THE APPLE 1I/STOPPED-FLOW

INTERFACE PACKAGE

Daniel M. Laby
o

Submitted in partial fulfillment
of the requirements for
Honoxs in the Department of Chemistry

UNION COLLEGE

May, 1983

ABSTRACT

LABY, DANIEL M. The Apple II/Stopped-Flow Interface

Package. Department of Chemistry, May 1983

The Apple 1II+ microcomputer was interfaced %o an
Aminco-Morrow stopped-flow Apparatus. This interface
package can be Dbroken into %¥wo parts; the hardware, or
eleckrical conneckions necessary %o 1link the two
instruments, and secondly, the software, or programs
written to control the interface package.

A circuit was consktructed as part of the interface
hardware. This circuit consisted of several operational
amplifiers connected in such a way as to transform the
output voltage of the stopped-flow inko one acceptable by
the Apple computer.

The software for this interface package is extensive.
Programs were written that allowed the user %o initialize
the correct interface conditions, save any data from a
particular run, and draw a rough plot of &he data
collected. Programs are also included for reactions that
follow first order kinetics. These programs calculate a

rakte constant and intercept for the best fit straight

line of a first order kinetic plot,

TABLE OF CONTENTS

Introduction

Section
1)
2)
3)
4)

5)

Section

1)

2)

3)

Section

Section

I: Hardware

Instrumenkation

Interface circuit and power supply
Analog to digital converter

Apple clock

The Apple computer

IX: Software
Initialization programs
Daka colleckion

Data manipulation

IIl: Sample run

IV: Users manual

-

-5-

5=

-9

-13-

19w

-24~-

-26=-

-26~

-33-

-46~-

~55=

-62~

This project has involved +the inkterfacing of the
stopped-flow instrument to the Apple II+ computer. There

are several reasons forxr wundertaking this project. The

primary reason is the ease in data collection offered by

the use of a computer. Without the compuater to aid in
data collection and manipulation, the user must record
all data and perform any calculations by hand. With it
the usex can ask the computer to recoxrd and calculate all
necessary information. Another reason for desiring an
interface is +the ability to obtain greater accuracy in
recording data. The human eye is limited in it%s ability
to read a value from a screen, while the computer, which
opexates eleckronically is limited only by the word size
used to record the signal.

This interface project can be broken down inko two
main sections: hardware and software. The hardware
section includes: +the instrument itself, the interface
circuit, the analog to digital (A/D) converker, and the
clock. The second section deals solely with the software
or programs used in the intexface package. These programs
include: the primary menu, the set up program, the data

collectkion and sktorage programs, and finally, the

—2a
calculation and ploting programs. This paper will deal
with each of these sections individually and will include
a user's manual for the interface package itself.

Before discussing the hardware section of the
intexface, it is important to gain a general
understanding of what happens during a run on the
stopped~flow, By depressing the plungerx on the
stopped-flow apparatus the user, causes the mixing of two
reagents; these reagents have a characteristic
transmitance of monochromatic electromagnetic radiation.
Asg the reackion continues, this +&ransmitance value
changes. As the %ransmitance changes so does the output
of the photometer. Since the photomeker is an electrical
instrument its output consists of an electrical signal.
This signal is first offset and then brought into the
computer.,

By setting the power supply voltage of the photometer
we can create an output range between ground (zero) and

negative %en volts. This signal must then be converted

into a signal that is understandable by the Apple

computer., The computer only understands quantities that
have fixed values (digital signals), while the output of
the photometer is a continuously varyiable eleckrical
signal (analog signal); therefore, an analog to digital
converter 1is needed. The A/D is mounted on a computer
board and can be found within the computer. There is one

important restriction of the A/D board: the input to the

-3-

board must be between minus five and plus five volts. We
stated earlier that the output of the photometer was zero
to negative %en volts. Since this does not match the
input requirements of the A/D boarxd, an elecsrical
circuit was developed that changed the output of the
photometer o one satisfying the input needs of the A/D
board.

The computer is directed %o begin collecting data
when it receives a trigger signal. This signal is
produced by the stopped flow insgrument when a rxun is
started. The signal passes through the A/D board and into
the computer. Whithin the software of this interface
package is a program loop that waits for the trigger
signal before collecting any data.

Once the data are in the computer we must find a way
to regulate how ofk¥en a data point is recorded. The best
way to accomplish this is by using a clock which has
readable values in the millisecond range. On a second
board mounted within the computer is a clock which can be
read from within a program.

The final step in collecting data is saving it
permanently on the disk. This is accomplished with the
BASIC-DOS computing language. Since the stopped-flow
instrument is designed for wuse wikh relatively fast
reactions, the actual data collection program was written
in 6502 Assembly language. BASIC instructions are

executed more slowly than Assembly language instructions.

.
The final programs in the interface package involve a
rough plot of the data and a calculation based on the
asgumption thakt <«he user is working with reactions that
are first order with respect %o a given reactank.
We have given a short description of the different

functions of the inserface package, and now we will

explore, in greater depth, each park of this package %o

see how i%¥ contribukes %o +the interface package as a

whole.

I. HARDWARE

1) INSTRUMENTATION

The instrument used for +this project was the
Aminco-Morrow Stopped-Flow Apparatus. Associated with
this instrument are several supporting devices: a Beckman
Speckrophotometer which is used to follow the reackion, a
High Performance Kinetic Photometer, and a Dual power
supply.

The stopped flow apparatus is diagramed in figure 1.
The «wo main parts of interest here are the trigger
switch and +the mixing chamber/observation cell. The
observation cell is a transparent compartment through
which passes monochronatic light of a pre-set wavelength.
This 1light is then +transmitted ¢to a photomultiplier
detector. The trigger switch is used to start the
computerx's data colleckion. This switch operates by
closing the battery circuit when the plunger rises after

the reaction is started. The battery is a fourteen volt

transistor battery; we have slightly modified the
original design of <he switch by introducing a
potentiometer into the trigger «circuit. This was

necessary in order nokt %o overload the A/D board with
more than the maximum five volts,

Several parts of the related instrumentation should

FIGURE 1

-6

- Schematic of Stopped Flow Instrument

AR IMLET
M/ cROMETER CADVAUCE)

7R/ LR

AIR INLET
SWiTeH L rRETRACT)

RESERLW/ R
SYR/NGE

EXHAUST

MITINE CHAMBER AuD
e OB SERVATION CELL

Figure 1, Schematic diagram, Stopped-flow Apparatus

-7-

be mentioned a% this poink. In order %o offset any dark
current produced by the photomultiplier tube (pmt), ik is
necessary %o add a fixed voltage ¥o the output of the
pmt. This is accomplished by turning the fine offset knob
on the High Performance Kinetic Photometer until the
output of the pmt is zero volts (with the shutter closed
in front of the pmt). Once the dark curxent is offset,
the user must set the ¥en volt maximum on the dual power
supply. This is accomplished by opening the shutter and
placing fresh water in the observation cell., By turning
the coarse and fine volktage adjust until the power supply
voltage (see figure 2) is ten volk¥s, the user has se& the
maximum electronic output of the stopped flow instrument.
The user should be sure that the ten volt range is set
correctly (it should recalibrated every thirty minutes).
If the ten volx difference decreases, the user will see a

marked effect on the results.,

FIGURE 2 - Stopped Flow Power Supply

POWER SUPPLY

®

-9~

2) INTERFACE CIRCUIT AND POWER SUPPLY

As stated earlier, the output of the photometer needs
to be offset to match the input regquirements of the A/D
board. This task is accomplished by building an
electronic circuit using operational amplifiers (op-amps)
that will perform the necessary offset. Op-amps have
several characteristics that make them very useful in
this application. They have a high input impedance while
maintaining a low output impedance; this allows the user
%0 build an op-amp into a circuit without loading the
circuig. In operation, op-amps tend to keep their two
inputs at the same potential; in other words, there is no
potential difference between the %wo inputs. The final
characteristic of an op-amp is the fack that the user
does not need to know what is happening within the op-amp
itself +to wuse it. The external connecktions are all that
is nezeded to make proper use of the amplifier.

Our circuit consists of two op-amps (see figure 3).
The first op-amp encountered by the incoming signal is
degsicned in the follower configuration. The output from
the follower is unchanged from its inpu%, but the high
input impedance of this configuration prevents the
interface circuit from loading the photometer in the
stopped flow instrument.

The second op-amp offsets the signal from %the stopped

«10=

FIGURE 3 - Inkerface Cizcuis

in

+5 voltse— N . -

1K

Vout = =(V;,+5)
Vout=Output from Op Amp circuit (-5 to +5 volts)

Vin =Input to Op Amp circuit (O to ~10 volts)

Vout

€ J¥nOII

. & 1

flow by a positive five volks and inverkts its sign. Thus,
these two op-amps in unison change a minus %en %o zero
volt signal in%o a plus five to minus five volt signal,
while at +the same +time limiting the amount of current
drawn by the circuit.,

I+ is fairly simple %o analyze the circuit in figure
3. As stated previously, the input voltage (Vin) from the
stopped-flow inskrumenkt first encounters an op~amp in the

follower configuration. If we label the oukput from this

op-amp Vo' we can write an expression for this voltage:

After passing +the first op-amp the signal contkinues
through +the circuit %o the second op-amp. The expression

for the output voltage (Vo) at the second op-amp is:

Vo = -(Vo'(Rfb/Rin) + 5(REb/Rin))

If we let the resistor in the feedback loop equal the

input resistance this expression simplifies to :

Vo = =(Vo' + 5)

«12-

By substituting for the output of the first cp-amp, we

derive the final expression for this circuit :

Vo = -(Vin + 5)

It is clear from the final expression that an input range
of zero to minus ten volts will produce an output rxange
of minus five to plus five volus.

The final piece of hardware important to this gsection
is a standard fifteen volt power supply. The fifteen volt
terminals are used %o power the op-amps while the five
volt terminal is used to offset the inpuk voltage from

the stopped-flow instrument.

-13-

3)analog to Digital converter

This piece of hardware is the heart of the interface
package. The A/D converter links the outside world %o the
woxld of the computer. The converter installed in the
Apple computer is manufactured by the Mountain Computker
company. The A/D board does not require any memory or
input/output devices except for its €wo ribbon
conneckors. Thexre are a %osal of sixteen channels
available to the user for analog to digital conversion.

As mentioned in the previous section, the A/D board
is used in the interface package to convert the analog
signal produced by the photometer into a digital signal
which is understandable by the computer. The converter
accomplishes this by wusing a successive approximation
register., When a program looks at a memory location tied
to one of the A/D channels, the converter begins o make
a digital approximation of the analog signal. Since the
process of conversion is one of successive approximation,
the longer +the A/D is allowed to equilibrate the closer
the digital value will be to the correct analog signal.
In an assembly language prxogram this is done by
introducing severxal NOP commands. These commands have +the
effect of passing time without executing any
instructions.

The A/D converter is able to convert any analog

1l

signal within plus five %o minus five volts., If a signal

outside this range 1is enterxed several consequences may
follow. The converter will a%tempt %o handle this
ovexflow by passing the excess signal %o anotherxr channel;
this may have a diliterious effect on the conversion
process. The overflow is passed %o the channels
immediately surrounding the overloaded channel. For
example, in this interface project, we attempi2ed to input
ten volts %o channel 13, as we monitored channel 14 we
noticed that the digital signal from this channel was
changing as we varied the input to channel 13. The second
effect that overload can have is to burn out a channel.
While testing the A/D board for use in this interxface
we noticed that channel zero was not operating correctly:
it was responding outside the specified plus %o minus
five volt range. Mountain Computer Corporation supplies
several test programs along with its board. One of these
programs 1s supposed %o test the validity of any aA/D
channel. When this program was used %o test channel zero
it was found to be operating correctly. When channel zero
was tested manually, it operated incorrectly. The
apparent problem with the +test programs is in the way
they test each channel. Instead of physically applying a
potential %o the channel and testing the output of that
same channel, they seem to place a value in the memory
location assigned %o that channel and then, later, look

to see if that value has changed. Extreme care should be

~15-
given in wusing the +test programs supplied by the
manufacturer. The best way to +test +the board is by
manually applying a potential to a channel and checking
the oukput of that channel with the computer.

As mentioned above, the A/D board can convert any
analog signal within the range of minus five to plus five
volk®s. This conversion is accomplished with good speed
and accuracy. Nine microseconds are required for the
conversion with an error of plus or minus one in the
least significant bit., The board operates with eight bit
registers in order to produce a digital output within the
range of zero to 255 (see figure 4). Por example, if we
do a run on the stopped flow which sends a potential of
2,50 volts %o the converker, the value 192 should be
placed in memory.

Within this interface package two channels of the A/D
board are used. One channel is for data (channel 14), and
the second channel is used to mark the ¥rigger (channel
13). The 16 different channels can be referenced by
loading specific memory locations into the host program.
These memory locations are dependant upon what slot the
A/D board is plugged into in the computer. There is a
simple formula which can be used to determine the correct

memory loca%ion:

ADDR = 49280 + (slot# * 16) + channel#

~16-

FIGURE 4 - A/D Conversion Chart

(OUTPUT)

DAC

+2.50 Vv

A/D CONVERSION CHART

NUMBER

(INPUT)

ADC

+2.50 v

-17-

The channel number can vary between zero and 15, the slot
number varies be%ween one and seven, and the desired
address is ADDR. In this application the conversion board
is in slot two, and, thus, channels 13 and 14 correspond
to locations 49325 and 49326, respectively (in base
sixteen these locations are $COAD and $COAE,
respectively).

The final point concerning the A/D converter deals
with the input and output of the unit. There are two
cables supplied with +the wunit. One of +these cables
connects %o the inkerface box while the other is left
un-connected. The cables consist of sixteen wires, each
representing one channel, The wires end in small pins
used to conneck the converter %o other hardware. In %he
thesis entiltled "Microcomputer Interfacing With Chemical
Instrumentation®, J. Meyer corrects the pin plan supplied
by the manufacturer. These corrections are valid with one
small change: channels zero and two should be switched;
an updated pin plan is shown in figure 5.

We now have described how the data signal enters the
computer. The next step in the hardware agpect of this
package is data collection. Two hardware components are
required for this., A <clock is needed to regulate the
interval for data collection, and a computer is needed %o
store and collect the data. The clock will be discussed
in the next section and the Apple computer in the final

section.

FIGURE 5 ~ Pin Plan for A/D Board

Pin Plan for A/D Board

DIGITAL TO ANALOG

o ¢ ® o o ¢ o o o
1 2 GROUND

® 9 0 0 8 & o 5 &

5 6 7 8 9 1011 12 13 14

ANALOG TO DIGITAL

GROUND

¢ o o 9o 2 8 5 o
141312 11109 8 7 6

-19-

4) APPLE CLOCK

When collecting kinetic daka, it is important to have
some knowledge of the time that a specific piece of data
is recorded. The Apple clock allows us ®o keep track of
time as we collect data during a reaction. Like the A/D
converter, the clock is in one of the slots in the rear
of the Apple. The clock, manufactured by Mountain
Haxdware, Inc. and fully assemblaed, can be used from both
BASIC and Assembly language programs. Since we are
interested in wusing the clock %o regulate rapid data
collection, we will use it from an Asssembly language
progrxam.

Before discussing how our program makes use of the
clock, it is important to understand how the clock itself
operates. The clock is controlled by clock countkers;
these counters simply count from zero to the next higher
counter and then back again. These counters are regulated
by a one mega-hertz crystal. The counkters for time
fractions of 1less +than a second are in Binary Coded
Decimal format (BCD) while the other counters are twelve
bit binary counters and supply +time values of over a
second. The clock can be stopped and started from within
a program by simply loading the appropriate memory

location. Besides being able %o keep %rack of time, the

Apple <clock also has some built in funckions that allow

~20-
the user access %o the time displayed in certain formats.
This is useful for applications requiring morxe than a few
seconds; however, in our case, with the stopped flow, we
are dealing with reactions that are over in a matter of
seconds, and thus the built-in function is not
applicable.

The clock can be zead by simply loading the %ime from
the correct memory location. Once again these memory
locations depend on the slot in which the Apple clock is
installed. On the Apple used in this intexface package,
the clock is in slot four. There is a simple formula
which allows the user +to calculate the correct memory

locations based on the slot number:

ADDR = =-16256 + (16*N) + X

Here X may have any value between zero and nine. The
chosen value for X will determine what part of the clock
is read (ex. four will contain the millisecond and tens
of milliseconds time Dbits). The variable N is the slot
number of the clock, and ADDR is the memory location
containing the time information. Since the clock is used
by the Assembly language program to regulate daka
collection, all futkture references to the clock's memory
locations will be {n base sixteen (the number systenm

used in Assembly language programming). Since the clock

-21-
is in slok four, the range of usable memory locations is
$COCO %o $COC6 (kxhe rxemaining three locations are not
used by the interface programs). Figure 6 shows what is
contained in each of these locations.

Before dakta can be collected, the program must skop
the clock. This has %wo significant effecks, it stops the
clock if it is om (has no effect if it is already
stopped) and then sets all time biks less than a second
%o zero (xhis is done regardless of the previous status
of +the clock). Once we have stopped the clock and zerxroed
the proper locations, we may re-stark¥ the clock at any
time. The interface package is designed %o start the
clock when the trigger from the stopped-flow is *ripped.

Once a reaction is started, the batktery in the trigger

cixcuit will send a voltage signal to the A/D board. The

program moni%ors the voltage signal from a channel on the
A/D board and stark¥s the clock once the trigger line
reaches the pre-set trigger 1level (which is 191),
indicating the fact that a run has started. Two different
locaktions on the clock are used for these tasks. The
clock is stopped simply by executing the Assembly

language command:

LDA $COCe6

The LDA command and i%s effect on the clock will be

FIGURE 6 - Clock Addresses

APPLE CLOCK ADDRESS/COMMAND TABLE

ADDRESS

HEX. DECIMAL COMMAND

a0 Y
coco -16192 Reads 2 - 2 time bits

- L .
coc1 -16191 Reads 7 - 2 time bits

L] u
coc2 -16190 Reads 2 - 2 time bits

k

coc3 -16189 Reads 100 msec. - 2 time bits
coC4 -16188 Reads 1 msec, - 10 msec. %ime bits
cocs -16187 Star® Clock

coceé -16186 Stop Clock

-23-

discussed in +the SOFTWARE section of this paper. A
similar command is used %o start the clock. Once the
clock has been started, we must be able %o read the
different time bits. We are only interested in time
values of less than a second (locations $COC3 and $C0C4).
The time information within these locations is stored in
BCD format. Once again, the time value handling will be
xeserved for the discussion of the Assembly language
program.

During the development of the interface package, the
clock was tested several %times. The clock manual states
that the crystal controlling the time on the clock board
may at some point need re-calibration. The clock was
tested by starting it at the same time as a dependable
stop watch. After uwenty four hours both were checked and
found to agree within experimental error. We are now in a
position to record data; all that remains to be examined
is the role of the Apple computer in this interface

package,

5) THE APPLE COMPUTER

The computexr is an essential part of this interface
package. The Apple computex has several significant parts
that are useful for this interfacing project. Besides the
video monitor and disk drive, the computer has several
different graphics packages. A graphics package provides
the wuser with the ability to draw pictures on the Apple
screen, In both plotting programs of the interface, the
high resolution screen is wused. The high resolution
screen has dimensions of 280 dot%s by 192; do%s, each dot
represents a point on +«he screen., This allows for a
relatively sharper picture than the low resolution screen
on the Apple.

The Apple is programmable in several different
languages. The "home" language of the Apple is a form of
BASIC called APPLESOFT. Applesoft 4is very similar to
Bagic except for some minor variations that make the

Apple moxe useful. Most of the interface programs are

written in Applesoft with the exception of the daka

collection program which is written in Assembly language.
There is one other language that is specific %o the Apple
computer: DOS. This stands for disk operating system and
is the part of the Apple that keeps track of what is in
memory, what files are on the disk, and what the user

wants to do with the current file. An example of DOS is

-25-

the DELETE ox BLOAD commands. The delete command allows
the wuser to remove a file from the disk while the bload
command loads from a disk a given binary file. This
command is used in the BASIC portion of the daka
collection program %o load the Assembly language program.
Once the program is 1loaded, it is placed into ackive
memory %o be executed later in the interface process.,

The interface program is intended for use with some
sort of printing device. As of now the Epson MX-80
printer is the one programmed for in the interface. If,
in the future, other printers are desired, there should
be no problem in incorporating them.

Up to this point we have examined all of the pieces
necessary foxr a successful interface. We have provided a
basic wunderstanding of what occurs when one runs a
reaction on the stopped flow. With this information, we
can now move onkto the software section. This section will
focus on the several different programs developed for the

stopped flow interxrface.

-26-

II. SOFTWARE

The second half of +this report will deal with the
software, or computker programs, written for the stopped
flow interface package. These programs can be broken down
inko several different categories., The first +three
programs are used to initialize the system, load the menu
program, and set the proper voltages on the stopped flow
instrument. The second set of programs are designed %o
allow the user to record a run on the stopped flow and
permanently save 1% on a floppy disk. The final set of
Programs are data manipulation programs. These programs
include the plokting programs and the first order kinetic

calculations.

1) INITIALIZATION PROGRAMS

When the wuser first turns on the computer with the
interface disc in drive number one, it executes several
programs stored permanently within the Apple. These
programs set +the different parameters necessary for

interaction with the wuser. The final initialization

-27-

program rxun by +the computer is the program entitled
HELLO. The 'hello’ program, then, is the first program in
the stopped flow interface package (see figure 7).
Although +this program is short and straight forward, it
illuskrates a very useful +technique essential to this
interface package. Applesoft Basic includes a set of
instructions that allow +the user %o execute certain
control commands from within a program. This command

takes the form :

CHRS (4)

The CHR$(X) function has the effect of returning the
ASCII charackter that corresponds +tto the variable or
number placed within parentheses. In this case we use
this funcuion %o return the ASCII code equivalent of the
number four. The number four in the ASCII code represents
control-D. By typing a line such as line 70 in figuxe 7,
we are able to execute the string as a direct command to
the operating system. This technique of issuing operating
system commands from within a program is very useful. In
this interface package, some of the operating system
commands used are : RUN, BLOAD, OPEN, and CLOSE. These
commands will be discussed in the appropriate secktion.
Since t%the hello program is the first program executed
by the computerxr, using the CHR$ command allows us %o call

any other program on the disk. The program called by the

FIGURE 7

- Hello Program

KRR RN AN R AR RN RN AR N R RN AR R R R
* PROGRAM : HELLO *
* HELLO PROGRAM FOR STOPPED *
* FLOW INTERFACE, *
ARRRRENRRRNRR KR RARERANRANRR R AR
THIS PROGRAM IS EXECUTED WHEN THE COMPUTER IS TURNED ON,
ITS PURPOSE IS TO CALL THE FIRST MENU IN THE INTERFACE.
PRINT CHR$ (4);"RUN SF-INTFCE"
END

-29-

hello program is the first menu program called SF-INTFCE
(see figure 8). This is the first of two menus included
in the package.

From this menu the wusex can call any part of the
system. The key %o this program is the use of a command
that allows a different program %o be run depending upon
the wuser's choice. The program first prinks the four
possible choices on the screen followed by a prompt
soliciting the user's choice. At this point two things
can happen. If %the usexr inputs a number not corresponding
to one of the four choices, the question will be
repeated., If the user enters a number from one to four,
the program of his choice will be executed. At this point
the wuser should entex +the number one for the set-up
program.

The SET-UP program (see figure 9) is designed %o
allow +the usexr to eliminate any voltage difference
between the pmt and the A/D board. As discussed earlier,
the A/D board has certain memory locaktions associated
with it. By executing the Applesoft command PEEK(X) we
can examine the result of any analog %o digital
conversion (line 80). For example, in line 80 the setup
program makes use of this command to display the voltage
difference between the pm& and the A/D board. In order to
display a voltage value betwean zero and ken volts, the
program musk¥ convert the digital result of %the conversion

into the appropriate value (line 90). Line 80 reads the

FIGURE 8 - SF-INTFCE Program

0 REM RERRBRNERR AR R RN RN R AR R AN R AR

1 REM * PROGRAM : SF-INTFCE *

2 REM * FIRST MENU IN STOPPED FLOW *

3 REM * INTERFACE * |
4 REM AR R SRR RS2SRRSR 22 22222)

§ REM THIS PROGRAM CONTAINS THE PRIMARY MENU OF THE INTERFACE

20 D§ = CHR$ (4): REM THIS ALLOWS FOR USE OF CTRL-D FROM WITHIN THE PRO

GRAM.
30 HOME : REM CLEAR SCREER
40 HTAB 5: PRINT "MENU FOR STOPPED PLOW INTERFACE"
50 PRINT : PRINT
60 INVERSE : REM PRINT DARK LETTERS ON LIGHT BACKGROUND
70 PRINT "1,.SET UP"
80 PRINT : PRINT
90 PRINT "2.DATA COLLECTION"
100 PRINT : PRINT
110 PRINT “3.MANIPULATE DATA"
120 PRINT : PRINT
130 PRINT "4.QUIT"
140 PRINT : PRINT
150 NORMAL : REM PRINT LIGHT LETTERS ON A DARK BACKGROUND
180 PRINT : PRINT : PRINT
190 INPUT “"ENTER A NUMBER AND PRESS RETURN, ";NB
200 PRINT
210 CON NB GOSUB 260,280,300
220 IX ¥NB = 4 GOTO 320
250 GOTO 30
260 PRINT D$; "RUN SETUP": REM EXECUTE INITIALIZATION PROGRAM
270 RETURN
280 PRINT D$;"RUN CONTROLLER": REM EXECUTE DATA ACQUISITION PROGRAM
290 RETURN
300 PRINT D$; "RUN MENU2": REM EXECUTE DATA MANIPULATION PROGRAMS
310 RETURN
320 END

-31-

FIGURE 9 - SET UP Progranm

WO ~NGUVbBWN-O

R P s
* PROGRAM : SETUP *
* SET UP PROGRAM OF STOPPED *

* FLOW INTERFACE PACKAGE. *
AR R R AR R AR R AR R RARRRRR AR R R AR AR R AR

THIS PROGRAM IS CALLED FROM THE FIRST MENU.
IT IS DESIGNED TO READ THE DATA CHANNEL OF THE A/D BOARD
AND DISPLAY A VOLTAGE WITHIN THE LIMITATIONS OF THE BOARD
THE PROGRAM IS TERMINATED WHEN THE USER PRESSES ANY
REM KEY FROM THE KEYBOARD. THE PROGRAM USES LOCATION -16384 TO SEE IF

REM KEY HAS BEEN PRESSED, THIS FUNCTION IS RESET BY POKING -16368
D$ = CHR$ (4): REM CNTRL-D
HOME
PRINT : PRINT
HTAB 12: PRINT “SET-UP PROCEDURE": PRINT
PRINT : PRINT
PRINT "PROCEDURE TO COUPLE COMPUTER TO PMT."
PRINT : PRINT * INCREASE OFFSET ON PHOTO-"
PRINT " METER UNTIL VOLTAGE ON COMPUTER"
PRINT IS 0 TO .1 VOLTS {FLASHING)."
READ A/D DATA LINE
X = PEEK (49326): REM THIS IS CHANNEL 14 SLOT 2
X = X * (10 / 255): REM ALLOW X TO VARY FROM 0 TO 10
REM PRINT ONLY 3 DIGITS OF VOLTAGE USING STRING COMMANDS
X$ = STRS (X)
INVERSE
VTAB 17: HTAB 10: PRINT * VOLTAGE : "; LEFT$ (X§$,3);"
VTAB 17: PRINT
NORMAL
VTAB 23: PRINT “PRESS SPACE BAR TO RETURN TO MENU"
REM CHECK TO SEE 1F KEY HAS BEEN PRESSED
Y = PEEK (- 16384)
POKE - 16368,0
IF Y * = 127 GOTO 80
PRINT D$;"RUN SF~-INTFCE"
END : REM RETURN TO MENU 1 WHEN DONE

-32-

value from the board using the PEEK command while line 90
makes the conversion. The value must be divided by 255
since that is %he maximum value the A/D board will
produce; this result must then be multiplied by ten %o
place it within the desired ten volt range. The program
loops until a key is depressed on the keyboard. At this
time the program executes the operating system command;
RUN SF~INTFCE, which has the effect of returning the user
%o the first menu.

The code central to the functioning of this program
can be found in 1lines 120 and 121. Two locations in
memory are used in these line& Location -16384 is a flag
that is set any time a key is depressed on the keyboard.
The second location, <-16368; has the opposite effeck,
since 1% re-sets +the computer's ability to dekermine
whether or not a key has been pressed. It is important to
re-set location -16384 after using it by POKING a zer>
into 1location ~16368. The poke command, like the peek
command allows the user direct access %o memory
locations. The poke command allows the user to set a
specific 1location to any desired value by poking that
location with +the desired value. Once again, after the
user has complekted the set up program he is returned to

the first menu.

-33-

2) DATA COLLECTION

Once all of the necessary initialization has been
completed, the user may record data from the stopped flow
instrument. Entering the number two from the main menu
will call the program written for +this purpose. The
program enkitled CONTROLLER (see figure 10) will be
loaded in place of the menu program. This program has
three main functkions H %0 determine the run length
desired by the usex, to determine the amount of time to
delay before taking an infinity reading, and, finally, to
load and execute the Assembly language program that
actually colleckts the reaction data. Each of these three
tasks will be discussed separately below.

In lines 50-54 the user is asked %o entexr the desired
run time. This value is then divided by 250 (the number
of data points %o be taken). The result of this division
is the interval time between data points, in other woxds,
the amounkt of time the computer must wait before
recording +the next reading. This variable can have a
maximum value of 0.999 msec., and thus the longest run
time allowed by this package is 249 (250 * 0,999)
seconds. This should be more than adequate for

applications requiring the stopped flow ins%rument, Once

a value for the interval length has been determined, it

FIGURE 10

-3

- CONTROLLER Program

JLIST 0-214

REM *hkdakradha ek ARtk AN KRR RRNRAS
REM * PROGRAM : CONTROLLER *
REM * BASIC CONTROL PROGRAM FOR *
REM * TAKING DATA WITH ASSEMBLY *
REM * LANGUAGE PROGRAM *

REM RERRNRRARA RSN R R ANRRR AR AR AR R ARk &

REM THIS PROGRAM SETS THE RUN TIME OVER WHICH DATA
REM SHOULD BE TAKEN AND THE AMOUNT OF DELAY TIME

REM BEFORE THE INFINITY READING IS RECORDED

REM ONCE THIS INFORMATION IS SOLICITED FROM THE USER
10 REM IT IS PASSED ONTO THE ASSEMBLY LANGUAGE PROGRAM
11 REM VARIABLES:LE=length of xun

VOOV L W =0

12 REM D =amount of time %o delay

13 REM IVL=time interval between poinks
14 REM HUND=hundreds digit of delay time
15 REM TENS=%tens digit of delay %ime

16 REM O=ones digit of delay time

17 REM IVF=infinity value from A/D board
18 REM SCRAP=file %o save interval length

19 REM ALL VALUES ARE poked INTO LOCATIONS LINKED TO ASSEMBLY PGM,
20 HOME

30 HTAB 12: PRINT "DATA ACQUISITION PROGRAM”

40 PRINT : PRINT

45 REM =-ec—ceme- GET RUN TIME-=omeau-—o-
50 PRINT “ENTER LENGTH OF RUN IN SECONDS"
51 INPUT " (A MULTIPLE OF .250 SEC.) : ";LE

52 REM IF USER ENTERS INVALID RUN TIME, RE-ASK QUESTION

-~

54 IF LE .250 GOTO 20
60 HOME
65 REM w~cccewca-. GET INFINITY DELAY TIME----—---=-

70 PRINT "INFINITY VALUE OPTION™

71 PRINT : PRINT : PRINT

80 HTAB 4: PRINT "1.ENTER O FOR MANUAL INFINITY VALUE"

90 PRINT : PRINT

100 HTAB 4: PRINT "2.ENTER DELAY TIME (1-999 MILLISEC,)"

110 PRINT : PRINT : PRINT

120 INPUT "INPUT DESIRED TIME (0-999): *;

121 D = D / 1000: REM CHANGE DELAY TO MSEC

170 REM DIVIDE INTERVAL INTO PROPER LOCATIONS.

180 IVL = LE / 250: REM DIVIDE RUN LENGTH EQUALLY BETWEEN 250 POINTS
181 IF (IVL * 1000 - INT (IVL * 1000)) ~ .5 THEN IVL = IVL + .001
190 HUND = INT (IVL * 10)

200 TENS = INT (((IVL * 10) - HUND) * 10)

210 0 = INT (({((IVL * 10) - HUND) * 10) ~ TENS) * 10)

212 IVL = (HUND * 100 + TENS * 10 + O) / 1000

213 LVI = IVL

214 IVL = IVL * 1000

LIST 214-400

214
215
220
221
251
252
253
254
255
256
300
305
306
310
320
321
322
323
324
325

326
327
328
329
330
331
332
340
350
360
370
380
390
400

IVL = IVL * 1000

REM PUT INTERVAL LENGTH IN LOCATION §$303

POKE 771,IVL: REM 771=$303

REM SEPARATE DELAY TIME AND poke INTO APPROPRIATE LOCATIONS
HUND = INT (D * 10)

TENS = INT (((D * 10) - HUND) * 10)
O = INT (((((D * 10) - HUND) * 10) - TENS) * 10)

POKE 775,HUND: REM 775=$307

POKE 776,TENS: REM 776=$308

POKE 777,0: REM 777=$309

HOME : FLASH : PRINT "START RUN WHEN RED LIGHT GOES OFF": NORMAL
REM =cccacaaa- LOAD ASSEMBLY PGM, AND COLLECT DATA==w=-me———-
D$§ = CHRS (4)

PRINT D$; "BLOAD READER1.0BJO"

CALL 778: REM COLLECT DATA

IF D © 0 GOTO 332: HOME

REM -—-~cec-ec-w- TAKE INFINITY VALUE=w-~~==cwewe-

HTAB 4: VTAB 12: PRINT "PRESS ANY KEY TO TAKE INFINITY VALUE"

GET G$
IVF = PEEK (49326): REM DO DUMMY READ OF A/D BOARD AND MAKE AVERAGE
.
IVF = 0

FOR X = 1 TO 10

IVF = IVF + PEEK (49326)

NEXT X

IVF = IVF / 10

POKE 24826,IVF: REM POKE INFINITY VALUE
PRINT D$;"OPEN SCRAP"

PRINT D$; "DELETE SCRAP"

PRINT D$;"OPEN SCRAP"

PRINT D$; "WRITE SCRAP"

PRINT LVI

PRINT D$; "CLOSE SCRAP"

PRINT D$;"RUN MENU2*

END : REM END PROGRAM AND RETURN TO MENU

=35~
must be communicated to the assembly language program.
This 4is accomplished with the help of the poke command
discussed earlier. By simply poking the interval length
into a pre-determined memory location, *that value is
stoxed for use by ¥he assembly language program.

The second part of the controller program deals with
the amount of +time %o delay before taking an infinity
reading. Lines 65-121 solicit this information. The user
has two choices in taking an infinity reading. He may
enter any number from 1 to 999 which will signify the
number of milliseconds to delay aftex the end of the run
before taking the infinity value; or he may enter the
number 0 %o record the infinity value manually., If the
usex wankts %o record a manual infinity value, <the
computer will prompt him to do so at the end of the run.
Once the user enters a value for the delay time, the
computer immediately divides this number by 1000 in order
to convert it into a millisecond value. Lines 221-253 are
necessary %o divide the delay %®ime into the proper uniks.
By making use of the INT command (which effectively
erases the decimal portion of a number) we can separate
the delay %ime into units of hundreds, tens, and ones of
milliseconds. These steps are necessary for the correct
functioning of %the assembly language program. If the user
enters zerxro for a delay time (signifying a desire %o

record a manual dinfinity value) the program will place

three zexos into the locations assigned to the delay time

-36-
causing the assembly language program %o take an infinity
reading immediately, only to have this value replaced by
the usex in the controller program.

After the run has been completed, the controller
takes care of a housekeeping matkter. Lines 332-380 store
the intexval length in a file entitled SCRAP. This allows
the assignment of «he correck wime to the data points
stored in +the <computer. The SCRAP file will be read in
the saving program (data storage), and will be used for a
different purpose later on in the interface package.

The commands that cause the assembly language program
to be executed can be found in lines 310 and 320, The
first line makes use of the ability to execute an
operating system command from within an BApplesoft
program. The command BLOAD READER1.0BJ0O causes the
computer %o lcad the binary file READER1.0BJO star%ing in
location $30A. This command only loads %he file; it does
not execute it. Line 320 executes the file with the
command CALL 778. This Applesoft command causes the
computex %o move to the given memoxy location and begin
execukting %the program a% that location. The hexadecimal
(base sixteen) number $30A corresponds ko 778 in base
ten. Thus, by calling locakion 778, we are ackually
executing the assembly language data collection program.

The assembly language program (see figure 11) can
also be broken down into several sections. The first

section causes the compuker to wait for the stopped flow

FIGURE 11

- READER1.0BJO Program

WONOMLE WN =

Fidisiiriziiiitsiiiiiiiiiiiriii
PROGRAM : READER1.0BJO 3
ASSEMBLY-LANGUAGE-PROGRAM~FOR H
STOPPED-FLOW-INTERFACE-PACKAGE ;

Ptisiiiiisiiririisiiiiiiiiiriri

PROGRAM LOADED AT §$30A, ENDS AT 3E7.

ORG
LDA
LDA
STA

$30A
$COC6
#SBF
$302

; PROGRAM STARTS AT $30A
;STOP THE CLOCK

;TRIGGER LEVEL IS 191

;STORE TRIGGER LEVEL IN $302

TRIGGER-WAIT-LOOP
LDA $COAD ; LOAD TRIGGER VALUE FROM A/D
LDA $COAD ; LOAD TRIGGER VALUE(TRUE) FROM A/D
CMP $302 ;COMPARE VALUE WITH TRIGGER LEVEL
BCC TOP1
LDX #00 ; INITIALIZE POINT COUNTER TO ZERO
LDY #250 ;INITIALIZE MAXIMUM NUMBER OF POINTS
LDA #00 7 ZERO ACCUMULATOR
STA $304 3 ZERO LOCATION $304(HUND DIGIT)
STA $305 ;ZERO L OCATION $305(TENS DIGIT)
STA $306 ;ZERO LOCATION $306(ONES DIGIT)
STA $302 ;ZERO LOCATION $302(SCRAP LOCATION)
LDA $COC5 ;START THE CLOCK

LDA SCOAE ; DUMMY READ OF A/D DATA LINE
;ALLOW-A/D=-TO~REACH~CORRECT-VALUE

NOP

NOP

NOP

NOP

NOP

LDA $COAE ;REAL READING OF A/D DATA LINE

STA $6000,X i STORE POINTS STARTING AT LOCATION $6000

CLC
i INCREASE-TIME-TARGET~BY-INTERVAL-LENGTH

SED ;SET THE DECIMAL MODE (BCD)

LDA $306 ; LOAD ONES DIGIT

ADC $303 ;ADD INTERVAL LENGTH STORED IN $303

STA $302 ;STORE IN SCRAP LOCATION

AND #$OF ; ERASE UPPER NIBBLE OF ACCUMULATOR

STA $306 ;STORE NEW ONES DIGIT
iSHIFT-ANY-CARRY-TO-RIGHT~BIT=-OF-LOCATION

LSR $302

LSR $302

LSR $302

LSR $302

CLC

LDA $305 ; LOAD TENS DIGIT

ADC $302 ;ADD ANY CARRY FROM PREVIOUS APDITION

STA $302 ; STORE IN SCRAP LOCATION

AND #$0OF ; ERASE UPPER NIBBLE OF ACCUMULATOR

STA $305 ; STORE TENS DIGIT
i SHIFT-ANY-CARRY-TO-RIGHT-BIT-OF-LOCATION

LSR $302

LSR $302

LSR $302

LSR §$302

CLC

LDA §$304 3 LOAD HUNDREDS DIGIT

ADC $302 ;ADD ANY CARRY FROM PREVIOUS ADDITION

AND #SOF ; ERASE UPPER NIBBLE OF ACCUMULATOR

62-117

STA $304 }STORE NEW HUNDREDS DIGIT

CLD }CLEAR DECIMAL MODE
jALLOW-CLOCK-TO=CATCH-UP=-TO-INTERVAL
BOT LDA $coc3 i LOAD HUNDREDS TIME BIT

AND #$OF : ISOLATE HUND TIME BIT

CMP $304 iCOMPARE CLOCK TO HUND VALUE

BNE BOT sREAD CLOCK AGAIN IF CLOCK IS SMALLER

LDA $CO0C4 READ TENS AND ONES MSEC DIGITS OF CLOCK

STA $302 iSAVE TIME IN SCRAP LOCATION

AND #240 3 ISOLATE TENS OF MSEC VALUE
tMOVE-10MSEC~VALUE~TO~LOWER-NIBBLE

LSR A

LSR A

LSR a

LSR a

CMP $305 ;COMPARE CLOCK WITH INTERVAL LENGTH

BCC BoOT iREAD CLOCK AGAIN IF CLOCK IS SMALLER

LDA $302 s LOAD PREVIOUS TIME FROM SCRAP LOCATION

AND #$OF # ISOLATE ONES OF MSEC DIGIT

CMP $306 ;}COMPARE CLOCK WITH INTERVAL LENGTH

BCC BoOT iREAD CLOCK AGAIN IF CLOCK IS SMALLER

INX # INCREMENT NO. OF POINTS COUNTER

DEY iDECREMENT NO. OF POINTS ALREADY READ

BNE TOP iREAD ANOTHER POINT UNTIL ALL 250 ARE READ

TAKE-INFINITY-VALUE

LDA $COCé i STOP CLOCK

LDA $cocs i START CLOCK

LDA s$coc3 i LOAD HUND OF MSEC DIGIT

AND #S$OF iSAVE LOWER NIBBLE

CMP $307 ;COMPARE TO HUND MSEC OF DELAY INTERVAL

BCC BOT1 :READ CLOCK UNTIL CLOCK IS LARGER

LDA s$coc4 iREAD TENS AND ONE MSEC TIME BITsS

STA $302 iSAVE TIME IN SCRAP LOCATION

AND #240 ; ISOLATE UPPER NIBBLE
)MOVE-10-HSEC-VALUE-TO—LOWER-NIBBLE

LSR a

LSR A

LSR a

LSR a

CMP $308 iCOMPARE TIME WITH TENS MSEC DELAY DIGIT

BCC BOT1 #BRANCH TO BOT1 IF TIME IS SMALLER

LDA $302 ;LOAD TIME FROM SCRAP LOCATION

AND #SOF i ISOLATE ONES OF MSEC DIGIT

CMP $309 iCOMPARE TIME WITH ONES MSEC DELAY DIGIT

BCC BOTt iBRANCH TO BOT1 IF TIME IS SMALLER

LDA $COAE ;DUMMY READ OF A/D LINE
;ALLOW-A/D-TO-REACH-CORRECT-VALUE

Nop

NOP

NOP

NOP

NOP

LDA $COAE i TRUE READING OF A/D LINE-INFINITY VALUE

STA $60FA iSTORE VALUE AFTER 250 DATA POINTS

RTS

BRK ;END OF PROGRAM

-38-

trigger to be set. The second section records the data
points from the run, and the final section records the
infinity reading.

The %®rigger waik loop is +the first section %o be
executed by the computer. Before sktarting this loop the
trigger level (digital value of 191) is stored in
location $302., This is done so that the compuker does not
trigger immediately once +the program is executed, but
instead wai%s until the stopped flow is started. The A/D
board is then read (lines 10 and 11). The first time it
is read is actually a dummy read to allow equilibration
of the conversion process., The second LDA command loads
the accumulator with the digital representation of the
trigger potential (channel 13 slot 2). If this value is
equal to or less than 191 (the trigger level, about 2.50
volts) the computer goes back to the top of the loop and
reads the A/D board again. This process continues until
the A/D Dboard produces a value above 191, This can only
occur when the trigger level goes above the target
voltage signifying +the begining of a run. Once the
trigger has been set, the computexr makes some preliminary
initializations and then moves into the data collection
section of the program.

The data collecting loop begins with line 23, Once
again, a dummy reading of the A/D board is made, and five
NOP commands are used to allow »the converter to

equilibrate before +the actual reading of the board is

~39-

made. The A/D is read by the instrucktion LDA $COAE. This
memory location coxresponds +to channel 14 of slot %wo.
Immediately after +the data are rxead they are stored in
the set of memory locations reserved for data points, The
first data point is stored in location $6000 (decimal
24571). All the other points follow it with the infinity
reading (point 251) being stoxed at the end. The actual
location is calculated (line 31) by adding a constant
6000 to the poinkt counter (index registor X).

After storing a data point, we must incremenkt the
time interval target by the interval length, This is most
easily done by executing the command SED (set decimal
mode). The advantage of this mode over the normal binary
mode is the fact that each of the %wo halves of a memory
location (nibble) can only contain values from zero to
nine, Thus i% is possible to add the interval length,
which may be four masec. (if the entire run time is one
minute), to the mwmemory location that contains the ones
digit of the time target. This addition will be done in
base ten causing a carrxry to the next higher position if
the result 4is ten or greater (the entire process is
diagrammed in figure 12), The ability to add the interval
length in the decimal mode allows for a much more concise
and efficient program. Once the time target has been set,

the c¢clock must be read in order %o determine whether or

not it is +time %o %ake another data reading. In most

cases by the +time the computer reads the clock, there

FIGURE 12 - Addition in Decimal Mode

ADDITION IN DECIMAL MODE

Accumulator $303

A

41—

will be gquite a long +time before it is time %o take
another reading. This is the purpose of the clock catch
up loops. There are three of these loops in this seckion.
The first loop waiks for the hundreds of milliseconds
target digit% to match the clock's time: after these have
matched the computer moves intc the second loop and waits
for the tens of milliseconds +time digit to match the
clock's tens of milliseconds digit. The final loop is the
same except that it waits for the single milliseconds
readings to match. Once the computer falls out of the
last 1loop, all of the time digits have maktched and the
clock has caught up to the target time. I%¥ is now time to
record another data point. Before the next point is
recorded, the appropriate counters must be updated and
set, This data collection loop continues for all 250
points.

After +the last point is recorded, the «clock is
stopped, and then started again before moving into the
infinit¥y delay loop. This loop is identical to the loops
described above except for the fact that it is only
executed once. After the clock matches the delay time
entered by the user, a reading is made of the A/D board
and an average is taken for the infinity reading. This
value is stored in location $60FA which is 251 locations
after $6000., At this point all the data have been taken
and the flow of control returns to the calling progranm,

in this case the Applesoft controller program.

=42-

If the user entexed a value of zero for the infinity
delay, he is now prompted to indicake the desired time %o
record a value. Once the user does this, the A/D board is
read and an average reading is stored in location 49326
(this is the same 1location as $60FA). This section is
skipped 1if +the user entered a non zero delay time. As
stated earlier, +the controller program finally stores
information in the housekeeping file and then executes
MENU2.

This program is similar +to +the SF-INTFCE program
except that it contains four different choices (figure
13). Now +that +the reaction data are stored in the
computer +thet must be transferred %o the £loppy disk for
permanent sk¥orage. This is accomplished by pressing the
number one from the second menu. A program entitled SAVER
(see figure 14) is executed.

This program has one task: %o save the data of the
run on the floppy disk. Each data point has two par«xs.
The first part is the ¥ime at which a certain piece of
data was recorded and the second part is the actual data
reading. In order to assign a specific time %o the data,
this program must know what +the interval length was.
Thus, +the first section of the saver program retrieves
the interval 1length stored in +the SCRAP file by the
controllex program. Once the interval length is known, it
is possible %o calculate the time associated with each

specific data point by simply multiplying the interval by

FIGURE 13 -~ MENU2 Program

1LI

20

40

50

90

100
110
120
130
140
150
160
170
180
190

ST

REM
REM
REM
REM
REM
REM
REM
REM
D§ =
HTAB
PRIN
PRIN
PRI
PRI
PRI
PRI
PRI
PRI
PRI
PRI
PRI
NOR|
INP
ON
IF
GOT!

ARRRR AR RRARRRRR RN R AR AR RN RN R

* PROGRAM : MENU2 *

* MENU FOR DATA MANIPULATION *

* PROGRAMS *
RERRRRERRRR R AR AR AR AR R kAT R R

SECOND MENU FOR STOPPED FLOW INTERFACE PACKAGE-DATA MANIPULATION
FOLLOWS SAME PRINCIPLES AS FIRST MENU IN PACKAGE
CHOICES ARE PRINTED IN inverse AND LATER SET BACK TO normal.
CHRS (4): HOME

S: PRINT "MANIPULATION OF DATA PROGRAMS"

T : PRINT : INVERSE

T "1.,STORE NEW DATA"

NT : PRINT

NT "2.PLOT RAW DATA"

NT : PRINT

NT "3.CALCULATE FIRST ORDER RATE CONSTANT"

NT : PRINT

NT "4.GO BACK TO MENU 1*

NT : PRINT

NT *5,QUIT"

NT : PRINT : PRINT

MAL

UT “"ENTER A NUMBER AND PRESS RETURN. “;NUM

NUM GOSUB 250,270,290, 300

NUM = 5 GOTO 320

0 20

PRINT D$,"RUN SAVER": REM PROGRAM TO SAVE DATA

RET
PRI
RET
PRI
ER)
RET
PRI
END
GE.

URN

NT D$,"RUN RPLOT": REM PROGRAM TO MAKE ROUGH PLOT OF DATA

URN

NT D$,"RUN CALC": REM PROGRAM TO CALCULATE RATE CONSTANT(1st ORD

URN
NT D$,"RUN SF-INTFCE": REM RETURN TO FIRST MENU
: REM 1IF NONE OF CHOICES ABOVE END EXECUTION OF INTERPACE PACKA

FIGURE 14 - SAVER Progranm

lnisT

NOUVL WO

10

REM ®hakXkadk sttt hrkeattottrohhtohd

REM * PROGRAM : SAVER *

REM * PROGRAM TO SAVE DATA ON DISK *

REM * DRIVE AFTER COMPLETION OF RUN *

REM A h AR Atttk h kAR R RN AR ARR RN NN

REM THIS PROGRAM USES A FILE(SCRAP) TO REMEMBER THE INTERVAL(IVL)
REM LENGTH OF THE RUN.AFTER THIS PROGRAM IS COMPLETED THE USER IS
REM RETURNED TO THE SECOND MENU,

REM NOTE:line 12 eliminates messages on I/0 status.

11 D$ = CHRS (4)

12
21
22
23

24
30
35
40
49
50
70
80
89
20
95
29
100
110
115

i

PRINT D$;“NOMON C,I,O"
PRINT D$; "OPEN SCRAP"
PRINT D$; "READ SCRAP"
INPUT IVL: REM GET LENGTH OF INTERVAL BETWEEN POINTS STORED IN SCRAP

PRINT D$;"CLOSE SCRAP"

HOME

REM USER SHOULD NOW INPUT FILE NAME BY WHICH DATA WILL BE STORED
INPUT "INPUT FILE NAME TO SAVE DATA : ";N$

PRINT “SAVING: " ,N$
PRINT D$;"OPEN " ,N$

PRINT D$;"WRITE ",N$

FOR X = 1 TO 251
REM DATA STARTS IN LOCATION 24575 AND CONTINUES FOR 250 LOCATIONS
PRINT IVL * (X - 1), PEEK (24575 + X)
NEXT X
REM AT END OF PROGRAM USER IS RETURNED TO SECOND MENU

PRINT D$;"CLOSE ",N$

PRINT D$;"RUN MENU2"

END

-45-

the dakta point number minus one. Before the data are
stored, the uger is asked to apecify the file name under
which +the data will be saved on the disk (line 40). Once
this is done, the file is opened and the 250 data poinks,
along wikth +«he +times in +the run they were taken, are
saved. These daka poinks are followed by the infinitky
reading on the disk. This is <the end of the SAVER
program, and control is again passed back %o a menu, in
this case, the second menu containing +the data

manipulation programs.

3) DATA MANIPULATION

This interface package includes %¥wo programs for data
manipulation. The first program simply makes a plot on
the screen of the wuser specified data file, while the
second program calculates a first order rate constant and
makes the appropriate plot.

The program enkitled RPLOT (see figure 15) 1is used %o
make a rough plot of the data. The program is called from
the data manipulation menu. This program has a very
interesting feature. Not only does it wuse the high
resolution screen of the Apple computer, but it also

makes use of another program which allows letters and

numbers to be printed on that screen. This program is

called the High Resolution Character Generator (HRCG) and
is called immediately after entering RPLOT. Once the HRCG
is loaded into the Apples's memory and executed (line
10000), +the user is asked to specify which file he would
like printed (line 900). Once the data have been read
into the compuker, the screen is cleared and the axes are
drawn and labeled (the task of labeling the axis would
have been much more complex without the HRCG program).
Lines 210 +through 292 draw the actual plot with the
horizontal infinity 1line printed at the end. The data

from the file must be converted into perxrcent transmitkance

FIGURE 15

47

- RPLOT Program

LIST 0-360

REM AERER R RN B RAR RN R RN RN R R AR RS
REM * PROGRAM : RPLOT *
REM * PROGRAM TO MAKE A ROUGH PLOT *
REM * OF DATA TAKEN USING THE *
REM * STOPPED FLOW INTERFACE PACKAGE*
RERRARRRARRARRRR AR R AN AN RN RN
REM VARIABLES : TIME=time data point was taken
REM DT=ackual data poinkt, on a scale of 0 to 255
REM IViL=actual infinity value reading
REM N$=name of data file
10 REM LEHI=length of interval between data points
11 REM THIS PROGRAM READS A DATA FILE AND PRINTS A PLOT OF
12 REM TRANSMIT.vs,.TIME FOR THE DATA., FILE NAME AND INTERVAL LENGTH ARE

WONOUMh WN=O
wx
]
=

13 REM ALSO INCLUDED ON THE DISPLAY. THE USER HAS THE ABILITY
14 REM TO PRINT A HARD COPY OF THE PLOT IF SO DESIRED,
15 REM DIMENSION ARRAYS TO NUMBER OF DATA POINT PLUS INFINITY READING
16 DIM TIME(251)

17 DIM DT(251)

20 D$ = CHR$ (4)

25 REM ~e=mcceme-- LOAD HRCG====mmmeee

26 REM USE HIGH RES.CHAR.GEN, TO PRINT ALPHANUMERICS ON GRAPHIC PAGE
30 GOSUB 1000: REM LOAD HRCG

40 HOME

60 REM =—m-ce-e--o PLOT X + Y AXISe-mm=m==aa

70 HPLOT 28,21 TO 28,171 TO 278,171

80 REM MARKS OFF AXIS BY FIVES

90 FOR I = 21 TO 171 STEP 15

100 FOR M = 28 TO 278 STEP 10

110 HPLOT M, I

120 NEXT M

130 NEXT I

140 REM PLOT X HATCH MARKS

150 FOR L = 28 TO 278 STEP 10

160 HPLOT L,171 TO L,176

170 NEXT L

210 REM c—cccmcma-- PLOT DATA~-=—ee——e-

211 REM PLOT START AT LOCATION 28,21 ON SCREEN

220 Y1 = (100 * (DT(1) / 255) * 3 7/ 2) + 21

230 Xt = 28

240 FOR R = 2 TO 250

250 Y2 = (100 * (DT(R) / 255) * 3 / 2) + 21

260 X2 = R + 28

270 HPLOT X1,¥1 TO X2,Y2

280 X1 = X2:Y1 = Y2

290 NEXT R

291 IVL = (100 * (DT(25%) / 255) * 3 / 2) + 21

292 HPLOT 28,1IVL TO 278,IVL

299 REM w===-~~----SEE IF USER WANTS HARD COPYw—-m==c=e
300 GET G$

301 PRINT CHR$ (15); CHR$ (2)

310 HOME : TEXT

311 D$ = CHRS (4)

320 VTAB 12: HTAB 8: INPUT "WOULD YOU LIKE A HARD COPY ? :";Y$
330 ON Y$ = *YES" GOSUB 350

331 POKE ADRS + 10,0: POKE ADRS + 11,198

332 PRINT CHR$ (15); cens (25)

LIST 340-1120

340 PRINT D$;"RUN MENU2"

350 PRINT D$,"RUN EPSON PLOT"

360 RETURN

900 REM LOADS DESIRED DATA FILE FOR PLOT

910 HOME

940 INPUT "ENTER DESIRED DATA FILE. ";N$

941 A$ = N$

950 PRINT CK$;"LOADING DATA IN FILE : “;N$

960 PRINT D$;"OPEN *,N$

970 PRINT D$; "READ ",N$

980 FOR X = 1 TO 251%

982 INPUT TIME(X),DT(X)

983 NEXT X

984 PRINT D§$; "CLOSE "“,N§

985 PRINT CHRS (16): RETURN

986 RETURN

1000 REM =—=—-ceee——- LOAD DATA AND BRING IN HRCG--—==wwcw-a
1001 HGR : POKE - 16302,0

1010 GOSUB 10000: REM LOAD HIGH RES. CHAR. GEN,
1011 GOSUB 900: REM LOAD IN DESIRED DATA FILE TO PLOT
1012 PRINT CHRS$ (15); CHRS (1)

1015 CL = - 16336

1020 FLAG = 0

1021 REM ——cccwo—— LABEL AXIS+-we==e--=-
1070 D$ = CHRS (4):G$ = CHRS (7)

1100 CL$ = CHR$ (12): REM LOWER CASE
1110 CK$ = CHR$ (11): REM UPPER CASE

1120 CS$ = CHR$ (25): REM SHIFT

Liar

1120~10250

1120 C8% = CHR$ (25): REM SHIFT

1121
1122
1123
1125
1127
1129
1131
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
10000
10010
10020
10030
10040
10050
10060
10070
10080
10120
10130
10140
10200
10210
10220
10230
10240
10250

PRINT CHR$ (16)

VITAB 24: PRINT * 1 5 10 15 20 TIME"

VTAB 223 HTAB 2: PRINT "100"
VPAB 18: HTAB 3: PRINT "80°"
VTAB 14: HTAB 3: PRINT "60"
VTAB 11: HTAB 3: PRINT "40"
VTAB 7: HTAB 3: PRINT "20"
VTAB 3: HTAB 43 PRINT "O"
VTAB 4: PRINT CLS$;"s"

VTAB 6: PRINT CKX$;"T"

VTAB 7: PRINT CK$;"R"

VTAB 8: PRINT CK$;"A"

VPAB 9: PRINT CK§;"N"

VTAB 10: PRINT CK$;"s"

VTAB 11: PRINT CK$;"M"

VTAB 12: PRINRT CK$;"1”

VTAB 13: PRINT CK§$;“T"

VTAB 14: PRINT CK§;"A"

VTAB 15: PRINT CK$;"N"

VTAB 16: PRINT CK§;“"C"

VTAB 17: PRINT CKS$;"E"

VPAB 1: HTAB t4: PRINT CK$;"DATA FILE : ";N$

LEHI = (TIME(3) - TIME(2)) * 10
VTAB 2: HTAB 23: PRINT CK$;"(I";CL$;"VL :";LEHI;" SEC,)"

RETURN

REM PROGRAM TO LOAD HRCG

ONERR GOTO 10230

HOME :ADRS = 0

PRINT D$;"BLOAD RBOOT"™

CALL 520: REM EXECUTE RBOOT
ADRS = USR (0),"HRCG"

REM BRING IN HRCG
A =1

IF ADRS ° = 0 THEN ADRS = ADRS + 65536
CS = ADRS - 768 * A: HIMEM: CS
CH = INT (CS / 256):CL = CS - 256 * CH
POKE ADRS 4+ 7,CL: POKE ADRS + 8,CH
CALL ADRS + 3

POKE 216,0

RETURN

TEXT : PRINT “UNABLE TO LOAD"

POKE 216,0

END : REM END OF RPLOT

-48-

values before they can be plotted. This is accomplished
in line 250. After the graph has been made, the user must
push any key on the keyboard %o continue. A question
concerning the wuser's desire for a hard copy is then
asked. If the user answers yes, he will be taken into khe
EPSON PLOT program; any other answer will return the user
%0 the daka manipulation menu. The EPSON PLOT program is
a piece of commercial software, incorporated into the
interface package. Its operation is via a
self-explanatory menu.

There are several poinkts %o be made before moving on
to the calculation program., First, the HRCG program is
lengthy and not only takes time %o load but also %takes up

a fair amount of the computer's memory. Due %o this fack,

the user should not make a plok of every run, but instead

only of a representative sampling. The second point deals

with the plot itself. Due to the way the HRCG prints on
the screen, it is not possible to align all of the axis
labels

with the

appropriate %¥ick mark on the axis. For

example, with

the HRCG the user can only place a letter

in any one of 24 positions on the screen in the vertical

direction. With the graphics screen the user can place a

point at any one of close %o 200 locations. This

difference in flexibility causes the non-alignment of the

labels. The

final point %o be noted about HRCG concerns

its ability to print both upper and lower case

characters. By

typing cexkain con%rol symbols, the user

-49-

can type in either character set. Lines 1100 o 1120 sex
certain string variables %o the appropriate control
charactexs; note the use again of the CHR$ command.

After being returned %o the data manipulation menu,
the user may choose choice three, the calculation of a
firs® order rake constant. The program executed by the
menu is named CALC (see figure 16). This program takes a
data file and performs a linear least squares calculation
k0 determine +the best fit straight line. The program
firskt asks the reader for the desired data file (line
900). Once the file is loaded, the program begins the
calculation which takes approximately thirty seconds.
Again, since the daka stored in the file are not in terms
of percent transmitance, the appropriate conversions mnust
be made. After the best line is calculated, the results
are displayed on the screen and the program prompts the
user %o press any key to see a first order plot of the
data. However, before the plok can be made, two tasks are
performed by CALC. The first concexns the second use of
the scrap file. Originally, this file was used to store
the interval length between data points; now it will be
ugsed for a different purpose. Not only does the first
order plokting program need +*o know the kime interval
between points but it also must know the name of the data
file being used. To this end, lines 431 to 436 erase the
old values of SCRAP and record the name of the file being

used and +«he interval time between points. The second

~50-

FIGURE 16 - CALC Program

1LIST 0-290

0 REM RRERRRAANR RN RRARARRI AN AR AR Ak hd

1 REM * PROGRAM : CALC *

2 REM * PROGRAM TO CALCULATE RATE *

3 REM * CONSTANT AND INTERCEPT USING *

4 REM * LINEAR LEAST SQUARES FIT *

5 REM HARRRN R RN RN R AR AR R AR AR R RN RN

6 REM VARIABLES : TI=infinity transmitance value

7 REM AI=infiniky absorbance value

8 REM T,A=transmitance and absorbance of point x
9 REM N=number of points to use in calculation

10 REM CALCULATE BEST FIT STRAIGHT LINE FOR DATA POINTS IN A FIRST
11 REM ORDER KINETIC PLOT. SLOPE IS -RATE CONSTANT AND INTERCEPT
12 REM IS Ln(Ai-AQ0).AFTER PROGRAM IS FINISHED IT CALLS THE PLOTTING PGM

13 DIM C(251),R(251):D$ = CHR$ (4): GOSUB 900
14 HOME :N = 0:D$ = CHRS$ (4)

15 HOME : VTAB 13: HTAB 14: PRINT "CALCULATING"
110 REM CALCULATE DATA VALUES-=-=- —————
111 TI = (R(251) / 25%5) * 100

112 AI = 0 - (LOG (PI) / LOG (10))

120 FOR X = 1 TO 250

140 T = (R(X) / 255) * 100

141 IF ABS (TI - T) ° 2 GOTO 180

142 N = N + 1

150 A = 0 - (LOG (T) / LOG (10))

160 R(X) = LOG (AI - A)

170 NEXT X

175 REM ecwecccc=a CALCULATE BEST FIT LINE-w-wecemaaa-

176 REM VARIABLES : C{X):time of point x

177 REM R{X):transmitance of point x

178 REM M:best slope

179 REM B:best intercept

180 REM CC:correlation coeficient

181 REM VX,VY:variance in x and y data points

182 REM USE LINEAR LEAST SQUARES TO FIND BEST FIT LINE.

183 REM MAKE USE OF STRING COMMANDS TO PRINT ONLY THREE MOST
184 REM SIGNIFICANT DIGITS.N IS THE NUMBER OF DATA POINTS TO BE
185 REM USED IN THE ANALYSIS, N IS FOUND BY COLLECTING ALL
186 REM OF THE DATA POINTS THAT DIFPFER BY 2 TRANSMITANCE

187 REM UNITS FROM THE INFINITY READING.

188 SY = R(1)

190 sX = C(1)

200 XY = R(1) * C(1)

210 Y2 = R(1) * R(1)

220 X2 = C(1) * C(1)

230 FOR J = 2 TO N

240 SX = SX + C(J)

250 SY = SY + R(J)

260 XY = XY + R(J) * C(J)

270 X2 = X2 + C(J) * C(J)

280 Y2 = ¥2 + R(J) * R(J)

290 NEXT J

LIST 290-980

290 NEXT J

300 M = (N * XY - SX * SY) / (N * X2 - SX * SX)

310 B = (X2 * S5Y - SX * XY) / (N * X2 - SX * S§X)

320 VX = (N * X2 - SX * SX) / (N * N)

330 VY = (N * Y2 - SY * SY) / (N * N)

340 CC = (M * SQR (VX)) / (SQR (VY))

345 REM -~-cocwcwe-- PRINT RESULTS-==mceacaa-n

350 HOME : PRINT : PRINT

360 M$ = STRS (M)

370 B$ = STRS (B)

380 cc$ = STRS (cC)

390 PRINT "THE SLOPE IS :"; LEFTS$ (MS$,5)

400 PRINT "THE INTERCEPT IS :"; LEFT$ (BS$,5)

410 PRINT "THE CORRELATION COEF, IS :"; LEFT§ (CCS$,5)
420 PRINT : PRINT

425 REM =—ecoe—a—o—-o MOVE INTO PLOTTING PROGRAM-—=—me-=-e=-
426 REM PLACE DATA FILE NAME AND INTERVAL LENGTH IN SCRAP FILE
427 REM THIS INFORMATION WILL BE USED BY CALCLABEL PROGRAM
430 PRINT "PRESS ANY KEY TO SEE PLOT": GET G§

431 PRINT D$; "OPEN SCRAP"

432 PRINT D$; "DELETE SCRAP"

433 PRINT D$;"OPEN SCRAP"

434 PRINT D$; "WRITE SCRAP"

435 PRINT N$: PRINT (C(4) - C(3)) * 10

436 PRINT D$;"CLOSE SCRAP"

437 PRINT D$;"RUN CALCLABEL"

438 END : REM END OF SLOPE CALCULATION PROGRAM

890 REM -——wme-ee-- GET DATA ---c-m=c---

900 HOME : INPUT “ENTER DESIRED DATA FILE : ";N$

901 D$ = CHRS (4)

210 PRINT "LOADING DATA FILE : “;N§

920 PRINT D$;"OPEN “;N$

930 PRINT D$;"READ ";N$

940 FOR X = 1 TO 251

950 INPUT C(X),R(X)

960 NEXT X

970 PRINT D$;*CLOSE ";N§

980 RETURN

]

-51-

task of the <calculation program is %o call its sister
program (CALCLABEL) which actually draws the plot.

CALCLABEL (see figure 17) is loaded in place of CALC
and can only be executed from the CALC program. This
program is very similar %o the rough plotting program
discussed earlier. The high resolution character
generakor is also used ko label the axes. The first kask
in +this program is to read the SCRAP file in order %o
determine which data file %o plot and the interval length
between points. This is accomplished in lines 900 through
930. After wusing +%he SCRAP file, the program reads the
correct data file and converk%s the data into absorbance
units. Since this is a first order plot, the natural log
of the difference between the absorbance at time infiniky
minus +the absorbance at +time % must be calculated
(in(Aif-at)).

The program then clears the screen and plots all of
the points that fall within a range of zero and negative
three on the Y-axis. This usually includes ak least 80%
of the points. As in the other plotting program, the user
has the option of obtaining a hard copy of the plot. If
the user answers yes, the EPSON PLOT program is executed;
all other answers will cause the return of control o the
data manipulation menu.

There 1is one final program which does not appear on
any of the menus but is useful %o the interface package.

It is enkitled DATA PRINT (see figure 18) and can only be

FIGURE 17

- CALCLABEL Program

LI

VOO AWN-=O

447
448
449
450
451
452
453
454
460
470
480
490
510
530
531
532
533
534
535
540
550
560
570
580
590
600
610

ST 0-610

REM Rk AXau sttt bRkt hhhahan
REM * PROGRAM : CALCLABEL *
REM * PROGRAM TO DRAW FIRST ORDER *

REM * KINETIC PLOT OF DATA FILE N§ ¢
REM RN XRR kR RN RN RNRRRRRARARR R K

REM VARIABLES : R(X)=data point x

REM LEHI=length of interval, from SCRAP
REM Ns=file name of data, from SCRAP
REM F=filler variable for time data

REM THIS PROGRAM USES THE HIGH RESOLUTION CHARACTER GENERATOR
REM PROGRAM IN ORDER TO PLACE ALPHANUMERICS ON THE
REM GRAPHIC SCREEN.SEVERAL CONTROL KEYS ARE USED IN THAT SECTION
REM AND ARE EXPLAINED THERE,PROGRAM FIRST DRAWS AXIS AND
REM THEN PLOTS POINTS.THIS PROGRAM IS LINKED TO CALC
REM AND CAN ONLY BE CALLED THROUGH IT.

DIM R(251)
REM READ IN DATA AND HIGH RESOLUTION CHARACTER GEN,
GOSUB 1000

HOME :N = 250

REM ——cemcaaa- LABEL AXIS-me=——eaa-

VTAB 22: PRINT " 1 5 10 15 20"
VTAB 2: HTAB 3: PRINT “0"

VTAB 8: HTAB 2: PRINT "“-1"

VTAB 14: HTAB 2: PRINT "“-2"

VTAB 21: HTAB 2: PRINT *-3"

VTAB 23: HTAB 17: PRINT "TIME"

VTAB 1: HTAB 16: PRINT "DATA FILE : ";N$
VTAB 4: PRINT * L"

VTAB 5: PRINT * O"

VPAB 6: PRINT " G"

VFTAB 10: PRINT "(A";CL$;"I";CK$

VTAB 11: PRINT * ="

VTAB 12: PRINT "A";CLS$;"T";CK$;")"

VTAB 23: HTAB 23: PRINT " (I";CL$;"VL :";LEHI;* SEC.)"
REM PLOT X AND Y AXIS

HPLOT 28,10 TO 28,160 TO 278,160

REM MARK OFF AXIS BY FIVES

FOR I = 10 TO 160 STEP §

HPLOT 27,I TO 29,I

NEXT I

FOR I = 10 TO 160 STEP 5§

FOR M = 28 TO 278 STEP 10

HPLOT M, I

NEXT M

NEXT I

REM PLOT X AXIS HATCH MARKS

FOR L = 28 TO 278 STEP 10

HPLOT L,160 TO L,165

NEXT L

REM PLOT 1 UNIT HATCH MARKS ON Y AXIS
FOR I = 10 TO 160 STEP 50

HPLOT 25,I TO 28,1

NEXT I

LIST 620-980

620 REM =——wewceeoo PLOT DATA POINTSewc-me———-
621 REM IF A DATA POINT IS LESS THAN ZERO OR GREATER THAN 3
622 REM DON'T PLOT IT. IT IS OUTSIDE AXIS OF GRAPH.
630 FOR X = 1 TO N

640 IF R(X) ° = 0 GOTO 660

650 NEXT X

655 REM GRAPH IS AT LOCATION 10,28 ON SCREEN

660 Y1 = =~ ((150 / 3) * R(X)) + 10

670 X1 = 27 + X

680 FOR Y = X + 1 TO N

690 Y2 = - ((150 / 3) * R(Y)) + 10

691 IF R(Y) * = 3.0 GOTO 740

700 X2 = 27 + Y

710 HPLOT X1,YV1 TO X2,Y2

720 X1 = X2:Y1 = ¥2

730 NEXT Y

732 REM USER 1S FINISHED LOOKING AT PLOT

740 GET G§$

750 PRINT CHR$ (15); CHR$ (2)

760 HOME : TEXT

770 D$ = CHR$ (4)

775 REM =——wcccmea- ALLOW USER TO GET HARD COPY--—eeemae-
780 VTAB 12: HTAB 6: INPUT "WOULD YOU LIKE A HARD COPY? 1 ",v¥§
790 ON ¥$ = "YES" GOSUB 830

800 POKE ADRS + 10,0: POKE ADRS + 11,198

810 PRINT CHR$ (15); CHR$ (25)

820 PRINT D$;"RUN MENU2"

830 PRINT D$;"RUN EPSON PLOT*

840 END : REM END OF CALC PLOTTING PROGRAM

900 REM ~ecomeaaao LOAD DATA INTO PROGRAM-ww——wee—-o
901 PRINT D$; "OPEN SCRAP"

902 PRINT D$; "READ SCRAP"

903 INPUT N$: INPUT LEHI

904 PRINT D$; "CLOSE SCRAP"

920 PRINT D$; "OPEN ";N$

930 PRINT DS$; "READ ";N$

940 FOR X = 1 TO 251

950 INPUT F,R(X)

960 NEXT X

961 PRINT D$;"CLOSE ";N$

962 HOME : VTAB 13: HTAB 14: PRINT "CALCULATING"

969 REM =mec;ee—ao CALCULATE POINTS TO PLOT-=-cocau--
970 PRINT D$;"CLOSE ";N$

971 TI = (R(251) / 255) * 100

972 AI = « (LOG (TI) / LOG (10))

973 FOR X = 1 TO 250

974 T = (R(X) / 255) * 100

975 IF ABS (TI - T) ' 2 GOTO 979

976 A = ~ (LOG (T) / LOG (10))

977 R(X) = LOG (AI - A)

978 NEXT X

979 N = X - 1

980 RETURN

LIST 980-10250

980

999

1000
1010
1011

1012
1013
1020
1030
1031

i 1039
1040
1050
1060
1120
10000
10010
10020
10030
10040
10050
10060
10070
10080
10120
10130
10140
10200
10210
10220
10230
10240
10250

1

RETURN
REM =mwwecceoo
HGR : POKE =

GOSUB 10000
GOSUB 900
PRINT CHRS$ (1
CL = = 16336
FLAG = 0
D$ = CHR$ (4)
G$ = CHR$ (7)

REM CL$ AND CK$ CAUSE LOWER AND UPPER

CL$ = CHRS (12
CK$ = CHRS (11
PRINT CHR$ (1
RETURN
REM PROGRAM
ONERR GOTO 1
HOME :ADRS =
PRINT D$; “*BLO
CALL 520: REM
ADRS = USR (0O
REM BRING IN
A =1
IF ADRS
CS = ADRS - 76

-~

CH = INT (CS / 256):CL = CS ~ 256 * CH

POKE ADRS + 7
CALL ADRS + 3
POKE 216,0
RETURN

TEXT : PRINT
POKE 216,0
END

LOAD HeR.C.Gommmomm=men
16302,0

5); CHRS (1)

)
)
6)

TO LOAD HRCG
0230
[
AD RBOOT"
EXECUTE RBOOT
), *HRCG"
HRCG

8 * A: HIMEM: CS

+CL: POKE ADRS + 8,CH

"UNABLE TO LOAD"

CASE LETTERS TO BE PRINTED

= 0 THEN ADRS = ADRS + 65536

=53~

FIGURE 18 - DATAPRINT Program

JLIST

1 REM RARRARRN AR R R RN AR R R R ARNR AR NN R

2 REM * PROGRAM : DATAPRINT *

3 REM * PROGRAM TO PRINT OUT RAW DATA *

4 REM * OF A RUN, USER CAN INPUT *

5 REM * DESIRED RANGE TO PRINT. *

6 REM RAERR AN AR AN RN RRRR AR RARA R RN RN RR

7 REM VARIABLES: TIME :Axrray %o hold %ime of data point
8 REM DT : Array to hold actual .ata poink

9 REM N$: Name of data file

10 REM PROGRAM TO READ AND PRINT DATA DEPENDING ON USER PARAMETERS
20 D§$ = CHRS (4)

30 DIM TIME(251),DT(251)

31 REM GET NAME OF DATA FILE

32 REM c-ccccee-o LOAD DATA-~===co=w--

40 HOME : INPUT "ENTER DESIRED DATA FILE :";N$
50 HOME : VTAB 12: HTAB 10: FLASH

60 PRINT "LOADING PILE:";N$

61 NORMAL

69 REM LOAD DATA INTO COMPUTER

70 PRINT D$;"OPEN ";N$

80 PRINT D$;"READ ";N$

90 FOR X = 1 TO 251

100 INPUT TIME(X),DT(X)

110 NEXT X

120 PRINT D$; "CLOSE “;N$

125 REM «--ccmcaaa PRINT DATA-==c-meww==

130 HOME : PRINT "ENTER STARTING & ENDING PTS."
140 HTAB 4: PRINT "AND STEP SIZE"

141 REM A,B AND C ARE THE STARTING,ENDING AND STEP SIZE
150 VTAB 8: INPUT "STARTING POINT :%";A

160 VTAB 10: INPUT "ENDING POINT :";B

170 VTAB 12: INPUT "STEP SIZE :";C

171 HOME : VTAB 4

172 PRINT "POINT # TIME(SEC) STRANS"

173 PRINT "-cce--o e ———————— ——————

174 PRINT

180 FOR Q = A TO B STEP C

185 REM CONVERT DATA POINTS TO TRANSMITANCE
189 T = (DT(Q) / 255) * 100

190 PRINT " ;0" "3} TIME(Q);" "3T
199 PRINT : PRINT

200 NEXT Q

210 END : REM END OF DATAPRINT PROGRAM

-5l

run from the cursor mode of the Apple. The purpose of
this program is to allow the user to obtain a listing of
the actual data poinks of the run. The program initially
asks the user for the name of the data file %o use. This
is followed by %three questions., The first question asks

the wuser +to specify the data point the computer should

use to start the listing; the second question asks how
many points to skip between those listed, and, finally,
the computer must be told the number of the point ending
the listing. Once this is done, the computer makes the
appropriate listing of points. This listing allows the

user %o check how well the interface package is operating

or to use these data for non-first order fits.

III. SAMPLE RUN

In ordexr to test the validiky of the stopped flow
interface package, +the kinetxics of formation of blue
peroxychromic acid was studied. This reaction has been
studied extensively? and is known to follow first order

kinekics. The reackion envolves the mixing of the two

solutions shown below :

SOLUTION A
10 ml. 0.005 M K Cr ©

5.0 ml. 0.50 M HNO,

SOLUTION B

1.0 ml. 1.0 M H,0,

5.0 ml. 0.50 M HNO,

Each of these solutions were then diluted to a volume of
50.0 ml with wakter. The %wo solutions were each placed in
a syringe on the stopped flow instrument. When these two

solutions are mixed, they undergo the following reackion

HCxr04 + 2 H202 + H+ --- CrO5,.H20 + 2 H20

This reaction is followed a%t 580 nm. where the
Peroxychromate complex has a strong absorption band.

Four runs were made with data recordad by the
computer and the oscilloscope. The collection time given
the computer varied from 0.250 seconds to &wo seconds and
the infinity delay +time varied accordingly. The daka
taken from the four runs are shown in figure 19, The
results of these runs are summarized in figure 20. All of
the runs show very good agreement, with a maximum
absolukte difference of 1.2 transmitance units and with
many of the readings agreeing exactly.

The error associated with reading the oscilloscope is
at least one percent transmikance unit; the error in the
A/D reading of the data signal is one unit in 255. If we
keep in mind +the fac% that the power supply has a
consistent tendency to drift to lower voltages, the
values determined by %he interface package are equal to
those derived from the data displayed on the
oscilloscope. This data cannot be compared to previously
published literature values due to several reasons. Among
these reasons is the fact that the temperature of the

solutions was not kept at a constant 25.0 degrees

centigrade, and the concentration of the acid solution

was not standardized. Although a comparxison to literakure
is not possible, the wvalidity of the data 1is not

jeopardized by this fact. As long as the computer matches

-57-

FIGURE 19 - Data from Test Run

TIME (msec)

20
40
60
80
100
120
140
160
180
200

INFINITY

RUN TIME :

INFINITY DELAY

0.250 seconds

: 0.999 seconds

TRANSMITANCE (%)

SCOPE
97

920

82

76

71
66.5

63

57.5
55
53

39

COMPUTER

96.1

90.2

82.4

75.7

71.2

65.9

62.4

59.2

56.5

54.5

52.5

38.4

TIME (msec)

20
40
60

80

160
180
200

INFINITY

RUN TIME : 0.500 seconds

INFINITY DELAY : 0.750 seconds

TRANSMITANCE (%)

SCOPE
97.3
90
82.5
76
70.5
66.5
63
59.8
57.5
55.0
53.5

39

COMPUTER

96.1

90.2

82.4

75.7

70.6

65.9

62.4

59.2

56.5

54.1

52.2

38.0

TIME (msec)

20

40

60

80

100

120

140

160

180

200

INFINITY

RUN TIME : 1.00 second

INFINITY DELAY : 0.250 seconds

TRANSMITANCE (%)

SCOPE

96.5

90

82

75.8

70.5

66

62.5

59.5

57

54.5

52.5

39

COMPUTER

95.3

89.8

82,0

75.7

70.2

65.9

62.4

59.2

56.1

54.1

52.2

38.0

TIME (msec)

20
40
60
80
100
120
140
160
180
200

INFINITY

* Due %o interxrval kinme,

RUN TIME : 2.00 seconds

INFINITY DELAY

sCr

96.4

89.3

82

75.3

70

66

62.2

59

56.4

54

52.3

39

manual

ANSMITANCE (%)

data was not% available.

COMPUTER

94.9

-

82.0

70.2

62.0

55.7

51.8

37.6

FIGURE 20 - Results of Test Run

RESULTS

RUN NUMBER :

OSCILLOSCOPE
Slope
Intexcept

Corr. Coeff.

COMPUTER

Slope

Intercept

Corr. Coeff.

-5.28

-0.902

-0.999

-59-

what is displayed on the oscilloscope, it is performing

correctly (assuming of course that the oscilloscope is

correct).

Although this interface package appears %o be
complete, <there are several enhancements which may be
desirable. There are four specific tasks that if pursued
would make this interface package complekte. Several of
these are trivial while the fourth is fairly substantial.

At this point in the interface package, the only
printer that can be used %o print a hard copy of either
plot is the Epson MX-80., The department has in iss
possesion an Apple Silentype prinker. This printer will
allow the high resolution screens %o be printed as long
as the proper printing program is active. In the future

the user should be given the option of specifying which

prinker, if any, 1is connected to the system. This

requires minorx alteration in the software of the
interface package and should be easy %o accomplish.

The second improvment can be found at the end of the
CALC program, At the end of this program the user is
asked %o press any key to see a first order kinetic plot.
Instead of automatically being sent into the plotting
program, the wusexr should have a choice of making a plot
or not. This enhancement also is fairly &rivial and
should be incorporated into the package.

AX no point in the program is the user given the
option of 1listing the raw data points. The DATA PRINT
program should be an option in the data manipulation

menu. There may be some point were the user may be

-61-

studying a reackion that does nos follow first order

kinetics, and he may want to use the stopped flow

interface to take data. At the present time the user does
not have the abiliky to simply lis& the data of a given
run. Also, this improvment should not be too difficult.

The final enhancement 4is much more difficult %o
incorporate into the package. As stated earlier, the
stopped flow interface package may be used in the future
for reactions that are nokt first order. The interface
package could be made much more powerful if it could
calculate rate constants for non first order reactions.
This would require a large amount of additional
programming, but should fit easily into the scheme used
in this project.

Appendix one of this repor% contains a detailed
manual describing the use of the stopped flow interface.
Also incl“ded within +the manual are sample outputs

produced by the interface programs.

-62-

SECTION IV: Users Manual

UNB82 LABY, D_ M. THE APPLE II/STOPPED FLOW , ETC.
L127a/1983 CHEMISTRY 5/83 SHT.20OF 2

ENEREEEN:

This manual, in a step by step fashion, is designed
%0 teach the readexr how to use the STOPPED FLOW INTERFACE
PROGRAM. There are %wo parks %o this interface. Before
taking data, the user must make the necessary external
connections between the instrument and the computer. Once
all of the external connections are made, the user makes
use of +the compuker to set the necessary pre-conditions
for the interface. Finally, the user has the option, %o
take data from the inskrument or %o analyze, with some of
the other programs included 4in the interface package,
data taken previously.

Inikially, the hardware configuration of the
interface must be set. This %task involves five differenk
components: the stopped flow instrument with
oscilloscope, +the Apple computer, the power supply, the

stopped flow interface box, and the interface disk.

I. EXTERNAL CONNECTIONS

1) using <the banana plugs provided connect the power
supply to the interface box. Fox example, the connection
port labeled ros. 15 V. on the power supply should be
connecked to the port on the interface box labeled +15 v.
When all <the connections are made one of the GROUND
conneckions on the power supply will remain unused (see

fig 1).

2) Before turning +the power supply on, the user should
conneck the stopped flow instrument %o the interface box.
This is accomplished by connecting the long cords from
the "T" bar connection on the oscilloscope to the labeled
points on the interface box. For example, the trigger
line on the oscilloscope should be connected to the

trigger position on the interface box, etc.

3) The final connection is between the interface box and
the Apple computer's A/D board. This %ask is accomplished
by connecting the ribbon cord located behind the computer
to the side of the interface box. At this point all of
the connections have been made which will enable the

Apple to collect data from the stopped flow instrument.

4) The final task in initialization involves turning all

POWER SUPPLY

O GROUND -15 v.

light -
CHEMISTRY DEPARTMENT
O POS. 5 v. POWER SUPPLY
O NEG. 15 v.
O POS. 15 v,
ON
GROUND
INTERFACE BOX (CIRCUIT)
TRIGGER
+5 v,

O

INPUT +15 v,

power switches o0 the on position. This includes: the

power supply for the stopped flow, the oscilloscope, the

power supply for the interface box, the video monitor on
the computer and finally the compuker itself (this should
only be done after the user has placed the interface disk
into the disk drive). At this point the user should see a

menu on the video monitor of the computer (see fig.2)

MANIPULATION OF DATA PROGBRAMS

1.STORE NEW DATA

2.FLOT RAW DATA

2.CALEULATE FIRST ORDER RATE CONSTANT

4.60 BACK TO MENU 1

S.auIT

ENTER A NUMBER AND FRESS RETURN. 1

The user is now 4in position %o 'SET UP' the
conditions for the intxerface. This consists of %wo tasks;
firstly, +%he user must be certain t¥hat the stopped flow

instrumens and the computer are grounded at the sanme

point, and, secondly, the user must sekt a ten volk range

on the computer using the power supply for the
photomultiplier. once this 4is accomplished on the
computer, the user can then adjust the oscilloscope if

desired to the proper sekttings.

1) Press opk¥ion one on the menu program (lLabeled SET UP).
The user should now see a nevw picture on the video
monitor(see figure 3). By wurning the fine offset knob on
the photomultiplier power supply, the user should adjust
the voltage reading on the screen %0 be between zero and
.1 volts (optimally 4this value should be flashing between
0 and .03 voles). This procedure has the effect of

grounding the PMT and the computer at the same potential,

2) The interface box is deasigned to accept a potential
petween ground and ten volis, In the previous step ve
have set the ground; we gherefore must now set the ten

voltage maximum output of the PMT. By first turning the

SET-UF PROCEDURE

FROCEDURE TO COUPLE COMPUTER TO PMT.

INCREASE OFFSET ON PHOTOD-
METER UNTIL VOLTAGE ON COMPUTER
IS 0 TO .1 VOLTS (FLASHING).
VOLTAGE @ 8.2

PRESS SPACE BAR TO RETURN TO MENU

course adjust and then the fine adjusk, set the voltage

on the computer %o as close %o a constant 10 voles as

possible. Once again there is an optimal value here; the

optimum is achieved when the monitor has between a 10 and

a 9.9 volt display flashing on and off.

III. A TYPICAL RUN

At this point we are ready %o begin saking data. This
manual assumes the reader is already familiar with the
use of +«he stopped flow insktrumenk. The most efficient
way %o demonsirate the use of the interface software is

%0 lead the user through a typical run.

1) DATA ACQUISITION

Enter the number 2 on the menu for data acquisition.
At this point the computer will ask two questions (see
figure 4). The firsk question determines the length of
time +the computer will take data. This value can range
from .250 seconds +to 249 seconds. If the user enters a
value of less +than .250 the computer will re-ask the
queskion. The second question deals with the amount of
time the computer should delay before taking an infinity
reading. The user may enter a value between 1 and 999 as
the number of milliseconds the computer will
automatically wait, or, if so desired, the user may chose
a manual infinity value; 4in +%his case, a value of 0
should be entexred. A manual infinity value causes the

pProgram to prompt the user as to the point in time to

take a value. After the run is over, a promp% line will

DATA ACQUISITION PROGRAM

ENTER LENGTH OF RUN IN SECONDS : .4
INFINITY VALUE OFTION

1.ENTER © FOR MANUAL INFINITY valLue

2.ENTER DELAY TIME (1-999 MILLISEC.)

INPUT DESIRED TIME (0=299): 200

START‘RUN‘NHEN‘RED‘LIGHT‘GOES‘DFF

vii
be printed on the monitor telling the user how to record
the infinity value. After the run conditions are set, the
computer states when it is ready to begin the run;
anytime after +this, +the user may begin the run by

depressing the plunger button on the stopped flow.
2) SAVE DATA ON DISK

Once the run has ended, the disk drive will spin for
a few seconds, and another menu (see figure 5) will be
printed on the screen. The first task that must be
performed with the data set is %o save it permanently on
the disk (WARNING: failure %o save data at this time may
resulk in loss of data, see figure 6). This is
acconplished' by entering the number one for saving data
and pressing the return key. The program will ask the
user %o enter a name under which the data for the run
will be stored. This name can consist of either numbers
or letters and may include any key on the keyboard
(except a comma and +the first character must be a
letter). One must keep in mind that using a name already
used ¢o save data will resul% in the loss of the old
data, with the new data stored in its place. The computer
will require about 45 seconds to save all of the data
after which it will return the user %o the menu, At this
point, the wuser is free o examine the data in several

different ways or shut the system down and return at a

MENU FOR STOFFED FLOW INTERFACE

1.SET uP

2.DATA COLLECTION

I.MANIFULATE DATA

4.QUIT

ENTER A NUMEER AND FRESS RETURN. 3

SAVER PROGRAM

INPUT FILE NAME TO SAVE DATA : TEST1
SAVING:

TEST1

viii

later date to examine and manipulate the data.

3) EXAMINE DATA

The most 1logical item to execute after storing the

data set on the disk is 4o 1look at it in a plot of

transmitance versus time. This is accomplished by

pressing choice 2 on +the menu and answering the
subsequent questions(see figure 7)., The program will ask
the user for a file name. Care should be taken to enter
the correct name, since the ploktting program takes a few
minutes *o load completely. After the computer has made a
plot of the data, the user has the option of making a
hard copy print-out of the picture. The user simply
presses any key %o be prompted by the question concerning
a permanent record of the picture. If the user desires a
hard copy, %he computer must be hooked up %o the Epson
printer and the printer must be turned on. By answering
nc to the question concerning a hard copy the user can

return %o the menu,

4) CALCULATE RATE CONSTANT

This part of the inkerface assumes %that %the user is
working undexr conditions which are first order with
regspect %o a given reackion (see figure 8). From the

menu, enter the number 3 to calculate the first order

DATA FILE :
(Ivl :.82 sec.?

-

MOZ D~ ZNZ D0

1aar1. 1 hl Illlbl 1 &él 1 'éB'+th1

ENTER DESIRED DATA FILE : B2
LOADING DATA FILE : B2

CALCULATING

THE S'OPE IS :-5.28
THE INTERCEPT IS :-.902
THE CORRELATION COEF. IS :1-.999

PRESS ANY KEY TO SEE PLOT
OPEN SCRAP

ix
rate constant (if by chance you find yourself in the
first menu , also entexr 3 %0 move %o the data
manipulation programs which are located on the second
menu). This program will ask the user %o enter a file
name for the data he wishes %o use; once entered, the
computer will require about a minute %o complete the
proper calculation and pringk the desired rate
information. Once again the computer will make a first
oxdex plo% of the data (see figure 9); this is
accomplished by pressing any key after the computer has
printed out the information as %o the best fit line for
the daka. After the plot has been made on the screen, the
user has the option of producing a hard copy of this
picturxe., The questions are identical %o those used above

in the rough plot program. In any case, after the user

has ended this program he will be returned to the menu.

DATA FILE : B2

T)
1 5 i8 15 28
IM : ' ze

IV. GENERAL GUIDLINES

There are a few general guidelines that are helpful
in using this interface package. The user should keep in
mind %*hat all menu items return the user to the menu
after execution. 1In fack, there are %¥wo different menus
in +this package. The first menu allows the user to set
the initial conditions for the interface and %o colleck
data, while the second menu includes all of the data
manipulation programs., When +the system is started the
first menu will be automaktically displayed, after which
the user may chose the desired task. If the user finds he
has accidently left the program for any reason he may
recover by typing RUN SF-INTFCE from the cursor mode, If
all else fails +the system can be re-started by turning
the computer off +«hen on with the interface disk in
place. This will bring the user back to the first menu.
There is one drawback %o this method: by turning the
computer off the wuser will lose any data which has not
been stored on the disk (data not saved with choice one

on menu ¥wo),

INSTRUCTIONS FOR USE OF THE
STOPPED FLOW INTERFACE

I. Hardware (Elecironic Connections)

1.Parts i
a)Stopped Flow Instrument with Oscilloscope
b)Apple Computer
c)Power Supply
d)Stopped Flow Interface box
e)Interface disk

2.Connections 1
a)Using banana plugs connect all labeled points
between jnterface box and power supply.

b)Comneet trigger and input leads from oscilloscope
to interface box.

¢c)Connect A/D plug from Apple Computer to side of
interface box.

3.Initialization
a)Place program disk into disk drive
b)Turn on Video Monitor

c)Turn on Apple Computer(switch on back)
Jd) Follow Set-vp routine.

NOTE + At this point a menu should appear on the screen

II. Software (Computer programs)

A TYPICAL RUN
NOTE i1Knowledge of the use of the Stopped flow Instrument
is assumed.

1.Data Acquisition
a)Enter number 2 (Data Collection) from Menu.
b)Enter length of time computer should take data(less
then 250 seconds)

¢)Enter delay time to take "infinity" reading

1)If zero is entered computer will wait for user
to press any key to take infinity reading (manual)

i1)If 1-999 is entered computer will wait the
specified number of milliseconds.

d)When red light on disk drive goes off, start reaction.

2.Save Data on Disk
a)Enter number 1 (store new data) from menu.
t)Enter name under which you want data to be stored.
NOTE: Entering a name already used will cause replacement
of old data by the new.
3.Examine Data 1
a)Enter 2 (plot raw data) from menu
b)Enter name of desired data file (used in 2 above)
¢)Disk drive will spin for about a minute before plot
is displayed on screen.
d)After viewing plot, press any key to move on.
e)Answer YES to hardcopy question if desired.
NOTE: Apple must be connected to printer and printer
must be turned on.
f)If answer is NO, computer will return to menu.

4.Calculate Rate Constant
a)Enter 3 (Calculate first order rate constant) from menu.
b)Enter name of desired data file (used in 2 above)
¢)Computer will take about 30 seconds to calculate,
d)Follow directions on screen to see plot of data.

5.General

a)All menu items return user to menu at end of procedure.

b)There are two menus - They can be mutually accessed.

¢)If you are in Apple Cursor mode (a) followed by a flashing
star) type RUN SF-INTFCE and press return.

d)If all else fails... turn computer off then on again.
NOTE: This will result in a loss of any data not already

stored on disk (with store new data option),

REFERENCES

(1) A/D + D/A Operating Manual, Mountain Compuker Inc.,
1980

(2) Apple Clock Operating Manual, Mountain Computer
Inc., 1980

(3) Aminco-Morrow Stopped-flow Apparayus, N0.4-8409
Instruckion No.939, 1969

(4) Kepco Voltage Regulated DC Power Supply; Instruction
manual, Kepco Inc,., 1967

(5) 6502 Software Design, Leo J. Scanlon; Howard Sams &
Co., Inc, 1980

(6) Apple II Monitors Peeled, Apple Computer Inc., 1981

(7) Apple 6502 Assembler/Editor, Apple Computer Inc.,

(8) The DOS Manual, Apple Computer Inc., 1980,1981
(9) Apple II Reference Manual, Apple Computer Inc., 1979

(10) Basic Programming Reference Manual, Apple Computer
Inc., 1978

(11) a. Howlekt, K.E.; Sarfield, S. J. Chem. Soc. (A),
1968,683 and b. Linge, H.G.; Jones, A.L. Austral., J.
Chen., 1968, 21, 2189 and c. Haight, G.P.; Richardson,
D.C.,; Coburn, N.H. Inorg, Chem., 1964,3, 1777 as referred
%¥0 in Chemistry 150 laboratory experiment: The Kinetics
of Forxmation of Blue Peroxychromic Acid in Aqueous
Solution, Union College, 1982.

K3

