

As results for the overall system, the communication base was able to successfully

interpret most of desired gestures from the hand controller. It could also control the quadcopter

to perform basic movements as well as special commands such as emergency stop. However,

because the receiver on the quadcopter broke on week 8, the project implementation stopped

here, and we were not able to test the functionality of controlling the quadcopter by the hand

controller.

As results for the hand controller, it was able to communicate with the base and send

positional data of the hand along with special commands we designed. It is lightweight, has a

setup time under 5 minutes, and has an operational time of over an hour before it needs to be

charged. Though it does not meet the system’s goal of having a latency under 2.2 seconds

recommendations for fixing that can be seen in the next subsection. For the communication base

. For the quadcopter, it met the most important goals: be able to conduct basic quadcopter

movements, and be able to conduct special command movements. However, there are some

goals we had not tested yet such operation time and maximum speed due to the broken radio

receiver.

At the end of this project, we concluded that most of the latency exists in this system

comes from the communication between the hand controller and the communication base

because of the low-frequency radio communication between them. Although the responsiveness

of the flight controller was a important standard for choosing it, the delay in the quadcopter itself

becomes ignorable. Compared to quadcopter which could only do the basic four movements of

quadcopters in Yucan Liu’s single-handed gesture controller project[9], the quadcopter in our

72

Gesture Controlled Quadcopter System

project is more flexible since it supports customized combination of movements. Those

customized movements would contribute hugly to ease of flying a quadcopter. Indeed, we

believe that the flexibility comes from the open-source flight controller.

11.1 Recommendations
For the overall system, when it is fully functioning in the future, people who are working

on it should ask target customers to operate this system and give feedbacks about its different

aspects such as ease of usage and responsiveness of the whole system. In this way, this project

would have a bigger chance to become an actual helpful product in the future. There are also

recommendations for each subsystems, and they are discussed in the following subsections.

11.1.1 Hand Controller

One of the greatest problems that the hand controller causes are latency. This is a

problem because if you make a gesture or signal a special command you want the system to react

as close to instantaneously as possible. We researched that a 0.6-second latency would be short

enough that a human would not recognize there being any latency. The 2.2-second latency, we

believe, comes from the radio communication we use. A recommendation would be to switch to

the XBee communication system. This was originally something we considered as an option but

we believed the system would not be compatible with the LilyPad system and add an

unnecessary complication to the system. The XBee modules are designed to be low latency

communication which would solve the problem with the current component we have. As for

being incompatible with our system, we found LilyPad created an adaptor module specifically

designed for XBee components.

The other part of the subsystem that can contribute to the latency that is produced in the

system is the fact that the interrupts had to be software based interrupts. This was because even

though the LilyPad USB uses an ATMega32 chip it uses a limited number of the pins it could.

When designing the system a misreading of the schematic lead us to believe that the system

would have the ability to set up hardware-based interrupts. Upon further examination, the only

pins that allow for hardware-based interrupts are the SDA and SCL pins which are needed for the

9-DOF board. If this was realized earlier we would have used the LilyPad Arduino 328 Main

73

Gesture Controlled Quadcopter System

Board which has the full pinout of the ATmega328 chip. This full pinout would allow for the

software based interrupts to be changed to hardware-based interrupts that would cut down the

latency of the system.

11.1.2 Communication Base

There are a few problems that the base needs to improve. First is the delay and occasional

data missing for the data transmission between hand controller and communication base as

mentioned in the previous section. Although the exact impact of the delay on the system in

general is still unknown, it is a drawback we want to avoid as much as possible.

The second problem is the noise in the gyroscope. We think the wrong reading is due to

the poor calibration of the device instead of its accuracy. Thus an effective way to calibrate the

gyroscope is needed. Although our current algorithm still function normally without gyroscope,

the addition of it can definitely open a lot more option to the gesture.

And this leads us to the last problem, gesture design. Sadly currently our gesture setting

only support three out of four basic movements. The gesture to change yaw is not implemented

at all. In the same time, we can not change different kind of movement in the same time. We can

change roll and pitch together, but the control for throttle is seperate. In the same time, we need

to be aware that designing the gestures are harder than it seems at first. It need to map four

degree of freedom to the gesture on a single hand, while considering about the intuitiveness for

user, the possible gesture that be detected by the sensor and not too complicated for the base to

process to cause delay.

11.1.3 Quadcopter

Although the quadcopter met the major goals of this system, it could be improved in a

couple aspects. First in order to set the maximum speed for the quadcopter subsystem, the ESCs

can be configured to limit the top speed of the quadcopter using a racerstar ESC configurator.

Also, the betaflight flight controller is an open-sourced processor, which grants users a large

freedom of customization of new features. In the future, researches on this subsystem should

research deeper into what other features they can develop for it with this process. Last, in order

74

Gesture Controlled Quadcopter System

to develop more advanced special command such as auto landing, more sensors could be

installed to this subsystem.

11.2 Lessons Learned
Since this project was a group project it included the most difficult aspect of projects,

people. Working a group of three leads to difficulty with communication, work separation and

differentiating opinions. One of the greatest lessons learned was the ability to communicate and

compromise on aspects of the design and implementation. Having three minds allows for more

brain power solving the problem at hand but it can also lead to three different ways of

approaching the problem that may not be compatible. This project has made us sit down and

explain our processes to see where we could collaborate our ideas.

 Another lesson that this team had to learn was the importance of buying extra components.

When creating large projects such as this with components we have never worked with before it

is important to prepare for the inevitable breaking of components. This means buying extras of

components that are difficult to find or sourcing from a shop that ships products quickly. Since

we had several components that were bought from foreign suppliers getting replacements would

halt the building process for weeks.

75

Gesture Controlled Quadcopter System

12. References

[1]“Adafruit LSM9DS1 Accelerometer Gyro Magnetometer 9-DOF Breakout.” Memory
Architectures | Memories of an Arduino | Adafruit Learning System, Adafruit,
learn.adafruit.com/adafruit-lsm9ds1-accelerometer-plus-gyro-plus-magnetometer-9-dof-breakout
/arduino-code.
[2] “AURA UNBOXED.” Aura, Cide Interactive SLU , 2017, aura-drone.com/us/.

[3] “Bluefruit LE - Bluetooth Low Energy (BLE 4.0) - nRF8001 Breakout.” Adafruit Industries

Blog RSS, 17 July 2014,

www.adafruit.com/product/1697?gclid=EAIaIQobChMIqbmpwPzg3gIVySSGCh2BpAW2EAQ

YASABEgJnNPD_BwE.

[4]“Choosing a LilyPad Arduino for Your Project.” Sparkfun, SparkFun Electronics,

learn.sparkfun.com/tutorials/choosing-a-lilypad-arduino-for-your-project#resources-and-going-f

urther.

[5]“Drone Services: Industrial - Commercial - Public Safety.” In Sky Aerial LLC,

inskyaerialservices.com/.

[6] “FACTS & FIGURES Causes of Law Enforcement Deaths.” Bertillon System of Criminal

Identification, National Law Enforcement Officers Memorial Fund, 15 Mar. 2018,

www.nleomf.org/facts/officer-fatalities-data/causes.html.

[7]“Indoor Drones Open Up New Business Opportunities.” Unmanned Aerial, Zackin

Publications Inc, 23 Apr. 2018,

unmanned-aerial.com/indoor-drones-open-up-new-business-opportunities.

[8]LII Staff. “Fourth Amendment.” LII / Legal Information Institute, Legal Information Institute,

10 Oct. 2017, www.law.cornell.edu/constitution/fourth_amendment.

[9] Liu, Yucan. SINGLE-HAND GESTURE CONTROLLER FOR QUADCOPTERS. Bachelor's

thesis, Union College, 2017. 2-65.

[10] Margaritoff, Marco. “Drones in Law Enforcement: How, Where and When They're Used.”

The Drive, Time Inc, 13 Oct. 2017,

www.thedrive.com/aerial/15092/drones-in-law-enforcement-how-where-and-when-theyre-used.

76

http://www.adafruit.com/product/1697?gclid=EAIaIQobChMIqbmpwPzg3gIVySSGCh2BpAW2EAQYASABEgJnNPD_BwE
http://www.adafruit.com/product/1697?gclid=EAIaIQobChMIqbmpwPzg3gIVySSGCh2BpAW2EAQYASABEgJnNPD_BwE
http://www.nleomf.org/facts/officer-fatalities-data/causes.html
http://www.thedrive.com/aerial/15092/drones-in-law-enforcement-how-where-and-when-theyre-used

Gesture Controlled Quadcopter System

[11]“Naza-M V2 Quick Start Guide V 1.28 .” Http://Dl.djicdn.com, DJI, 6 Dec. 2015,

dl.djicdn.com/downloads/nazam-v2/en/NAZA-M_Quick_Start_Guide_v1.28_en.pdf.

[12] “Pixhawk Mini.” Basic Concepts · PX4 User Guide, PX4 Dev Team, 19 Nov. 2018,

docs.px4.io/en/flight_controller/pixhawk_mini.html.

[13]Schreck, Ben, and Lee Gross. “Gesture Controlled UAV Proposal.” Web.mit.edu, 29 Oct.

2014, web.mit.edu/6.111/www/f2014/projects/leegross_Project_Proposal.pdf.

[14]Technology, Lorex. “Camera Resolution and TV Lines (TVL).” Lorex Site - CA, Lorex

Technology Inc.,

www.lorextechnology.com/self-serve/camera-resolution-and-tv-lines-tvl-/R-sc2900040.

[15] Wertz, Sally. “Drone Laws.” Drone and Quadcopter, Drone and Quadcopter, 11 Aug. 2016,

droneandquadcopter.com/drone-laws/.

[16]Zhang, Dong, et al. “ Dual-Hand Gesture Controlled Quadcopter Robot.” IEE Xplore Digital

Library, 26 July 2017, ieeexplore.ieee.org/document/8028439/authors#authors.

[17] “#11031 Kakute F4 AIO (V2).” Http://Www.holybro.com, Holybro,

www.holybro.com/manual/HolybroKakuteF4AIOV2Manual_v1.0.pdf.

[18]“2010 Census Urban and Rural Classification and Urban Area Criteria.” Census Bureau

QuickFacts, United State Census Bureau, 1 Sept. 2012,

www.census.gov/geo/reference/ua/urban-rural-2010.html.

[19] Github - Betaflight, https://github.com/betaflight/betaflight/wiki, 5 Dec. 2019.

77

http://www.census.gov/geo/reference/ua/urban-rural-2010.html
https://github.com/betaflight/betaflight/wiki,5

Gesture Controlled Quadcopter System

13. Appendices

Appendix 1 - Complete Parts List with Prices

Part of the System Name of Component Vendor
Cost Including
Shipping

Hand Controller Lilypad USB Plus Sparkfun $28.45

Hand Controller

Adafruit LSM9DS1
Accelerometer + Gyro +
Magnetometer 9-DOF Breakout
Board Adafruit $22.70

Hand Controller Flex Sensor 2.2" Sparkfun $10.44

Hand Controller Sewable Lilypad Button x 2 Amazon $6.39

Hand Controller Conductive Thread x 3 Sparkfun $11.34

Hand Controller Coin Cell Battery Holder Amazon $6.89

Hand Controller Coin Cell Batteries x 5 Amazon $4.95

Hand Controller &
Communication Base

433Mhz RF Transmitter and
Receiver Module Amazon $10.55

Quadcopter

Foxeer Falkor 1200TVL 1.8mm
FPV Camera - Limited Edition
White getFPV $39.90

Quadcopter

FPV Transmitter, EACHINE
VTX03 Super Mini FPV
Transmitter 5.8G 72CH
0/25mW/50mw/200mW
Switchable Transmission Amazon $19.99

Quadcopter Frame: Martian II Amazon $26.99

Quadcopter
Flight Controller: Kakute F4 V2
AIO FC Google Express $40.99

Quadcopter Motors: Racerstar 2207 * 4 Bang Good $42.28

Quadcopter Racerstar 30A V2 * 4 banggood $50.35

Quadcopter
Propeller: DALPROP T5045C
Cyclone banggood $3

Quadcopter
Battery: XILO 1500mAh 4s 100c
Lipo Batter getFPV $22.99

Quadcopter

Battery Charger: EV-Peak E3
Falcore Edition 35W 3A LiPo
Battery Balance Charger getFPV $12.99

78

https://www.sparkfun.com/products/14631
https://www.adafruit.com/product/3387
https://www.sparkfun.com/products/10264
https://www.amazon.com/Lilypad-Arduino-Button-Board-Momentary/dp/B01GBOS910/ref=sr_1_1?ie=UTF8&qid=1541872423&sr=8-1&keywords=lilypad+button
https://www.sparkfun.com/products/10867
https://www.amazon.com/LilyPad-Coin-Battery-Holder-CR2032/dp/B01BYGAY90
https://www.amazon.com/Energizer-2032-Battery-CR2032-Lithium/dp/B0042A9UXC/ref=sr_1_3?s=electronics&ie=UTF8&qid=1540864257&sr=1-3&keywords=CR2032
https://www.amazon.com/UCEC-XY-MK-5V-Transmitter-Receiver-Raspberry/dp/B017AYH5G0/ref=sr_1_6?ie=UTF8&qid=1541872358&sr=8-6&keywords=433Mhz+RF+Transmitter+and+Receiver+Module
https://www.getfpv.com/foxeer-falkor-1200tvl-1-8mm-fpv-camera-limited-edition-white.html?cmid=eHZ3Y2tBWGYrQWM9&afid=M1RXSkVIZ2tWV1E9&ats=UWtYMXVzNm5Tb1U9
https://www.amazon.com/Transmitter-EACHINE-VTX03-Switchable-Transmission/dp/B075FQ96QY/ref=sr_1_1?ie=UTF8&qid=1540865329&sr=8-1&keywords=eachine+vtx03
https://www.amazon.com/Martain-Drone-Racing-Carbon-Quadcopter/dp/B07B4SCBLM/ref=sr_1_cc_2?s=aps&ie=UTF8&qid=1541689443&sr=1-2-catcorr&keywords=Martian+II
https://express.google.com/u/0/product/9761532012624299010_3816767242162098011_100003215?utm_source=google_shopping&utm_medium=tu_cu&utm_content=eid-lsjeuxoeqt,eid-dqdncagwvd,eid-lcjybysgxm>im=CP2O7c73lZHGBhC1k-XVl4b1yUQYsOrFEyIDVVNEKKDh4t8FMI_b1y8&utm_campaign=100003215&gclid=EAIaIQobChMI34iGg4nF3gIViVuGCh3Yjg0LEAQYASABEgIi6fD_BwE
https://www.banggood.com/Racerstar-2207-BR2207S-Fire-Edition-1600KV-2200KV-2500KV-3-6S-Brushless-Motor-For-RC-Drone-Frame-Kit-p-1280475.html?rmmds=buy&ID=518683&cur_warehouse=CN
https://www.banggood.com/Racerstar-RS30A-V2-30A-Blheli_S-ESC-OPTO-2-4S-Support-Oneshot42-Multishot-for-FPV-Racer-p-1072073.html?cur_warehouse=CN
https://www.banggood.com/2-Pair-DALPROP-T5045C-5-Inch-3-Blade-Propeller-Clover-Prop-Black-Red-Orange-Green-p-1110019.html?rmmds=search&ID=515406&cur_warehouse=USA
https://www.getfpv.com/xilo-1500mah-4s-100c-lipo-battery.html
https://www.getfpv.com/ev-peak-e3-falcore-edition-35w-3a-lipo-battery-balance-charger.html

Gesture Controlled Quadcopter System

Quadcopter
Signal Converter Module
SBUS-PPM-PWM (S2PW) hobbyking $10.42

Base

Elegoo EL-CB-001 UNO R3
Board ATmega328P
ATMEGA16U2 with USB Cable
for Arduino Amazon $10.86

Quadcopter

Padarsey 2 Pair XT60 Connector
Female/Male W/Housing 10CM
Silicon Wire 14AWG Amazon $6.99

Base
FrSky DHT 8ch DIY Telemetry
Compatible Transmitter Module hobbyking $23

Base

RC FPV Monitor 7 Inch
1024x600 LCD Display Video
Screen HD Monitor NO Blue
Screen with Hood Sun Shield and
XT60 to Deans Connector Amazon $49.99

Base
FrSky D8R-II PLUS 2.4GHz
8CH Receiver with Telemetery hobbyking $27.20

Appendix 2 - Full Hand Control Code
#include <RH_ASK.h>
#ifdef RH_HAVE_HARDWARE_SPI
#include <SPI.h>
#endif
#include <Wire.h>
#include <SPI.h>
#include <Adafruit_LSM9DS1.h>
#include <Adafruit_Sensor.h>
//9 DOF Sensor
Adafruit_LSM9DS1 lsm = Adafruit_LSM9DS1();

#define LSM9DS1_SCK 10
#define LSM9DS1_MISO 12
#define LSM9DS1_MOSI 11
#define LSM9DS1_XGCS 6
#define LSM9DS1_MCS 5

void setupSensor()
{
 // 1.) Set the accelerometer range

79

https://hobbyking.com/en_us/signal-converter-module-sbus-ppm-pwm-s2pw.html
https://www.amazon.com/Elegoo-EL-CB-001-ATmega328P-ATMEGA16U2-Arduino/dp/B01EWOE0UU/ref=sr_1_6?ie=UTF8&qid=1540865684&sr=8-6&keywords=arduino+uno
https://www.amazon.com/Padarsey-Connector-Female-Housing-Silicon/dp/B07BF8154S/ref=pd_day0_hl_23_1?_encoding=UTF8&pd_rd_i=B07BF8154S&pd_rd_r=d0f6462f-1548-11e9-ba73-3f18b729ac20&pd_rd_w=zU9ZR&pd_rd_wg=mbaNY&pf_rd_p=ad07871c-e646-4161-82c7-5ed0d4c85b07&pf_rd_r=QNE26X6JZ64T6PYZ2T3D&refRID=QNE26X6JZ64T6PYZ2T3D&th=1
https://hobbyking.com/en_us/frsky-dht-8ch-diy-telemetry-compatible-transmitter-module.html
https://www.amazon.com/Monitor-1024x600-Display-Screen-Connector/dp/B07568FY43
https://hobbyking.com/en_us/frsky-d8r-ii-plus-2-4ghz-8ch-receiver-with-telemetery.html

Gesture Controlled Quadcopter System

 lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_2G);
 // 2.) Set the magnetometer sensitivity
 lsm.setupMag(lsm.LSM9DS1_MAGGAIN_4GAUSS);
 // 3.) Setup the gyroscope
 lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_245DPS);
}
 int SpecialMessage = 50;
 float cgx = 0.0;
 float cgy = 0.0;
 float cgz =0.0;
 float cax = 0.0;
 float cay =0.0;
 float caz = 0.0;
 uint16_t cgxi = 0;
 uint16_t cgyi = 0;
 uint16_t cgzi = 0;
 uint16_t caxi = 0;
 uint16_t cayi = 0;
 uint16_t cazi = 0;

//Transmitter
RH_ASK driver(2000, 8, 6, 0); //Recieve, Transmit, Push to talk
uint8_t msg[10] = {SpecialMessage,caxi,cayi,cazi,(cgxi>>8),cgxi,(cgyi>>8),cgyi,(cgzi>>8),cgzi};

//FlexSensor
const int FLEX_PIN = A9; // Pin connected to voltage divider output
const float VCC = 3.25; // Measured voltage of Ardunio 3.3V line
const float R_DIV = 35700.0; // Measured resistance of 36k resistor
const float STRAIGHT_RESISTANCE = 23683.90; // resistance when straight
const float BEND_RESISTANCE = 46185.88; // resistance at 90 deg

//LED
int RGB_red = 12;
int RGB_green = 13;
int RGB_blue = 14;
int Stop = 7;
int Hover = 8;
int enable = 0;

int HoverState =0;
int StopState =0;

void setup() {

80

Gesture Controlled Quadcopter System

 //Transmitter
 driver.init();

 Serial.begin(115200);
 //9 DOF Sensor
 lsm.begin();
 setupSensor();

 //Buttons
 pinMode(Stop, INPUT_PULLUP);
 pinMode(Hover, INPUT_PULLUP);
 //FlexSensor
 pinMode(FLEX_PIN, INPUT);
 //LED
 pinMode(RGB_red, OUTPUT);
 pinMode(RGB_green, OUTPUT);
 pinMode(RGB_blue, OUTPUT);
}

 void hoverInterrupt(){
 if(HoverState == 0 && StopState ==0&&enable ==1){
 msg[0] = 85;
 digitalWrite(RGB_green, LOW);
 enable = 0;
 HoverState = 1;
 for(int i=0; i<3; i++){
 driver.send(msg, 10);
 driver.waitPacketSent();
 delay(200);
 }
 }
 else if(HoverState == 1 && StopState ==0){
 digitalWrite(RGB_green, HIGH);
 msg[0] = 0;
 enable = 1;
 HoverState = 0;
 }

}

void stopInterrupt(){

81

Gesture Controlled Quadcopter System

 msg[0] = 170;
 digitalWrite(RGB_green, LOW);
 enable = 0;
 StopState = 1;
 HoverState = 0;

 for(int i=0; i<3; i++){
 driver.send(msg, 10);
 driver.waitPacketSent();
 delay(200);
 }
 msg[0] = 50;

}

void loop() {
 if (digitalRead(Stop)== LOW){
 stopInterrupt();
 }
 if (digitalRead(Hover)== LOW){
 hoverInterrupt();
 }

 if(enable == 0 && HoverState ==0){
 int flexADC = analogRead(FLEX_PIN);
 float flexV = flexADC * VCC / 1023.0;
 float flexR = R_DIV * (VCC / flexV - 1.0);
 if(flexR> BEND_RESISTANCE){
 msg[0] = 255;
 enable = 1;
 StopState = 0;
 digitalWrite(RGB_green, HIGH);
 }
 }
 if(enable ==1){
 digitalWrite(RGB_green, HIGH);
 }
 driver.send(msg, 10);
 driver.waitPacketSent();
 delay(200);

 while(enable ==1){
 if (digitalRead(Stop)== LOW){

82

Gesture Controlled Quadcopter System

 stopInterrupt();
 break;
 }
 if (digitalRead(Hover)== LOW){
 hoverInterrupt();
 break;
 }
 lsm.read();

 sensors_event_t a, m, g, temp;

 lsm.getEvent(&a, &m, &g, &temp);

 int SpecialMessage = 0;
 float cgx = g.gyro.x*(32768/286.8) + 32768;
 float cgy = g.gyro.y*(32768/286.8) + 32768;
 float cgz = g.gyro.z*(32768/286.8) + 32768;
 if (digitalRead(Stop)== LOW){
 stopInterrupt();
 break;
 }

 float cax = a.acceleration.x*(128/19.6) + 128;
 float cay = a.acceleration.y*(128/19.6) + 128;
 float caz = a.acceleration.z*(128/19.6) + 128;
 if (digitalRead(Stop)== LOW){
 stopInterrupt();
 break;
 }
 if (digitalRead(Hover)== LOW){
 hoverInterrupt();
 break;
 }

 uint16_t cgxi = (uint16_t) cgx;
 uint16_t cgyi = (uint16_t) cgy;
 uint16_t cgzi = (uint16_t) cgz;

 if (digitalRead(Stop)== LOW){
 stopInterrupt();
 break;
 }
 if (digitalRead(Hover)== LOW){

83

Gesture Controlled Quadcopter System

 hoverInterrupt();
 break;
 }
 uint16_t caxi = (uint16_t) cax;
 uint16_t cayi = (uint16_t) cay;
 uint16_t cazi = (uint16_t) caz;
 if (digitalRead(Stop)== LOW){
 stopInterrupt();
 break;

 }
 if (digitalRead(Hover)== LOW){
 hoverInterrupt();
 break;
 }
 msg[0] = 0;
 msg[1] = caxi;
 msg[2] = cayi;
 msg[3] = cazi;
 msg[4] = (cgxi>>8);
 msg[5] = cgxi;
 msg[6] = (cgyi>>8);
 msg[7] = cgyi;
 msg[8] = (cgzi>>8);
 msg[9] = cgzi;
 int flexADC = analogRead(FLEX_PIN);
 float flexV = flexADC * VCC / 1023.0;
 float flexR = R_DIV * (VCC / flexV - 1.0);
 if(flexR> BEND_RESISTANCE){
 msg[0] = 1;
 }
 if (digitalRead(Stop)== LOW){
 stopInterrupt();
 break;
 }
 if (digitalRead(Hover)== LOW){
 hoverInterrupt();
 break;
 }
 driver.send(msg, 10);
 driver.waitPacketSent();
 if (digitalRead(Stop)== LOW){
 stopInterrupt();

84

Gesture Controlled Quadcopter System

 break;
 }
 if (digitalRead(Hover)== LOW){
 hoverInterrupt();
 break;
 }

 }

}

Appendix 3 - Testing code for Take off, Hover and Landing with Emergency Stop

// PPM Code from https://code.google.com/archive/p/generate-ppm-signal/
// PPM Config
#define chanel_number 8 //set the number of chanels
#define default_servo_value 1500 //set the default servo value
#define PPM_FrLen 20000 //set the PPM frame length in microseconds (1ms = 1000µs)
#define PPM_PulseLen 300 //set the pulse length
#define onState 1 //set polarity of the pulses: 1 is positive, 0 is negative
#define sigPin 13 //set PPM signal output pin on the arduino
// Serial Config
const byte numChars = 41;
char receivedChars[numChars];
char tempChars[numChars];
int receivedData[chanel_number];
const int buttonPin = 2; // the number of the pushbutton pin
boolean newData = false;
boolean setUp = true;
boolean ifStop = false;
boolean EmergencyStop = false;
// Minimums
int motorMin = 1000;
/*this array holds the servo values for the ppm signal
 change these values in your code (usually servo values move between 1000 and 2000)*/
int ppm[chanel_number];
void setup(){
 // initialize the pushbutton pin as an input:
 pinMode(buttonPin, INPUT);// inputpin for emergency stop

85

Gesture Controlled Quadcopter System

 attachInterrupt(0, pin_ISR, CHANGE);
 Serial.begin(9600);
 //initialize servo middle pwm values
 for(int i=0; i<chanel_number-2; i++){
 ppm[i]= default_servo_value;
 }
 ppm[6] = motorMin;
 ppm[7] = motorMin;
 pinMode(sigPin, OUTPUT);
 digitalWrite(sigPin, !onState); //set the PPM signal pin to the default state (off)
 cli();
 TCCR1A = 0; // set entire TCCR1 register to 0
 TCCR1B = 0;
 OCR1A = 100; // compare match register, change this
 TCCR1B |= (1 << WGM12); // turn on CTC mode
 TCCR1B |= (1 << CS11); // 8 prescaler: 0,5 microseconds at 16mhz
 TIMSK1 |= (1 << OCIE1A); // enable timer compare interrupt
 sei();
}
void loop(){
 Serial.print("Setup Value: ");
 Serial.println(setUp);
 Serial.println("ifStop Value: ");
 Serial.println(ifStop);
 if (setUp){
 ppm[0] = 1478;// analogToRange(A0, 0, 2000);
 ppm[1] = 1478;//analogToRange(A1, 0, 2000);
 ppm[2] = 900;//analogToRange(A2, 0, 2000);throttle value
 ppm[3] = 1478;//analogToRange(A3, 0, 2000);
 ppm[4] = 1000;//analogToRange(A4, 0, 2000);arm mode
 ppm[5] = 1478;//analogToRange(A5, 0, 2000);
 ppm[6] = 1478;//analogToRange(A6, 0, 2000);
 ppm[7] = 1478; //analogToRange(A7, 0, 2000);
 setUp = false;
 delay(3000);
 //ppm[4] = 1500;//analogToRange(A4, 0, 2000);arm mode
 }
 else{
 if (ifStop){
 ppm[4] = 1000;
 while(1){
 }
 }

86

Gesture Controlled Quadcopter System

 else{
 ppm[4] = 1900;
 Serial.println(ppm[4]);
 delay(500);
 for(int i=900;i<1100;i+=10){
 ppm[2] = i;
 delay(1000);
 }
 delay(15000);
 for(int i=1100;i>900;i-=10){
 ppm[2] = i;
 delay(1000);
 }
 ppm[4] = 1000;
 ifStop = true;
 }
 }
}

void pin_ISR() {

 EmergencyStop = true;

}

ISR(TIMER1_COMPA_vect){ //leave this alone
 static boolean state = true;

 TCNT1 = 0;

 if(state) { //start pulse
 digitalWrite(sigPin, onState);
 OCR1A = PPM_PulseLen * 2;
 state = false;
 }
 else{ //end pulse and calculate when to start the next pulse
 static byte cur_chan_numb;
 static unsigned int calc_rest;

 digitalWrite(sigPin, !onState);
 state = true;

 if(cur_chan_numb >= chanel_number){

87

Gesture Controlled Quadcopter System

 cur_chan_numb = 0;
 calc_rest = calc_rest + PPM_PulseLen;//
 OCR1A = (PPM_FrLen - calc_rest) * 2;
 calc_rest = 0;
 }
 else{
 if(EmergencyStop){
 if(cur_chan_numb == 4){
 OCR1A = (1000 - PPM_PulseLen) * 2;
 calc_rest = calc_rest + 1000;
 cur_chan_numb++;
 }
 else{
 OCR1A = (ppm[cur_chan_numb] - PPM_PulseLen) * 2;
 calc_rest = calc_rest + ppm[cur_chan_numb];
 cur_chan_numb++;
 }
 }
 else{
 OCR1A = (ppm[cur_chan_numb] - PPM_PulseLen) * 2;
 calc_rest = calc_rest + ppm[cur_chan_numb];
 cur_chan_numb++;
 }
 }
 }
}
// Serial functions below from http://forum.arduino.cc/index.php?topic=396450
void recvWithStartEndMarkers() {
 static boolean recvInProgress = false;
 static byte ndx = 0;
 char startMarker = '<';
 char endMarker = '>';
 char rc;
 while (Serial.available() > 0 && newData == false) {
 rc = Serial.read();
 if (recvInProgress == true) {
 if (rc != endMarker) {
 receivedChars[ndx] = rc;
 ndx++;
 if (ndx >= numChars) {
 ndx = numChars - 1;
 }
 }

88

Gesture Controlled Quadcopter System

 else {
 receivedChars[ndx] = '\0'; // terminate the string
 recvInProgress = false;
 ndx = 0;
 newData = true;
 }
 }
 else if (rc == startMarker) {
 recvInProgress = true;
 }
 }
}

//============

void parseData() { // split the data into its parts
 char * strtokIndx; // this is used by strtok() as an index
 strtokIndx = strtok(receivedChars,",");//tempChars,",");
 Serial.println(strtokIndx);
 receivedData[0] = atoi(strtokIndx);
 for (int i=1;i<chanel_number;i++) {
 strtokIndx = strtok(NULL, ",");
 receivedData[i] = atoi(strtokIndx);
 }
}
//============
void showParsedData() {
 for (int i=0;i<chanel_number;i++) {
 Serial.print(receivedData[i]);
 Serial.println();
 }
}

int analogToRange(int pinNum, int minInt, int maxInt){
 int val = analogRead(pinNum);
 double difference = double(maxInt - minInt);
 int result = int(difference*val/1024);
 return result;
}

89

