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ABSTRACT 

GEIGER, MICHAEL    2018 IEEE Signal Processing Cup: Forensic Camera Model 
Identification Challenge. Department of Electrical Engineering, June 2018 

 
 ADVISOR: Professor Luke Dosiek 
 
 The goal of this Senior Capstone Project was to lead Union College’s first ever Signal 

Processing Cup Team to compete in IEEE’s 2018 Signal Processing Cup Competition. This 

year’s competition was a forensic camera model identification challenge and was divided into 

two separate stages of competition: Open Competition and Final Competition. Participation in 

the Open Competition was open to any teams of undergraduate students, but the Final 

Competition was only open to the three finalists from Open Competition and is scheduled to be 

held at ICASSP 2018 in Calgary, Alberta, Canada. Teams that make it to the Final Competition 

will be competing to win a grand prize of $5,000. The goal of this year’s competition required 

teams to build a classification system that used a combination of various signal processing, 

machine learning, and image forensic techniques in order to determine the make and model of 

the camera used to capture a digital image both before and after that image has been post 

processed. IEEE provided competing teams with an image database consisting of ten different 

camera models and 275 images accompanying each camera for teams with which to use to train 

their classification systems. This senior project design report focused on the proposed 

classification system design that was implemented and submitted on behalf of Union’s Signal 

Processing Cup Team. The chosen classification system design used methods of re-sampling and 

re-interpolating in order to build feature spaces based on the relative differences of the original 

and reconstructed images from the provided image database. These feature spaces were then 

used to train machine learning classifiers in order to develop an ensemble-based decision fusion 

to identify camera source. Through the completion of this project, students competing in the 
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IEEE Signal Processing Cup gained experience using signal processing, machine learning, and 

image forensic techniques to solve challenging information security problems.   
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1. INTRODUCTION 

 Over the past decade, the presence and usage of multimedia and digital content in 

peoples’ everyday lives has become especially prevalent all around the world. However, this rise 

in the global usage of digital content in almost every aspect of society was accompanied with the 

rise of various methods used to alter and falsify this information. In order to combat this rise in 

content counterfeiting, techniques such as encryption have been developed in order to maintain 

information security across different communication links in a network [1]. However, these 

encryption techniques cannot prevent the manipulation of multimedia content before encryption 

occurs. Therefore, the consequences of digital content manipulation are still a problem in society 

today, but, in many cases, information forensics can be used to uncover these undetected 

falsifications. The field of information forensics is concerned with determining the authenticity, 

processing history, and origin of digital multimedia content based mainly on the digital content 

itself [1]. Image forensics is a subset of this field of information forensics and is focused 

exclusively on determining the trustworthiness of digital image content. As it becomes easier and 

easier for people in society to create realistic forgeries of images and videos, the need for 

determining the origin and authenticity of this content increases as well.  

 This year’s IEEE Signal Processing Cup competition focused in on this field of image 

forensics and posed a challenge of solving the problem of determining an image’s true origin: the 

camera identification challenge (Figure 1) [2].  
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FIGURE 1: SOURCE CAMERA IDENTIFICATION CHALLENGE [2] 
 

Information about the type of camera used to capture an image can explicitly provide an answer 

to this origin question as well as provide an effective method of applying these classification 

methods in several real-world situations. The classification system that teams were required to 

build for the Signal Processing Cup competition needed to be able to receive an image as an 

input and then use trained machine learning classifiers to determine the make and model of the 

camera used to capture that image [2]. The scale on which these classifications systems operated 

was limited to a specified range of just ten different camera models, so the application of these 

classification systems is slightly restricted as a result. However, the classification methods used 

in each system can be directly and effectively applied to more complex systems that are required 

to classify more extensive camera model subsets, thus enhancing the applicability of this year’s 

Signal Processing Cup competition to the world of information forensics.  

 The rest of this report is organized as follows: section two will cover an overview of 

several techniques that have been applied to solving this camera identification challenge along 

with the potential impacts of this identification challenge on various present-day health and 

safety, social, political, and ethical issues; section three will cover the detailed design 

specifications provided by the 2018 IEEE Signal Processing Cup challenge, the overarching 

functional decomposition of the project, and the selection of the design criterion for the final 
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system design; section four will present several different detailed design alternatives and the 

reasons behind the final design choice for this project; section five will present the preliminary 

proposed design of this project in its entirety with as much detail as possible to conclude the 

ECE 498 report; section six will present the final design and implementation of the submitted 

classification system to the 2018 IEEE Signal Processing Cup; section seven will present the 

performance estimates and results of this final image classification system; section eight will 

present the production schedule followed during the Winter Term in order to meet the 

competition deadline; section nine will present a cost analysis of this system; section ten will 

present a User’s Manual in order to duplicate the overall training and testing of our system; and 

section eleven will present a discussion, conclusion, and recommendations   
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2. BACKGROUND INFORMATION 

2.1 Camera Identification Context & Previous Work 

 An essential part of developing a classification system for digital content is developing 

unique signatures for each content source. These signatures are constructed through the analysis 

of intrinsic fingerprints that are left over in the content itself as a result of different content 

processing steps [1]. This allows for not only the ability authenticating content’s origin but also 

the ability to trace back the content’s processing history. In respect to the goals of this project, 

the unique signatures for each camera model can be developed through inspection and analysis 

of a digital camera’s internal processing pipeline (Figure 2).  

 

FIGURE 2: A TYPICAL DIGITAL CAMERA’S INTERNAL PROCESSING PIPELINE [2] 
 

As shown in Figure 2, light enters the camera through a lens, which focuses light on an optical 

sensor. This light passes through a color filter array (CFA) that is located between the lens and 

the sensor. The CFA is an optical array that only allows for one color-band of light to reach the 

sensor at each pixel location. Thus, the image constructed by the optical sensor is missing the 

remaining two color-bands at each pixel location and must then interpolate the missing 

information. This process of color interpolation is known as demosaicing. After this process, the 

image may then be further processed internally through various color balancing and JPEG 

compression processes depending on the specific camera [2]. After all of these internal 

processes, the output image is produced.  
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 As mentioned above, each of these internal processes within the processing pipeline in a 

digital camera imprints its unique intrinsic footprint contained within the final output image and 

can therefore each be used to develop unique signatures for specific camera models. Research 

has been conducted in the past that has used the different fingerprints from a camera’s processing 

pipeline to build a classification system that attempts to tackle this camera identification 

problem. For example, it is possible to model and estimate the demosaicing filter used by a 

camera or to capture pixel dependency values introduced by the demosaicing process by 

developing several forensic algorithms [3], [4], [5]. The make and model of an image’s source 

camera can be determined using statistical models of sensor noise and other noise sources [6], 

[7]. Also, during JPEG compression, traces are left behind by proprietary quantization tables [8]. 

Additionally, camera model traces can be captured using statistical techniques from steganalysis 

[9] and heuristically designed feature sets [10].  

 Thus, it is possible to construct a “fingerprint” for that camera model with this forensic 

information from many images taken from a specific camera model. Several fingerprints are then 

constructed for each camera model in question and are used as classification features when 

training a machine learning algorithm to recognize an image’s source camera model.  

 

2.2 Potential Impacts on Present-Day Issues 

 The camera identification challenge has a number of implications on present-day health 

and safety, social, political, and ethical issues. First of all, the ability to determine the 

authenticity of images can positively impact the health and safety of society. Images are often 

used as evidence in criminal investigations, which include investigations regarding blackmail, 

child exploitation, homicide, and many others. In each of these cases, it would be essential for 
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the criminal investigators to know if all of the data present shown in an image is authentic and as 

well as determining from where these images came with a certain amount of confidence. The 

application of these camera identification techniques would be helping to ensure the safety of the 

victims involved in these specific criminal cases. On a broader note, the military and defense 

agencies of a nation could use these techniques to verify the authenticity and origin of images 

used as intel for different scenarios. Consequently, techniques for camera identification would be 

helping to either maintain or improve national health and security depending on the nature of the 

situation.  

 The significant presence that the media has in people’s everyday lives makes the effects 

of these camera identification techniques especially impactful in a positive way. With the almost 

universal availability to image editing and fabricating software, the likelihood of counterfeit 

images being spread through the media is relatively high, especially if these images are as 

realistic as the originals. This causes the incredibly-persuasive media to sometimes spread fake 

news through a huge population of media followers, which could potentially influence the 

opinions and reactions of viewers to this false information. The amount of influence that the 

media has on the general public substantially increases the need of filtering out this false 

information in the form of counterfeit images. This filtering process is where these camera 

identification techniques would have the greatest impact and, therefore, help increase the 

likelihood of the spread of truthful information to a society.  

 The spread of counterfeit information through the media to the general public also can 

have a direct effect in politics as well. Much of politics relies on elections based on the 

popularity of various politicians, so as one can imagine, having a relatively-well-respected 

reputation is essential to having a successful political career. Any information that could 



Geiger 499 Report: IEEE Signal Processing Cup 

 7 

negatively impact a politician’s reputation would unfairly set that person at a disadvantage 

depending on the severity of the information. In order to reduce the spread of this fake news, 

such as realistically-fabricated images for example, it would be positively impactful to have 

systems in place that could help filter out this information. And, as for the case of filtering out 

counterfeit images, implementing these camera identification techniques would be especially 

useful.  

 However, on a more negative side of things, these camera identification techniques could 

also present some ethical problems. Camera identification techniques can be used to uncover 

similarities between the internal processes of different camera models, thus exposing possible 

cases of intellectual property theft [5]. However, if it is possible to expose possible intellectual 

property theft using these techniques, then it also must be possible to commit intellectual 

property theft using these techniques as well. While the act of committing or attempting to 

commit intellectual property theft is a definite ethical crime, the act of watching this event take 

place also presents a serious ethical issue. For example, if a camera development engineer 

witnesses his coworker or supervisor using camera identification techniques to steal processing 

techniques from a rival camera company, then this camera development engineer would be at the 

crossroads of a significant ethical dilemma. Either he or she puts his or her job at risk by making 

the ethical decision to either speak up against this act or to threaten quitting, or he or she makes 

the unethical decision to keep his or her mouth shut and go along with the criminal acts. This is a 

very difficult ethical decision for any professional engineer to make, but situations like these 

have a chance of coming up during one’s career and he or she must be prepared to do what is 

right. Thus, although the general application of these camera identification techniques might not 
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introduce ethical issues, more specified applications of these techniques could unveil some 

serious ethical issues.   
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3. DESIGN REQUIREMENTS 

 The design requirements for this project have been specifically outlined in the 2018 

Signal Process Cup competition document provided by the IEEE Signal Processing Society, the 

sponsors of this competition [2]. The overall goal of this year’s Signal Processing Cup 

competition was to build a system capable of identifying the camera make and model used to 

capture a digital image. The competition was comprised of two stages of competition: Open 

Competition, which was open to any eligible team of undergraduate students, and Final 

Competition, which was open only to the three finalists of the competition.   

 

3.1 Open Competition 

 The Open Competition was divided into three separate parts for this year’s Signal 

Processing Cup: Part 1, Part 2, and the Data Collection Task. The Data Collection Task of Open 

Competition will be left out of this report because it required teams to gather 250 images from a 

camera not provided in the original dataset and, therefore, has no effect on the overall design of 

the classification system that makes up this report. The deliverables for Open Competition were 

due February 8, 2018. 

 

3.1.1 Open Competition – Part 1 

 For Part 1 of Open Competition, teams were provided with a dataset with which to use to 

build and train their camera model identification systems. The dataset was comprised of ten 

different camera models along with 275 images for each camera model, totaling 2,750 images at 

teams’ disposal. In order for teams to evaluate their classifier systems, a new evaluation dataset 

was released approximately one month prior to the February 8 submission deadline. This 
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evaluation dataset was comprised of images captured using devices different from those used to 

create the training dataset. This required teams to build a camera identification system that 

correctly classifies all devices of a particular camera make and model – not to the specific 

devices used to capture the images in the training dataset.  

 

3.1.2 Open Competition – Part 2 

 For Part 2 of Open Competition, teams were required to determine the make and model 

of cameras used to capture images that have been post-processed. Examples of image post-

processing include JPEG-recompression, cropping, contrast enhancement, etc. So, for this part of 

Open Competition, teams were required to build a camera identification system similar to Part 1 

that was fine-tuned to classifying post-processed images. In order to build their classification 

systems, teams were provided with a list of all possible post-processing operations that will be 

considered along with a Matlab script that can be used to generate post-processed images from 

the original dataset of unaltered images (see Appendix A). Upon generating their own post-

processed image dataset, teams then needed to use this as a training dataset with which to build 

their camera identification systems. And, again, as in Part 1, teams were provided with an 

evaluation dataset approximately one month prior to the February 8 submission deadline.  

 

3.1.3 Open Competition – Deliverables  

 The following material must be submitted by the February 8, 2018 deadline in order to be 

considered for the Final Competition [2]: 

1. A report in the form of an IEEE conference paper describing the technical details of the 

system. 
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2. Camera model identification results from Open Competition. 

3. Data Collection Task. 

4. An executable with a Matlab implementation of the camera model identification system. 

This should be able to accept an input in the form of a directory of images and produce a 

text file identifying the camera model used to capture each image in the directory. 

 

3.2 Final Competition  

 The three finalists that compete in the Final Competition of the Signal Processing Cup 

were chosen by a panel of judges based on the overall quality of each team’s submitted report 

and each team’s overall accuracy of each team’s camera model identification systems. Accuracy 

is determined using the following equation: 

 

The overall accuracy score was determined by combining each accuracy score from Open 

Competition using the following equation: 

 

So, the three teams with the highest overall scores and highest quality reports will be competing 

at the 2018 International Conference on Acoustics, Speech, and Signal Processing (ICASSP) for 

a chance to win the grand prize of $5,000. 

 

3.3 Functional Decomposition  

 Overall, despite the different requirements from each part of the competition, the 

overarching goal remains the same: build a camera identification system that can determine the 
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make and model of a camera used to capture a given digital image. In order to do this, teams 

must use various image forensic and signal processing techniques in order to construct a feature 

space with which to train a machine learning classifier algorithm that will ultimately make the 

final camera identification decision. This basic functional decomposition is shown in Figure 3 

below.   

 
FIGURE 3: FUNCTIONAL DECOMPOSITION OF CAMERA MODEL IDENTIFICATION SYSTEM 

 

The final system must be able to read an input of a directory of images, extract the desired 

information from the image, associate this information with a determined camera model 

fingerprint, and then output the appropriate predicted camera model identification information.  

 

3.4 Design Selection Criteria 

 Given these broad design specifications that were provided with the 2018 Signal 

Processing Cup document, it was then necessary to establish a certain list of criteria by which to 

further refine the design process of the camera model identification system for this project. The 

list of criteria is listed below: 

1. Image forensic/signal processing techniques must be straightforward enough such that the 

system design could be well explained to Union’s Signal Processing Cup Team. 

2. Classification techniques used in final design must have proven success in similar case 

studies from published sources, i.e. greater than 90% average camera model accuracy. 
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The first criterion comes in respect to the fact that this project included leading Union’s Signal 

Processing Cup Team in this year’s competition. Since Union’s team was comprised of 

undergraduate students with varying levels of signal processing experience, the final design 

choice must have been intuitive enough that the specific functionality of the design could be 

easily explained to all team members. The second criterion establishes a filtering method while 

researching possible classification techniques to solve this camera model identification 

challenge. This restricts the focus of possible final designs to camera classification systems that 

have been implemented with average camera model accuracy of at least 90%. Keeping these 

criteria in mind, it was next possible to narrow the possible design selections to a select handful 

of possibilities. 
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4. DESIGN ALTERNATIVES 

 Along with the 2018 IEEE Signal Processing Cup competition document, the IEEE 

Signal Processing also provided teams with several supplementary references to learn about the 

camera model identification challenge. A majority of these references presented different 

methods of solving this challenge, so the goal of this research was to deduce which methods 

were going to be the best to implement based on the established design selection criteria in 

Section 3.4. The design selection process used deductive reasoning to eliminate some possible 

methods from final design contention.  

 Some possible design alternatives were noise-based methods, which use statistical 

models of sensor noise and other noise sources to identify the make and model of an image’s 

source camera [2]. The sensor noise model, otherwise known as the photo-response non-

uniformity (PRNU) model, can reliably identify a specific camera, and was proven to do so in 

[6]. The other noise model mentioned above is the heteroscedastic noise model, which can be 

used to describe a natural raw image [7]. The first issue with these models was the relatively high 

likelihood of developing a classifier that over fit the classification of the camera models to each 

of the specific devices used to construct the image database. This would result in a classifier that 

had almost perfect training accuracy but would perform very poorly when it had to classify 

images captured using different devices of the same camera makes and models as provided in the 

image database. In addition to this potential design flaw, the statistical models used in both of 

these noise-based camera identification models were incredibly dense. This presented the 

difficult challenge of being able to understand the models well enough to not only implement 

them in our own system but also to be able to easily teach them to the other team members of 
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Union’s Signal Processing Cup team. These two points were key factors in ruling out using a 

noise-based classifier system design for this project.   

 After ruling out a noise-based classifier design, the next best option was a demosaicing-

based classifier. Out of all of the studies provided as references by the IEEE Signal Processing 

Society, three of them were studies showing the effectiveness of a demosaicing-based classifier: 

two studies attempted to identify specific CFAs and demosaicing algorithms in order to solve 

this camera identification challenge, and the third study was the study selected as the basis of 

design for this project’s camera model identification system. The first of these studies used 

techniques aimed at determining the parameters of CFA and demosaicing algorithms, but 

however were only able to achieve an overall accuracy of 90% [3]. The accuracy of this system 

was the lowest of the three demosaicing studies presented, so it was then eliminated from final 

design contention. The second of these studies aimed at using techniques to identify sixteen 

different demosaicing algorithms, with which to then use as a way of identifying a camera’s 

make and model to an average overall system accuracy of 98.3% [4]. The only flaw to this 

design, which was the eventual reason for elimination from final design contention, was the 

relative complexity of the classification methods used. Compared to the final design used in this 

project, which is based off of the design used in [5], the overall accuracies of the systems were 

almost equal; however, the final design chosen for this project was much more straightforward 

and easier to understand than the design used in [4]. Thus, this comparison of designs made the 

ultimate decision for the final design for the camera identification system to be based off of the 

design used in [4].  
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5. PRELIMINARY PROPOSED DESIGN 

 The preliminary proposed design for this project is based off of the design of a general 

camera identification system design that was explained in [5]. The authors of this paper used a 

demosaicing-algorithm-based classifier and were able to obtain an average classification 

accuracy of 99.2% for their system. The proposed design for this report’s specific camera model 

identification system is outlined below and specifically follows the functional composition 

outlined in Figure 3. 

 

5.1 Image Forensic Techniques 

 The camera model identification system design proposed uses three image forensic 

techniques in order to construct a full feature space for the classifier: a Bayer CFA filter, 

demosaicing algorithms, and co-occurrence matrices. 

 

5.1.1 The Bayer CFA Pattern 

 A color filter array (CFA) is typically a 2x2 repeating pixel pattern that allows only one 

color component of light to pass through at each pixel location before the light reaches the sensor 

(Figure 4) [2].  

 
FIGURE 4: EXAMPLE CFA PATTERN OPERATION [11] 
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Out of all the CFA patterns, the Bayer pattern (Figure 5) is the most commonly used.  

 

FIGURE 5: THE BAYER CFA PATTERN 
 

The Bayer CFA 2x2 pixel filter pattern can be oriented in four different ways: GBRG (Figure 5), 

GRBG (Figure 6), BGGR (Figure 4), and RGGB. As a result of this process, as seen in Figures 4 

and 5, the resulting image is missing the remaining two color components at each pixel location, 

which requires a process of color interpolation, called demosaicing, to fill in the remaining color 

components.  

 

5.1.2 Color Interpolation (Demosaicing) 

 As described above, the process of demosaicing is the process of interpolating the 

remaining two unobserved color values at each pixel location. A complete methodology on how 

this method of color interpolation works is shown in Figure 6. 

 
FIGURE 6: THE BEFORE AND AFTER RESULT OF THE DEMOSAICING PROCESS [12] 
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The demosaicing process shown in Figure 6 is the process that occurs at the step which is labeled 

“Raw Converter,” which converts this raw image from the sensor into a complete image, i.e. the 

demosaicing process. This process is implemented through the use of a demosaicing algorithm. 

Some examples of demosaicing algorithms include nearest neighbor interpolation, bilinear 

interpolation, and smooth-hue interpolation [13].  

 

5.1.3 The Co-occurrence Matrix 

 Co-occurrence matrices are used to capture pixel value dependencies introduced by the 

demosaicing process [2]. Specifically, the authors of [5] use co-occurrence matrices to observe 

the frequency at which certain color channel dependencies occur within each 2x2 pixel frame 

within the image. For example, Figure 7 shows an example of a geometric structure used to build 

a co-occurrence matrix of the red channel, and Figure 8 shows a similar geometric structure used 

to build a co-occurrence matrix of the red-green channel. 

 
FIGURE 7: EXAMPLE GEOMETRIC STRUCTURE FOR BUILDING RED CHANNEL CO-OCCURRENCE MATRIX 

[5] 
 

 
FIGURE 8: EXAMPLE GEOMETRIC STRUCTURE FOR BUILDING RED-GREEN CHANNEL CO-OCCURRENCE 

MATRIX [5] 
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Each of these figures show a single instance of their respective generated co-occurrence matrix 

where the values (d1, d2, d3) are compared to their respective locations in each pixel frame. Thus, 

these matrices capture pixel value dependencies based on specific color channels of interest.  

 

5.2 Feature Space Construction 

 The above three image forensic methods are used sequentially in order to construct the 

full feature space for this camera identification system. A general architecture for this feature 

space construction is shown in Figure 9. 

 
FIGURE 9: FULL FEATURE SPACE CONSTRUCTION ARCHITECTURE [5]  

 

Figure 9 highlights the role that each of these information image forensic techniques play in 

developing the full feature space for this proposed classifier design. In this design, the image 

data is re-sampled and re-interpolated to create reconstructed images. The reconstructed images 

are subtracted from their original images creating “error” images. These error images are then 

compressed in such a way that they are able to be analyzed using co-occurrence matrix 

evaluations. This resulting co-occurrence matrix information makes up the full feature space of 

this classifier system. A more detailed explanation of these steps is defined below. 
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5.2.1 Image Re-sampling 

 The first step towards feature space construction for this proposed design is a re-sampling 

of the image data using a CFA pattern. In this proposed design, the specific CFA pattern used is 

a Bayer pattern in GBRG format (as seen in Figures 5, 7, and 8). Other Bayer pattern formats can 

be used for the re-sampling step, but the GBRG format was chosen because it is the same format 

used in [5]. This is important because the co-occurrence matrix calculations provided are very 

complex and are based on this specific Bayer pattern format. This allows for an easier 

application of the provided co-occurrence matrix calculation equations into this project’s camera 

identification system design and implementation. 

 

5.2.2 Image Re-interpolating 

 The next step of feature space construction is using demosaicing to reconstruct the image 

data from the raw image data provided by the CFA filter in the previous step using demosaicing. 

At this point in the construction architecture, there are multiple demosaicing algorithms to 

choose from here – specifically, there are six algorithms: Nearest Neighbor Interpolation, 

Bilinear Interpolation, Smooth Hue Transition Interpolation, Median-Filter Bilinear 

Interpolation, Gradient-Based Interpolation, and a Gradient-Corrected Linear Interpolation. Any 

combinations of these demosaicing algorithms could be implemented to greatly increase the full 

feature space size. 
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5.2.3 Error Image Construction and Compression 

 Once the image data has been reconstructed, the error image data must be constructed 

and compressed. Figures 10 and 11 present the necessary pseudocode to complete both of these 

tasks, respectively. 

 
FIGURE 10: PSEUDOCODE FOR CALCULATING ERROR IMAGE DATA [5] 

 

 
FIGURE 11: PSEUDOCODE FOR COMPRESSING ERROR IMAGE DATA [5] 

 

The pseudocode in Figure 10 shows the calculation of a single error image by means of 

subtracting a reconstructed image, DemosCFA,H(X),from the original image, X. The reconstructed 

image here was constructed using a specified CFA pattern and demosaicing algorithm H. 

Following this step, the error image is then compressed by means of quantization and truncation 

as shown by Figure 11. Here, T = 3 and q = 2, which are the same values used for these 

equations in [5]. This compression method divides all of the current values in E by 2, rounds the 

resulting values to the nearest integer, and then truncates any values larger than 3 and smaller 

than -3 to each of these values, respectively.  

 

5.2.4 Full Feature Space Construction 

 Once the image data is in this form, it can then be analyzed effectively through the use of 

co-occurrence matrices. As provided by [5], there are two co-occurrence matrix evaluations to 

choose from at this point: a red channel evaluation and a red-green channel evaluation. The 
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following pseudocode in Figure 12 shows the construction of the separate RGB channels from 

the error image data. 

 
FIGURE 12: PSEUDOCODE FOR GENERATING RGB COLOR CHANNELS GIVEN GBRB BAYER CFA [5] 

 

Having consolidated the separate color channels, it is then possible to implement the co-

occurrence matrix calculations for the red channel (Figure 13) and the red-green channel (Figure 

14).  

 
FIGURE 13: PSEUDOCODE FOR GENERATING RED CHANNEL CO-OCCURRENCE MATRIX [5] 

 

 
FIGURE 14: PSEUDOCODE FOR GENERATING RED-GREEN CHANNEL CO-OCCURRENCE MATRIX [5] 

 

These co-occurrence matrices are counting up the number of times the specific combination of 

(d1, d2, d3) occurs within the specified pixel frame for all pixel frames in an image and then 

normalizing them for every combination of (d1, d2, d3). These resulting matrices from each 

constructed error image from each re-interpolated image from each demosaicing algorithm make 

up the full feature space for this proposed camera model identification system design.  
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5.3 Machine Learning Classification System (End of 498 Report) 

 The specific machine learning classification algorithm for this identification system has 

yet to be chosen, so an explicit definition of the design of this section is unavailable. However, 

despite which machine learning algorithm is chosen, the same classifier training process occurs 

from the system feature space. In order to determine the overall accuracy of one of the possible 

classification combinations, the feature space is broken up into a training feature space and a 

testing feature space. This enables the construction of a confusion matrix for a given feature 

space in order to present the accuracy of the current system across each of the ten cameras 

involved. In order to pick the best machine learning classifier for this specific application, it will 

be necessary to conduct trial-and-error with a provided toolbox of algorithms to see which 

algorithm provides the best results. The selection of the final machine learning algorithm will 

ideally be completed by the end of this upcoming winter break.  

 

5.4 Final Classification Design Decision 

 The final classification design system will be an implementation of a certain combination 

of the available six demosaicing algorithms with the two available co-occurrence matrix 

algorithms. In order to find the perfect combination of algorithms for this specific camera 

identification challenge, each algorithm combination will need to be tested and each resulting 

confusion matrix output from the machine learning classifier will have to be compared. Finding 

the ideal feature space for this specific application will be the most challenging part of the design 

process because of the relatively large availability of different classification algorithms in this 

proposed design.  
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6. FINAL DESIGN AND IMPLEMENTATION 

 The final camera identification system design chosen for the 2018 IEEE Signal 

Processing Cup specifically followed the functional decomposition shown in Figure 3. 

 

FIGURE 3: FUNCTIONAL DECOMPOSITION OF CAMERA MODEL IDENTIFICATION SYSTEM 
 

It is important to note that this the overarching design of the final camera identification system 

directly follows the preliminary proposed system design covered in Section 5. However, this 

report of the final system design will cover the sections of both the feature space construction 

and the machine learning classification system in much more specific detail than reported in 

Section 5.2 and Section 5.3, respectively.  

  

6.1 Final Feature Space Construction Design 

 Figure 15 shows the specific framework used to construct the feature spaces for each 

machine learning classifier implemented in the final system design. 

 

FIGURE 15: FINAL FEATURE SPACE CONSTRUCTION ARCHITECTURE 
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As explicitly covered in Section 5.2.1, a Bayer Color Filter Array was used to re-sample the 

image data. Section 5.2.2 lists six possible choices for demosaicing algorithms to implement in 

the final classifier design. Figure 15 shows the two specific demosaicing algorithms selected for 

the image-re-interpolation processes in this final design: Bilinear Interpolation and Nearest 

Neighbor Interpolation. The use of two demosaicing algorithms results in the reconstruction of 

two separate images from each initial image. Co-occurrence information from the red pixel 

channel and the red-greed pixel channel are then extracted from each of these reconstructed 

images. This extraction process is explicitly defined in Section 5.2.4. These co-occurrence 

matrices extracted from each reconstructed image iterated throughout the desired image data 

directory made up the full feature space used to train a specific machine learning classifier.  

 Since the error image values ranged from -3 to 3 due to the truncation process described 

in Section 5.2.3, the co-occurrence information was extracted using the same range of values for 

(d1, d2, d3). This resulted in a total number of 27 total of possibilities for (d1, d2, d3) in each co-

occurrence matrix. So, for example, the resulting feature space that was generated using the 

bilinear interpolation demosaicing algorithm and red-channel co-occurrence algorithm contained 

343 features. This resulted in a total of 1,372 features extracted from each image. The 1,372 

features extracted from each image for a desired number of images per camera for every camera 

model composed the entirety of a full feature space used to train a respective machine learning 

classifier.  

 The Matlab codes used to construct a full feature space for a given image directory is 

listed in Appendix B.  
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6.2 Final Machine Learning Classification System Design 

 The final machine learning classification design used for the image classification system 

was a three-fold, nested ensemble classifier containing ten, separately-trained subspace 

discriminant ensemble classifiers (Figure 16). 

 

FIGURE 16: THREE-FOLD NESTED CLASSIFIER FRAMEWORK 
 

The specific framework outlined in Figure 16 begins by importing the test image directory 

provided by the IEEE Signal Processing Cup organizers. This directory is composed of 2,640 

total images with half unaltered images and half manipulated images, and they were labeled as 

such accordingly. Using this label, the classifier framework shown in Figure 16 filters the test 

images into an unaltered image directory and a manipulated directory. The test images from the 

unaltered image directory were filtered to the decision fusion of the unaltered image camera 

model classifier, resulting in a source camera model identification for each image.  

 However, for the manipulated image directory, an intermediate classification step was 

necessary to further filter the images based on manipulation type to then be able to classify 

source camera information. The distribution of the actual manipulation types used to construct 



Geiger 499 Report: IEEE Signal Processing Cup 

 27 

the 1320 manipulated images was not provided, so this intermediate classification step was used 

to determine the specific technique used to manipulate each image in this filtered directory. 

Since there were eight possible manipulation techniques (as shown in Appendix A), there were 

eight camera model classifiers trained to determine the camera make and model of each image. 

Therefore, the test images from the manipulated image directory were first filtered to the 

decision fusion of the manipulation type classifier, resulting in a manipulation type identification 

for each image. From here, these images were then filtered to their respective manipulation type 

camera model classifier, resulting in a source camera model identification for each image.   

 

6.2.1 Subspace Discriminant Ensemble Classifier Training Information 

 Using the Matlab script located in Appendix A, eight additional image databases were 

generated from the initially-provided image database containing 275 images per camera for each 

of the ten camera models. Table 1 lists the specific manipulation techniques used for each of the 

eight manipulation types referenced in this report.  

TABLE 1: EIGHT MANIPULATION TYPES REFERENCE KEY 
Referenced 

Type Number Manipulation Technique 

1 JPEG Compression with Quality Factor = 90 
2 JPEG Compression with Quality Factor = 70 
3 Resizing by a factor 0.5 
4 Resizing by a factor 0.8 
5 Resizing by a factor 1.5 
6 Resizing by a factor 2.0 
7 Gamma Correction using Gamma = 0.8 
8 Gamma Correction using Gamma = 1.2 

 

This script, however, automatically divided each image into image blocks of 512 pixels by 512 

pixels for each manipulation type, which greatly expanded the total number of images per 
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camera for each relative case. A breakdown of the resulting number of image blocks in each 

camera directory for a single manipulation case is shown in Table 2. 

 

TABLE 2: MANIPULATED IMAGE DIRECTORY FOR A SINGLE MANIPULATION TECHNIQUE 

Camera Directory Number of Total Files 
(512x512 image blocks) 

HTC-1-M7 2,750 
iPhone-4s 6,600 
iPhone-6 6,600 

LG-Nexus-5x 9,625 
Motorola-Droid-Maxx 8,800 

Motorola-Nexus-6 13,154 
Motorola-X 13,300 

Samsung-Galaxy-Note3 8,800 
Samsung-Galaxy-S4 8,800 

Sony-NEX-7 21,175 
 

Given a limitation on the total processing power available to build feature spaces and train 

multiple classifiers on the entirety of this image data, a subset of images was selected from each 

camera model directory with which to build feature spaces to train their respective ensemble 

classifiers.  

 Each ensemble classifier trained in this system was a subspace discriminant ensemble 

classifier. These each create an ensemble of discriminant classifiers using a random subspace 

algorithm. This algorithm uses a randomly-chosen subspace with a specified number of 

dimensions of the full feature space to train each of a specified number of learners to develop the 

classifiers final decision fusion [14]. Table 3 shows a complete description of the training 

information and results of each of the classifiers used in the final design of the camera model 

identification system’s three-fold, nested ensemble classifier system.  
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TABLE 3: TRAINING INFORMATION FOR EACH ENSEMBLE CLASSIFIER USED IN FINAL SYSTEM DESIGN 
Classifier 

Name 

Image 
Data 
Type 

# Images 
per 

Camera 

Feature 
Space Size  

(r x c) 

Classifier 
Type 

Total # of 
Subspace 

Dimensions 

Total # of 
Learners 

Training 
Accuracy 

Unaltered 
Camera 
Models 

Full 
Images 275 2750x1372 

Subspace 
Discriminant 

Ensemble 
300 35 99.6% 

Manipulation 
Type 

512x512 
Image 
Blocks 

675 54000x1372 
Subspace 

Discriminant 
Ensemble 

686 30 95% 

Manipulation 
Type 1 

Cameras 

512x512 
Image 
Blocks 

2750 27500x1372 
Subspace 

Discriminant 
Ensemble 

686 30 96.9% 

Manipulation 
Type 2 

Cameras 

512x512 
Image 
Blocks 

2750 27500x1372 
Subspace 

Discriminant 
Ensemble 

686 30 96.9% 

Manipulation 
Type 3 

Cameras 

512x512 
Image 
Blocks 

2750 27500x1372 
Subspace 

Discriminant 
Ensemble 

686 30 85.6% 

Manipulation 
Type 4 

Cameras 

512x512 
Image 
Blocks 

2750 27500x1372 
Subspace 

Discriminant 
Ensemble 

686 30 96.5% 

Manipulation 
Type 5 

Cameras 

512x512 
Image 
Blocks 

2750 27500x1372 
Subspace 

Discriminant 
Ensemble 

686 30 90.5% 

Manipulation 
Type 6 

Cameras 

512x512 
Image 
Blocks 

2750 27500x1372 
Subspace 

Discriminant 
Ensemble 

686 30 95.6% 

Manipulation 
Type 7 

Cameras 

512x512 
Image 
Blocks 

2750 27500x1372 
Subspace 

Discriminant 
Ensemble 

686 30 97% 

Manipulation 
Type 8 

Cameras 

512x512 
Image 
Blocks 

2750 27500x1372 
Subspace 

Discriminant 
Ensemble 

686 30 95% 

 

Each classifier except the Manipulation Type Classifier was trained using a ten-fold cross-

validation technique. The Manipulation Type Classifier was trained using a 25% holdout 

validation technique. Matlab’s Classification Learner Application was used to train and export 

each of these classifiers. 

 

6.2.2 Processing and Classifying Test Image Data 

 The organizers of the 2018 IEEE Signal Processing Cup released a directory of images to 

be used as the competition testing directory. Each competing team’s final score was based on 
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their overall camera model classification accuracy of each image in this directory. As mentioned 

above in Section 6.2, this directory was composed of 2,640 total images, half of which were 

manipulated in some undisclosed way. In order to apply the trained, machine-learning decision 

fusions to this test image data, a feature space of this data must first have been extracted using 

the exact same techniques used to construct the training feature spaces from the provided image 

directories (Matlab scripts located in Appendix B). Once this test feature space had been 

constructed, it could then be filtered through the designed nested ensemble classifier containing 

each of the ten, trained decision fusions to predict the source camera information for each test 

image. The Matlab script used to implement this nested ensemble classifier is located in 

Appendix C.  
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7. PERFORMANCE ESTIMATES AND RESULTS 

 The following equations were used to determine the overall score of the final camera 

identification system submitted to the 2018 IEEE Signal Processing Cup: 

 
 

7.1 Competition Performance Estimates 

 Based on the training accuracies of each individual ensemble classifier used in the final 

camera identification system design, it was possible to calculate an estimated performance score 

for this proposed camera identification system. The accuracies located in Table 3 were used to 

calculate this performance estimate. Using the equation for the weighted score calculation shown 

above, the estimated competition score was determined to be 96.58%. This performance 

estimation was calculated based on the assumption that each classifier would experience the 

same exact classification accuracy on the test image data. This estimation does not include, 

however, any cases in which the classifier system may have accidentally classified the correct 

camera model for an image. Therefore, this estimated score of 96.58% was a low estimate of the 

overall precision of the final system design.  

 

7.2 Competition Performance Results 

 This year’s Signal Processing Cup was run through the website, Kaggle [15]. This 

website was responsible for scoring the accuracy of each competing team’s camera classification 

results from the test image data. Before the competition deadline, teams were able to test out 

classification results through Kaggle, and they were given performance scores respectively based 

on only one-third of their submitted results. Teams could submit a maximum of five 
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classification submissions every twenty-four hours throughout the entirety of the competition. 

However, teams were only allowed to submit two classification attempts for final scoring. The 

best final performance results of the camera identification system design proposed in this report 

were 65.6% and 65.0%. The classification results that scored higher were generated using the 

exact system outlined in Section 6. The classification that was used to generate the lower-scoring 

results was using a Manipulation Type Classifier trained on only 300 images per camera instead 

of the 675 images per camera used to train the final system design.  

 

7.3 Discussion of Results 

 The main point of discussion in this section is the 31% discrepancy between the actual 

performance score of 65.6% and the predicted performance score of roughly 96.6%. The most 

glaring reason behind this drastic difference in performance scores most likely comes from the 

problem of overfitting the model to the training data. Since this system is attempting to use, at 

most, 1,372 features to develop specific signatures for each of the camera models used to create 

the training database, there is a high possibility that the trained systems had developed decision 

fusions specifically tuned for the specific devices used to construct the training database. This 

would be a significant issue because the cameras used to construct the test image database were 

entirely different devices than those used to construct the training image database, hence the 

substantial decrease in system accuracy seen here.  

 Unfortunately, the organizers of this year’s Signal Processing Cup have not yet released 

the results of the camera model identification challenge at the time of this report. As a result, it is 

almost impossible to understand explicitly how the final classification score of this system was 

determined based on the test image data provided. However, in an attempt to further understand 
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the overall performance of this classification system, a mock image database was constructed to 

replicate the test image database provided in the Signal Processing Cup competition. This mock 

image database was constructed using images from Flickr, an online image database. This 

reconstructed test database contained 2,640 images, half of which were unaltered, and half of 

which were manipulated using an even distribution of each of the eight manipulation techniques 

provided. There was also an even distribution of each of the ten camera models throughout the 

unaltered images and throughout each of the manipulation techniques. This provided for the 

ability to analyze the overall performance of this camera identification system including the 

overall system accuracy for each camera model in the database. A confusion matrix showing a 

breakdown of the overall classification accuracy of this final system design is shown in Table 4. 

TABLE 4: OVERALL CLASSIFICATION ACCURACY OF FINAL SYSTEM DESIGN 

 

 The overall classification accuracy of this system is 49.7%. To further shed 

understanding unto the performance of this system, this accuracy is further broken down into an 

overall unaltered-image classification accuracy and an overall manipulated-image classification 

accuracy shown in the confusion matrices in Table 5 and Table 6, respectively.  

 

 

 

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5 Camera 6 Camera 7 Camera 8 Camera 9 Camera 10
Camera 1 82.58 0.38 1.89 3.79 1.52 1.14 6.44 1.14 0.76 0.38
Camera 2 15.15 46.97 7.58 1.14 6.82 5.68 8.33 1.89 0.76 5.68
Camera 3 11.74 0.76 59.47 1.52 4.17 6.06 9.85 3.03 2.65 0.76
Camera 4 7.95 2.65 2.65 48.86 7.58 12.12 12.88 2.65 1.52 1.14
Camera 5 20.83 0.76 4.55 6.44 45.83 4.17 10.61 2.27 2.65 1.89
Camera 6 18.18 9.09 24.62 5.30 2.27 23.86 9.47 1.89 4.17 1.14
Camera 7 10.98 0.00 0.76 12.88 3.79 8.71 52.27 8.33 1.89 0.38
Camera 8 10.23 1.52 7.58 7.95 3.41 5.30 5.68 53.79 2.65 1.89
Camera 9 12.12 0.38 5.30 3.79 3.41 4.55 8.71 6.06 54.92 0.76

Camera 10 5.30 6.82 12.12 4.92 3.41 17.42 1.89 5.30 14.39 28.41

Overall Confusion Matrix
Predicted Models
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TABLE 5: OVERALL UNALTERED-IMAGE CLASSIFICATION ACCURACY OF FINAL SYSTEM DESIGN 

 

TABLE 6: OVERALL MANIPULATED-IMAGE CLASSIFICATION ACCURACY OF FINAL SYSTEM DESIGN  

 

 The accuracies of the overall unaltered-image classification and the overall manipulated-

image classification are 55.0% and 44.4%, respectively. The accuracies shown in Table 5 seem 

to support the overfitting claim given that the overall training accuracy of this classifier was 

99.6%, compared to the performance accuracy of 55.0%, clearly showing the trained classifier’s 

inability of identifying unaltered images captured using different devices. However, a second 

contributing factor to this large discrepancy in classification accuracies of unaltered images 

could be due to the fact that the unaltered classifier was trained using full images but was then 

required to identify different 512x512 image blocks. Conceptually, given the fact that the whole 

basis of the image-forensic techniques used in this system depend on relative pixel dependencies 

of 2x2 pixel squares, this should not make a difference because one image and all of its resulting 

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5 Camera 6 Camera 7 Camera 8 Camera 9 Camera 10
Camera 1 81.82 0.00 2.27 3.03 1.52 2.27 8.33 0.76 0.00 0.00
Camera 2 17.42 43.18 12.12 0.76 6.82 3.03 6.06 2.27 0.76 7.58
Camera 3 12.88 0.00 56.82 0.00 3.79 4.55 16.67 0.76 4.55 0.00
Camera 4 7.58 0.00 0.00 60.61 3.79 11.36 12.88 1.52 2.27 0.00
Camera 5 19.70 0.00 3.03 6.06 53.79 5.30 9.85 0.76 1.52 0.00
Camera 6 18.94 8.33 29.55 0.76 0.00 28.03 13.64 0.00 0.00 0.76
Camera 7 15.91 0.00 1.52 9.09 6.06 7.58 55.30 4.55 0.00 0.00
Camera 8 2.27 0.00 10.61 3.79 2.27 1.52 5.30 72.73 0.76 0.76
Camera 9 15.91 0.00 7.58 1.52 1.52 3.79 9.85 4.55 54.55 0.76

Camera 10 3.03 0.76 14.39 3.79 3.79 5.30 0.76 3.03 21.97 43.18

Unaltered Confusion Matrix
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tu

al
 M

od
el

s

Predicted Models

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5 Camera 6 Camera 7 Camera 8 Camera 9 Camera 10
Camera 1 83.33 0.76 1.52 4.55 1.52 0.00 4.55 1.52 1.52 0.76
Camera 2 12.88 50.76 3.03 1.52 6.82 8.33 10.61 1.52 0.76 3.79
Camera 3 10.61 1.52 62.12 3.03 4.55 7.58 3.03 5.30 0.76 1.52
Camera 4 8.33 5.30 5.30 37.12 11.36 12.88 12.88 3.79 0.76 2.27
Camera 5 21.97 1.52 6.06 6.82 37.88 3.03 11.36 3.79 3.79 3.79
Camera 6 17.42 9.85 19.70 9.85 4.55 19.70 5.30 3.79 8.33 1.52
Camera 7 6.06 0.00 0.00 16.67 1.52 9.85 49.24 12.12 3.79 0.76
Camera 8 18.18 3.03 4.55 12.12 4.55 9.09 6.06 34.85 4.55 3.03
Camera 9 8.33 0.76 3.03 6.06 5.30 5.30 7.58 7.58 55.30 0.76

Camera 10 7.58 12.88 9.85 6.06 3.03 29.55 3.03 7.58 6.82 13.64

Manipulated Confusion Matrix
Predicted Models
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512x512 image blocks hold the same amount of information. This claim is supported through the 

difference of unaltered and manipulated accuracies of Cameras 4, 5, 6, 7, 8, and 10. In each case, 

the overall camera classification accuracy decreases, which could be due to the fact that these 

camera classifiers were trained on no more than between 20% and 31% of the total image 

information for each camera model directory. However, the increase in overall camera 

classification accuracy for Cameras 2, 3, and 9 does not support this claim, making a definitive 

claim to explain the phenomena observed here difficult.  

 This information discussion seems to be further debunked slightly because of how the 

accuracy for Camera 1 increases for the manipulated-image case – an increase from 81.82% to 

83.33%. In both cases, the entire image directory for Camera 1 was used in the training of each 

classifier, but the manipulated-image case had been trained using the manipulated 512x512 

image blocks instead. So, this information-dependence seems to only support the phenomena 

seen for six out of the ten camera models used for this system.  

 This information debate seems to be much more prevalent for the camera model 

classifiers. Table 7 shows a confusion matrix of the overall accuracy of the Manipulation Type 

Classifier. 

TABLE 7: OVERALL MANIPULATION-TYPE CLASSIFICATION ACCURACY OF FINAL SYSTEM DESIGN 

 

The overall accuracy of the classifier used to determine the manipulation type was 83%, which is 

considerably higher than both the unaltered- and manipulated-image classification accuracies. It 

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8
Type 1 0.56 0.29 0.01 0.10 0.02 0.01 0.02 0.00
Type 2 0.13 0.70 0.03 0.06 0.01 0.05 0.03 0.00
Type 3 0.00 0.01 0.96 0.03 0.01 0.00 0.00 0.00
Type 4 0.00 0.03 0.07 0.89 0.00 0.00 0.01 0.00
Type 5 0.01 0.05 0.01 0.01 0.76 0.15 0.01 0.00
Type 6 0.00 0.03 0.00 0.06 0.03 0.86 0.02 0.00
Type 7 0.01 0.00 0.01 0.00 0.00 0.01 0.98 0.00
Type 8 0.00 0.00 0.02 0.02 0.00 0.01 0.04 0.93
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is important to note that this specific classifier was trained using only 675 images per camera 

model for each manipulation-type camera directory, resulting in only 6.8% of the entire image 

directory from which it was sampled. Despite being trained on a very small percentage of the 

entire image directory, it is clear that this specific ensemble classifier was able to much more 

effectively predict the manipulation technique used on a processed image than this same 

classifier type was able to predict an images camera source. However, this specific classifier was 

still not perfect because the estimated accuracy of the Manipulation Type Classifier was 95% (as 

listed in Table 3), which is also a significant drop in classification accuracy that should not go 

unnoticed. (The Matlab script located in Appendix D was used to generate these confusion 

matrices based on the reconstructed test-image database.) 

 

7.4 Suggestions for Improvement  

 Continuing with this same design, the first and foremost problem to tackle is the 

information theory debate. A solution to this problem would be to construct full feature spaces 

using the entire directory of 512x512 image blocks for each respective classifier in this system’s 

three-fold, nested ensemble design. This would require an immense amount of processing power 

because there are 1,372 features being extracted from each image file, and the number of files in 

each manipulation-type directory, including unaltered image blocks, increases from 2,750 total 

images to 99,604 total images per directory. This would result in feature spaces of dimensions 

99604x1372 for the camera model classifiers and then 796,832x1372 for the manipulation type 

classifier. After constructing each of these feature spaces, the respective machine learning 

classifiers must then be trained accordingly, which would require an immense amount of 

processing power for Matlab do build classifiers using matrices containing from around 1.37 x 
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108 elements to around 1.1 x 109 elements. Unfortunately, Union does not have the types of 

resources containing the necessary level of computing power, so training this proposed final 

system design on the entire information available is not a feasible option. 

 A loophole around this processing power issue would be to reduce the total number of 

features that are extracted from each image file. If it were possible to reduce the total number of 

features from 1,372 to less than 100, or even 10, for example, the size of these feature spaces 

would drastically reduce, allowing for much more information to be processed using the 

resources Union has to offer. The following section uses a method of feature-space-reduction to 

observe the resulting changes in overall accuracy of a new unaltered-image classifier derived 

from the full feature space used to train the unaltered-image classifier used in this system’s final 

design.  

 

7.4.1 Feature Space Reduction of Unaltered-Image Feature Space using Weka 

 A data mining software, known as Weka, was used to reduce the number of features used 

to train the unaltered-image classifier used in this system’s final design. Weka is an open-source, 

machine learning software that contains tools for data pre-processing, classification, regression, 

clustering, association rules, and visualization [16]. Weka’s Attribute Selector tool was used to 

identify the most influential features in the unaltered image feature space constructed using the 

full-image database. The specific attribute evaluator algorithm used was the 

“ClassifierAttributeEval” (using the default settings), and the search method algorithm used was 

the “Ranker” algorithm, which listed a specified number of features from most influential to least 

influential. Table 8 shows the resulting training accuracies of two different classifiers that were 
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trained on the most influential features ranging from 10 features to 200 features from the original 

feature space of 1,372 features. These classifiers were trained using ten-fold cross validation.  

TABLE 8: CLASSIFIER TRAINING ACCURACIES USING REDUCED FEATURE SPACES 
# of Most Influential 

Features 
Subspace Discriminant 

Ensemble Classifier 
Quadratic Support Vector 

Machine Classifier 
10 64.4% 85.0% 
50 86.5% 96.9% 
75 91.6% 98.2% 
100 92.8% 98.3% 
125 94.5% 98.6% 
150 95.1% 98.7% 
175 95.8% 98.3% 
200 98.6% 96.4% 

 

Each subspace discriminant ensemble classifier was trained using 30 learners and half of the 

subspace dimensions than there were total features (25 dimensions for 50 features, 38 

dimensions for 75 features, and so on). The quadratic support vector machine (SVM) classifiers 

were trained using a One-vs-All multiclass method without standardizing the data. A SVM 

classifier attempts to establish separate hyperplanes for the data points of each class in the 

training set [17]. This method requires a large amount of storage space, so it was not a desirable 

classification method using the full, 1,372-feature feature spaces. However, for the reduced-

feature-space scenarios, this classification method proved to be more accurate for each case – as 

supported by the accuracy results in Table 8. The most accurate classifier trained here was the 

quadratic SVM classifier trained using 150 features; the overall meaning of these features is 

discussed below. 

 This specific attempt at data mining for the unaltered-image feature space is interesting 

because 149 out of the 150 most important features were developed using the bilinear 

interpolation demosaicing algorithm accompanied with the Red-Green channel co-occurrence 

matrix extraction method. The remaining feature was developed using the nearest-neighbor 
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interpolation demosaicing algorithm accompanied with the Red-Green channel co-occurrence 

matrix extraction method. This feature was especially interesting because it was determined by 

Weka’s attribute selector algorithm to be the single most influential feature out of all 1,372 

features. To understand the meaning of this feature, Figure 8 is shown again below: 

 
FIGURE 8: EXAMPLE GEOMETRIC STRUCTURE FOR BUILDING RED-GREEN CHANNEL CO-OCCURRENCE 

MATRIX [5] 
 

Figure 8 shows the specific geometric structure used for building a Red-Green channel co-

occurrence matrix. The possible values for (d1, d2, d3) range from -3 to 3, where (-3, -3, -3) 

represents the greatest negative error between an original image and its reconstructed image 

using a specific interpolation technique, and where (3, 3, 3) represents the greatest positive error. 

In this scenario, the most important feature in this entire feature space had the value of (3, 3, 3) 

for the Red-Green channel co-occurrence matrix, representing the co-occurrence of the 

maximum positive error across the red-green channel pixels in an image reconstructed using the 

nearest-neighbor interpolation method.  

 The remaining 149 features of this most accurate training model, despite all being 

features developed using the bilinear interpolation demosaicing algorithm accompanied with the 

Red-Green channel co-occurrence matrix extraction method, unfortunately did not share the 

same correlation in feature importance as the single-most important feature discussed above. All 

149 of these features were located within the range of the co-occurrence of the maximum 

negative error to the co-occurrence of no error across the red-green channel pixels in a 
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reconstructed image. Specifically, the respective values of (d1, d2, d3) referenced here range from 

a minimum value of (-3, -3, -2) to a maximum value of (0, 0, -2). A visual 3D representation of 

these feature values is shown in Figure 17.  

 
FIGURE 17: 3D SCATTER PLOT OF 149 OF THE MOST IMPORTANT 150 FEATURES FOR UNALTERED IMAGES 
 

Despite all being co-occurrence values representing negative error across the red-green channel 

pixels in an image reconstructed using bilinear interpolation, these 149 features seemingly do not 

follow a determinable correlation to shed further insight to specifically understand why these 

features may have been the most influential. 

 To determine the impact of this quadratic SVM classifier trained on the 150 most 

influential features of the full feature space, this classifier’s decision fusion was used to classify 

the camera source of only the unaltered images from the Flickr-reconstructed test image 

database. This system’s overall performance on the classification of unaltered images was 

compared to that of the system trained on the entire feature space – this comparison is displayed 

in Table 9. 
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TABLE 9: COMPARISON OF UNALTERED-IMAGE CLASSIFIER PERFORMANCE ON UNALTERED IMAGES 

Classifier Type Image Data 
Type 

# of Total 
Features Used 

Feature 
Space Size  

(r x c) 

Performance 
Accuracy 

Subspace Discriminant 
Ensemble Full Images 1372 2750x1372 55.0% 

Quadratic SVM Full Images 150 2750x150 41.21% 
 

The overall classification performance of this new system scored lower than the original system, 

suggesting that this method of feature reduction proved to be an unsuccessful solution to both the 

overfitting and computational problems resulting from the original classification system. The 

accuracy of this new system is broken down further in the confusion matrix located in Table 10. 

TABLE 10: OVERALL UNALTERED-IMAGE CLASSIFICATION ACCURACY OF 150-FEATURE SYSTEM DESIGN 

 

Table 10 shows that this system’s classification accuracy of images from each individual camera 

model is considerably lower than those of the original system’s (located in Table 5), except for 

the cases of Cameras 5 and 6. Despite an overwhelming decrease in overall classification 

performance of unaltered images, this 150-feature system design classified images captured 

using Cameras 5 and 6 with slightly higher accuracy than the full-feature system design. These 

150 features may have been especially useful for determining images captured using Cameras 5 

and 6, but other than this claim, these phenomena seem to be no more than an anomaly 

associated with a unanimous decrease in overall performance accuracy of this feature-reduced 

system.  

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5 Camera 6 Camera 7 Camera 8 Camera 9 Camera 10
Camera 1 68.18 1.52 0.00 3.03 12.88 4.55 4.55 2.27 2.27 0.76
Camera 2 7.58 37.12 4.55 0.76 11.36 13.64 3.79 5.30 9.85 6.06
Camera 3 18.18 3.79 44.70 0.00 7.58 12.12 9.09 2.27 0.00 2.27
Camera 4 28.03 3.03 0.76 25.76 10.61 14.39 3.79 10.61 3.03 0.00
Camera 5 15.91 0.00 2.27 3.03 60.61 7.58 0.76 5.30 3.79 0.76
Camera 6 11.36 14.39 14.39 0.00 12.12 38.64 6.06 0.76 0.76 1.52
Camera 7 22.73 1.52 3.03 4.55 12.88 9.09 28.03 7.58 6.82 3.79
Camera 8 20.45 2.27 0.00 1.52 2.27 19.70 2.27 49.24 1.52 0.76
Camera 9 9.09 0.76 0.00 5.30 15.15 15.15 2.27 5.30 44.70 2.27

Camera 10 16.67 4.55 7.58 0.76 8.33 6.82 0.76 5.30 34.09 15.15

Unaltered Confusion Matrix (Nested Class 1, Reduced Features = 150)
Predicted Models
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7.4.2 Feature Space Reduction of Unaltered-Image Feature Space using Manual Method 

 A second case study of feature space reduction was performed using a manual selection 

process instead of the algorithmic process discussed in Section 7.4.1. This manual selection 

process focused on the three extreme cases that could occur in each co-occurrence-channel-

matrix calculation. Specifically, these extreme cases were defined as having the values of (-3, -3, 

-3), (0, 0, 0), or (3, 3, 3) for (d1, d2, d3) representing the co-occurrence of the maximum negative 

error, the co-occurrence of no error, and the co-occurrence of the maximum positive error of 

pixels across a color channel in a reconstructed image. Since there were four total co-occurrence 

matrices extracted from a single image, there was a total of 12 extreme features from the original 

1,372 full feature space that composed this reduced-feature-space design. This feature space was 

used to train a subspace discriminant ensemble classifier and a quadratic SVM classifier using 

ten-fold cross validation. The accuracies of these trained systems are displayed in Table 11. 

TABLE 11: CLASSIFIER TRAINING ACCURACIES USING EXTREME-REDUCED FEATURE SPACE 
# of Extreme 

Features 
Subspace Discriminant 

Ensemble Classifier 
Quadratic 

SVM Classifier 
12 61.2% 83.1% 

 

Table 11 shows that, again, as seen in Table 8, the quadratic SVM classifier outperformed the 

subspace discriminant ensemble classifier. To determine the impact of this quadratic SVM 

classifier trained on the 12 most extreme features of the full feature space, this classifier’s 

decision fusion was used to classify the camera source of only the unaltered images from the 

Flickr-reconstructed test image database. This system’s overall performance on the classification 

of unaltered images was compared to that of the system trained on the entire feature space as 
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well as the system trained on the 150 most influential features– this comparison is displayed in 

Table 12. 

 
TABLE 11: COMPARISON OF UNALTERED-IMAGE CLASSIFIER PERFORMANCE ON UNALTERED IMAGES 

Classifier Type Image Data 
Type 

# of Total 
Features Used 

Feature 
Space Size  

(r x c) 

Performance 
Accuracy 

Subspace Discriminant 
Ensemble Full Images 1372 2750x1372 55.0% 

Quadratic SVM Full Images 150 2750x150 41.21% 
Quadratic SVM Full Images 12 2750x12 20.3% 

 
The overall classification performance of this new system scored considerably lower than both 

the original system design and the 150-feature system design, suggesting that this manual-

feature-selection method was an unsuccessful approach to solve both the overfitting and 

computational problems resulting from the original classification system through feature 

reduction. The accuracy of this new system is broken down further in the confusion matrix 

located in Table 12. 

TABLE 12: OVERALL UNALTERED-IMAGE CLASSIFICATION ACCURACY OF 12-FEATURE SYSTEM DESIGN 

 

Table 12 shows that this system’s classification accuracy of images from each individual camera 

model is considerably lower than those of the original system’s (located in Table 5), supporting 

the overall ineffectiveness of using this extreme feature space to classify the all camera models 

used to capture the images in the Flickr-reconstructed test database. An interesting result shown 

in the above confusion matrix, however, is the fact that the individual camera model 

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5 Camera 6 Camera 7 Camera 8 Camera 9 Camera 10
Camera 1 19.70 11.36 2.27 9.09 12.12 9.09 0.76 12.12 21.97 1.52
Camera 2 9.09 9.85 3.03 3.03 25.00 8.33 3.03 20.45 13.64 4.55
Camera 3 5.30 4.55 6.06 9.09 3.79 6.06 3.03 11.36 49.24 1.52
Camera 4 9.09 0.76 2.27 6.06 18.18 8.33 3.03 5.30 44.70 2.27
Camera 5 7.58 14.39 0.76 3.79 50.00 4.55 0.00 7.58 9.85 1.52
Camera 6 5.30 0.00 8.33 0.76 23.48 3.79 1.52 1.52 46.97 8.33
Camera 7 11.36 4.55 4.55 4.55 9.85 25.76 3.79 12.12 22.73 0.76
Camera 8 6.06 1.52 0.00 5.30 2.27 3.79 2.27 52.27 26.52 0.00
Camera 9 1.52 1.52 3.03 7.58 17.42 9.09 1.52 9.85 47.73 0.76

Camera 10 18.94 1.52 6.82 3.03 12.12 20.45 6.06 9.85 17.42 3.79
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classification accuracies for both Cameras 8 and 9 were higher in this case than those classified 

using the 150-feature system design. This implies that these 12 extreme features could have held 

more identification strength of these two camera models than the 150 most important features 

determined using Weka. Or, these phenomena could be the result of an anomaly in the data, but 

without more in-depth data mining, the true explanation to these remain unknown.  
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8. PRODUCTION SCHEDULE 

8.1 The 2018 IEEE Signal Processing Cup Production Schedule 

 The 2018 IEEE Signal Processing Cup began in late August 2017 when the competition 

topic was released. The only information provided at this time was the document referenced in 

[2] and the training image database containing ten different camera models with 275 images per 

camera. The deadline for submitting Open Competition results at this point was set to January 

21, 2018. In order to meet this deadline, the goal for the Fall Term and ECE 498 was to decide 

on a final system design for Union’s Signal Processing Cup Team’s camera model identification 

system. The month of September was dedicated to completing all of the necessary research to be 

able to design the image forensic techniques that would be used in the final system design. The 

month of October was dedicated to writing Matlab code capable of using the chosen image 

forensic techniques to build a desired feature space for a single camera directory. The rest of Fall 

Term was dedicated to constructing our first full feature space with which to use to begin 

training machine learning classifiers. The goal for Winter Break was to consolidate the original 

feature-space-construction code to allow for and to begin the mass-production of different image 

feature spaces. Around the second week of December, the competition organizers released the 

Matlab script used to generate the manipulated image directories (Appendix A). Not too long 

after this release, the competition organizers released the information that the Open Competition 

deadline had been extended to February 8, 2018. This extension was favorable because the goal 

set for Winter Break for beginning the mass-production of feature spaces had still remained 

unfinished. 

 To start Winter Term ECE 499, feature spaces had been constructed using the twelve 

different possible combinations of demosaicing algorithms and co-occurrence matrices of the full 
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image directory provided at the start of the competition. Given time constraints of the 

competition deadline, the chosen feature space combination to use for the training of the machine 

learning classifiers in the final system design were the four combinations used in [6]. The 

immediate next step for Winter Term was to use the provided Matlab script for the manipulated 

images to construct the respective nine image directories of 512x512 image blocks: one directory 

containing image blocks of the original unaltered directory, and the remaining eight directories 

containing manipulated image blocks of each manipulation technique constructed from this first 

image block directory. Starting alongside the construction of these directories of image blocks 

was determining, through trial-and-error, the best machine learning classifier available through 

Matlab’s Classification Learner Application to use for the final classifier system designs. The 

last week of January consisted of constructing manipulated image feature spaces, training and 

selecting the best machine learning classifier designs for each feature space, and designing the 

final three-fold, nested ensemble design covered in this report. Due to the time constraints of the 

Open Competition deadline, only a small subset of the entire image block directory could be 

used to construct the respective feature spaces to train each manipulated-image classifier. The 

last week of Open Competition consisted of consolidating all of the deliverables due at the 

competition deadline and submitting the two best classifier scores through Kaggle.  

 

8.2 Suggestions for Improvement in Production Schedule 

 The main suggestion for improvement of the above production schedule would have been 

to use the available time over winter break much more efficiently. If it were possible to 

determine the best combination of demosaicing algorithms and co-occurrence matrices during 

this time, then it could have greatly increased to overall accuracy of this same final system 
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design. A second suggestion for using the available Winter Break time more efficiently would 

have been to have constructed the image block directories as soon as the code to do so was 

released by the competition organizers. This could have allowed for the construction of image 

block feature spaces using a much larger subspace of the entire image block directory to train the 

manipulated-image classifiers than the time allowed for in the original production schedule. 

These two improvements could have maximized the overall performance of this final system 

design within the constraints of the 2018 IEEE Signal Processing Cup deadlines.  
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9. COST ANALYSIS 

 The cost of this entire senior capstone project amounted to $0 because this senior project 

was entirely software-based. Matlab and its Classification Learner Application were the only 

software tools used for the design and implementation of the camera model identification system 

submitted for the 2018 Signal Processing Cup, and both of these were accessed through Union 

College’s licensed use of the Matlab software.  
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10.  USER MANUAL 

 The operation of this camera model identification is comprised of three main parts: 

feature space construction, machine learning classifier training, and implementation of trained 

machine learning classifiers to classify the test image database.  

 

10.1 Feature Space Construction 

 The feature space construction for this final system design was implemented using the 

Matlab scripts located in Appendix B. These scripts are written unique to the location of a 

specific image file directory using a specific operating system (Windows or Linux), so it is 

necessary to edit the file locations and to comment in/out the OS-based commands accordingly 

for the desired application.  

 

10.2 Machine Learning Classifier Training 

 Once these feature spaces have been constructed and imported into the Matlab 

workspace, Matlab’s Classification Learner Application can then be used to train a desired 

machine learning classifier. The specific classifier that will be trained in this example will be a 

Subspace Discriminant Ensemble classifier trained using 30 learners and 686 subspace 

dimensions determined from a full feature space of 1,372 total features. (Note: this user manual 

was developed using Matlab R2017b.) 

 

10.2.1 Opening Matlab’s Classification Learner Application  

 Figure 18 shows the location of the classification learner application within the main 

Matlab window. 
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FIGURE 18: CLASSIFICATION LEARNER APP LOCATION IN MATLAB 

 

10.2.2 Starting a New Session in the Classification Learner Application 

 Figures 19 and 20 show a step-by-step guide of how to import a desired training feature 

space into the classification learner application. 

 
FIGURE  19: STARTING A NEW SESSION – IMPORT LOCATION 

 

The “From Workspace” option must be selected in order to access the full feature space currently 

located in the Matlab workspace. 
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FIGURE 20: STARTING A NEW SESSION – IMPORT OPTIONS 

 

For the important feature space import options boxed in Figure 20, the appropriate workspace 

variable must be selected, the columns must be used as variables, the response variable must be 

set to the column containing the camera model ID information (in this case column 1373), and 

the validation method must be selected and set to the proper setting (in this case a ten-fold cross-

validation method) before selecting “Start Session.”  

 

10.2.3 Selecting the Desired Machine Learning Classifier 

 Figures 21 and 22 show the location of the drop-down menu for Matlab’s arsenal of 

machine learning classifiers and the full classifier selection, respectively. 
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FIGURE 21: SELECTING THE PROPER CLASSIFIER – DROP-DOWN MENU LOCATION 

 

 
FIGURE 22: SELECTING THE PROPER CLASSIFIER – FULL CLASSIFIER SELECTION 

 

The Quadratic SVM and Subspace Discriminant Ensemble classifiers are boxed in Figure 22 

because they were the two classification techniques referenced in this report. 

 

10.2.4 Training a Quadratic SVM Classifier 

 Once the quadratic SVM classifier is chosen from the classifier drop-down menu, the 

advanced SVM options must be set according to the settings outlined in Figure 23. 
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FIGURE 23: TRAINING A QUADRATIC SVM CLASSIFIER – CLASSIFIER OPTIONS 

 

10.2.5 Training a Subspace Discriminant Ensemble Classifier 

 Once the subspace discriminant ensemble classifier is chosen from the classifier drop-

down menu, the advanced ensemble options must be set according to the settings outlined in 

Figure 24. 

 
FIGURE 24: TRAINING A SUBSPACE DISCRIMINANT ENSEMBLE CLASSIFIER 
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10.2.6 Displaying and Exporting Trained Classifier 

 Once the “Train” button has been selected and the model has finished training, selecting 

the “Confusion Matrix” button from the top ribbon menu (see Figure 25) will output the resulting 

confusion matrix (see Figure 26) of that specifically trained model. 

 
FIGURE 25: “CONFUSION MATRIX” BUTTON LOCATION 

 

 
FIGURE 26: EXAMPLE CONFUSION MATRIX OF FULLY-TRAINED CLASSIFIER 

 

In order to export the specific trained model to the Matlab workspace, the “Export Model” button 

must be selected followed by “Export Compact Model” (Figure 27). 
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FIGURE 27: EXPORTING TRAINED MODEL TO MATLAB WORKSPACE 

 

After naming this model, it will then be exported to the Matlab workspace.  

 

10.3 Implementation of Three-Fold, Nested Ensemble Classifier used in Final Design 

 The Matlab script that implements the camera model classification of a specified test 

image database is located in Appendix C. The location of the specific test image database must 

be edited within the script accordingly. This script exports the classification results as a .csv file 

in the format specified by the IEEE Signal Processing Cup competition guidelines [2].  

 The Matlab script that was used to generate the confusion matrices breaking down the 

classification’s performance on the Flickr-reconstructed test image database is located in 

Appendix D. 
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11.  DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

 The challenge of the 2018 IEEE Signal Processing Cup required teams of undergraduate 

students to use a combination of image forensics and machine learning to develop a classification 

system capable of determining the make and model of a camera used to capture an image. The 

designed system covered in this report was submitted on behalf of Union College’s first ever 

Signal Processing Cup Team. The final system design consisted of using image forensic 

techniques to convert images into information within a specific feature space and then using 

these constructed feature spaces to train various machine learning classifiers. The specific image 

forensics used in this final design first re-filtered images using a Bayer CFA and then re-

interpolated these images twice using two separate demosaicing algorithms: bilinear 

interpolation and nearest-neighbor interpolation. An error image was then calculated from 

subtracting the reconstructed images from the original images, from which information regarding 

the co-occurrence of predetermined pixel value combinations were extracted in respect to the 

image’s red channel and the image’s red-green channel. The co-occurrence matrices constructed 

from an entire image directory were the full feature spaces used to train each of the ten-total 

subspace discriminant ensemble classifiers whose resulting decision fusions made up a three-

fold, nested ensemble classifier. This nested classifier classified a test image database composed 

of 2,640 images captured using different devices – but same make and model – than those used 

to construct the training image database. Half of these images were unaltered, but the other half 

of these images were manipulated using an undisclosed distribution of eight different 

manipulation techniques. The top two classification scores of this final system design submitted 

at the deadline of the competition were 65.6% and 65.0%.  
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11.1 Recommendations 

 The main recommendation for improvement of this specific design would be to use 

various data mining methods to identify the most important features within the full feature spaces 

used in the final design of this camera model identification system. Ideally, these feature spaces 

would be greatly reduced from 1,372 features to less than 100 features. Since the 512x512 image 

block directories contained more than 99,000 total images, reducing the number of features 

would greatly increase the total amount of information that could be used to develop these 

training feature spaces given the limitation of computational power experienced while using 

Union’s lab computer resources. The increase of overall information used to train each classifier 

theoretically should improve the performance accuracy of each of these classifiers, thus allowing 

for the final nested-ensemble-classifier design to have a higher performance accuracy than 

submitted for this year’s Signal Processing Cup Competition. This process of data mining would 

also lend valuable insight unto the meaning behind the most significant features used to construct 

this optimized feature space, providing valuable information of the unique features used to 

distinguish the ten different camera models used in this competition. 

 This method of data mining would completely exhaust this proposed image classification 

design, but there is no way of knowing that this optimized classifier would perform better than 

most of the top finishers in this year’s competition. The top 100 finishers are shown on the 

Signal Processing Cup leaderboard on Kaggle, and each of these finishers’ classification systems 

scored higher than 95.9%. Kaggle’s discussion page for this competition contained the solutions 

that many of these top-place finishers used for their final designs. Almost all of these teams were 

using Python-based, dense neural network classifier arrays trained on an enormous amount of 

image data that teams constructed using various online image databases in addition to the image 
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database provided by the competition organizers. In order to process hundreds-of-gigabytes-

worth of image data these teams must have had access to resources with incredibly powerful 

computational power. For example, the second-place team for the IEEE Signal Processing Cup 

competition, aptly named GPU Muscles, wrote their own discussion board post detailing the 

specific neural network array used, the amount of extrapolated training data, as well as the their 

incredibly powerful hardware whose graphics cards alone amounted to over $10,000. So, as a 

final recommendation to improve the overall performance of this proposed image classification 

system would be to scrap the design altogether, design a dense neural network array instead, 

download an additional couple hundred gigabytes of image data, and purchase the necessary 

resources capable of processing all of this information within a reasonable amount of time. 

 

11.2 Lessons Learned 

 The biggest lesson I learned upon completion of this senior capstone project, aside from 

learning about the entire topics of both image forensics and machine learning from the ground 

up, was the importance of identifying and understanding the limitations of processing power that 

are introduced when working with incredibly large datasets. Unfortunately, it did not seem like 

the successful teams competing in this year’s Signal Processing Cup experienced same 

computational limitations that I had throughout the development of this final classification 

system design, which leads me to believe that our team was at a significant disadvantage since 

the onset of this competition. Despite this clear disadvantage in processing power, however, I 

was forced to use methods of data mining after the completion of the competition to understand 

how to optimize the performance of this design. This forced me to not only search for specific 

features that best distinguished between the ten different camera models for the specific machine 



Geiger 499 Report: IEEE Signal Processing Cup 

 59 

classifiers I was using but also to understand the physical meaning of each of these features by 

linking them back to the specific image forensic techniques used to generate them. Although it 

did not improve the overall performance, I felt that this data mining experience gave me the 

deepest understanding of the overall operation and dependence of each machine learning 

classifier. Because these top-finishing teams had access to incredible amount of processing 

power, I think it would be reasonable to assume that these teams did not have the same learning 

experience that I had through data mining. I feel that the focus of this year’s IEEE Signal 

Processing Cup competition should have been more directly focused on the refinement of a 

feature extraction process rather than focused on who could process the most amount of 

information. But, at the end of the day, I owe everything I now know about image forensics and 

machine learning due to this senior capstone project and the 2018 IEEE Signal Processing 

Competition, which is makes this an incredibly rewarding learning experience as a whole.  
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13.  APPENDICES 

The following pages contain appendices with the following information: 

 

- Appendix A: Matlab function script used to construct image block databases using one 

of nine different manipulation techniques. 

- Appendix B: Top-level Matlab script used to construct a full feature space of a specified 

image directory along with Matlab scripts of all of the functions called through each 

subsequent level.  

- Appendix C: Matlab script containing all ten, trained, machine learning decision fusions 

used in a three-fold, nested ensemble design. 

- Appendix D: Matlab script used to generate confusion matrices that breakdown a 

system’s classification results of the Flickr-reconstructed test image database.   
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Appendix A – dirProc.m 

function dirProc(readDirName,writeDirName,operation,param,writeFmt,writeQF) 
%  
% dirProc - This function processes all images in a user specified 'read' 
%   directory containing only images and writes the processed images to a 
%   user specified 'write' directory. 
% 
% Written by Matthew C. Stamm 
%   v1.0 Released 12/05/17 
%  
% INPUTS 
%   readDirName -  The name of the directory containing the image files to 
%      be processed.  This name should be provided as a string. 
% 
%   writeDirName -  The name of the directory where the processed image 
%       files should be written to.  This name should be provided as a  
%       string. 
% 
%   operation - A string specifying the operation that the user wishes to 
%       perform on all of the images in the 'read' directory. 
% 
%   param - The parameter associated with the chosen operation.  More 
%       detail regarding this input is provided below. 
% 
%   writeFmt (optional) - The image file format that should be used when  
%       writing the processed images.  The file format specified by the  
%       user should be the same as those available when using the 'imwrite' 
%       operation, e.g. 'tif', 'png', 'jpg', etc.  If no format is 
%       specified, the TIFF file format is chosen by default. 
% 
%   writeQF (optional) - The quality factor used during JPEG compression if 
%       the write format is chosen as JPEG. 
% 
% 
%   Operations available: 
%       'block' - This operation divides each image into blocks.  The block 
%           size is specified in the 'param' input variable (e.g. using the 
%           value of 512 for 'param' will divide the image into 512 x 512 
%           pixel blocks). 
% 
%       'jpeg' - This option saves each image as a JPEG whose quality 
%           factor is specified in the 'param input variable (e.g. using 
%           value of 75 for 'param' will JPEG compress each image with a 
%           quality factor of 75). 
% 
%       'resize' - This option resizes each image using the scaling factor 
%           specified in the 'param' input variable (e.g. using the value 
%           of 1.5 for 'param' scales each image by a factor of 1.5). 
% 
%       'gamma' - This option contrast enhances each image using the gamma 
%           correction operation where the gamma is specified in the 
%           'param' input variable (e.g. using the value of 0.7 for 'param' 
%           gamma corrects each image with a gamma of 0.7). 
% 
%       'rename' - This option creates a renamed version of each image, 
%           where the renamed version of each image corresponds to a string 
%           specified in the 'param' input variable appended with a number 
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%           assigned to each file (e.g. using the string 'test' for param 
%           will produce images named 'test01.tif', 'test02.tif', ...) 
%        
%       'suffix' - This option appends a string to the end of the filename 
%           (excluding the file extension) of each image where the suffix 
%           to be appended is specified in the 'param' input variable (e.g. 
%           if the files in the 'read' directory are named 'test01.tif', 
%           'test02.tif', test03.tif',...  then using string '_abc' for the 
%           param variable will produce files in the 'write directory named 
%           'test01_abc.tif', 'test02_abc.tif', 'test03_abc.tif', ... 
%            
% 
% OUTPUTS - None.  All processed/modified files are written to the 'write' 
%        directory. 
%  
  
%% 
  
% NOTE: This function assumes that ONLY image files are in the 'read'  
% directory.  The first two files provided by the 'dir' function are '.'  
% and '..' which are not image files, thus should be skipped. 
  
% check to see if there are enough input arguments 
if nargin < 4  
    disp(char(10)) 
    disp('ERROR: Not enough input arguments are specified'); 
    disp(char(10)); 
    return 
     
% if the write file type is not specified, set it to 'tif' 
elseif nargin <5 
    writeFmt= 'tif'; 
     
end 
  
% check to see if the 'write' directory already exists 
if isdir(writeDirName) == 0 
     
    % if it does not, then make a new directory to write to 
    mkdir(writeDirName); 
     
end 
  
% get the name/path of the current directory 
currentDirName= cd; 
  
  
% get information about the directory containing image files to be 
% processed 
readDir= dir(readDirName); 
dirlen= length(readDir);    % get number of files in the directory 
  
switch operation 
     
    case {'block','Block','BLOCK'} 
        blocksize= param; 
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        % loop through all files in the directory 
        for fnum= 3:dirlen 
             
            % read in the current image 
            imname= readDir(fnum).name; 
            im= imread(strcat(readDirName,'/',imname)); 
             
            % get the image's size 
            [imrows,imcols,colors]= size(im); 
             
            % determine how many blocks can be made from the current image 
            rowblocks= floor(imrows/blocksize); 
            colblocks= floor(imcols/blocksize); 
             
            % determine how many digits should be used to add the block 
            % number to the output (write) filename 
            numblocks= rowblocks*colblocks; 
            numdig= floor(log10(numblocks))+1; 
            numdigstr= strcat('%0',num2str(numdig),'d'); 
             
            % loop through all blocks in the image 
            for rowblock= 1:rowblocks 
                 
                % get initial and final row indices of the current block 
                rowst= blocksize*(rowblock-1) + 1; 
                rowfin= blocksize*rowblock; 
                 
                for colblock= 1:colblocks 
                    % get initial and final columb indicies of the current 
                    % block 
                    colst= blocksize*(colblock-1) + 1; 
                    colfin= blocksize*colblock; 
                     
                    % get the current image block 
                    imblock= im(rowst:rowfin,colst:colfin,:); 
                     
                    % create the filename for this new image block 
                    [filepath,name,ext]=fileparts(imname); 
                    blocknum= colblock + (rowblock-1)* colblocks; 
                    writename= strcat(writeDirName,'/',name,'-b',... 
                        sprintf(numdigstr,blocknum),'.',writeFmt); 
%                     writename= strcat(name,'_',num2str(blocknum),... 
%                         '.',writeFmt)                     
                     
                    % write the image block to the 'write' directory 
                    if sum(strcmp(writeFmt,{'jpeg','jpg','JPEG','JPG'})) 
                        imwrite(imblock,writename,writeFmt,... 
                            'Quality',writeQF); 
                    else 
                        imwrite(imblock,writename,writeFmt); 
                    end 
                     
                end 
            end     % end loop through blocks 
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        end % end loop through images   
         
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
     
         
    case {'jpeg','jpg','JPEG','JPG'} 
             
        if (nargin > 4) & ... 
                ~ sum(strcmp(writeFmt,{'jpeg','jpg','JPEG','JPG'})) 
             
            disp(char(10)) 
            disp(strcat('ERROR: The ''operation'' variable is chosen ',... 
                'as ''JPEG'' but the')) 
            disp(strcat('       ''writeFmt'' variable specifies a ',... 
                ' format other than JPEG.'))  
            disp(strcat('       Please ensure that these variables ',... 
                'match or do not specify')) 
            disp('       the ''writeFmt'' variable.') 
            disp(char(10)) 
            return 
             
        elseif (nargin == 6) & (writeQF ~= param) 
             
            disp(char(10)) 
            disp(strcat('ERROR: JPEG quality factor specified in',... 
                ' the ''param'' variable does')) 
            disp(strcat('       not match the quality factor specified',... 
                ' in the ''writeQF'''))  
            disp(strcat('       variable. Either ensure both match or',... 
                ' specify only one (i.e. ')) 
            disp(strcat('       do not enter a value for the ',... 
                '''writeFmt'' and ''writeQF'' variables.')) 
            disp(char(10)) 
            return 
        end 
         
        writeQF= param; 
         
        % loop through all files in the directory 
        for fnum= 3:dirlen 
             
            % read in the current image 
            imname= readDir(fnum).name; 
            im= imread(strcat(readDirName,'/',imname)); 
             
             
            % create the write filename for this image  
            [filepath,name,ext]=fileparts(imname); 
            writename= strcat(writeDirName,'/',name,'-j',... 
                num2str(writeQF),'.','jpg'); 
             
            % write the image to the 'write' directory 
            imwrite(im,writename,'JPEG','Quality',writeQF); 
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        end % end loop through images   
         
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
     
     
    case {'gamma','Gamma','GAMMA'} 
         
         
        g= param; 
         
        % create string to append to the end of the filename noting the 
        % gamma value used to modify the image 
        gammaStr= num2str(g); 
        decInd= find(gammaStr == '.'); 
        fNameEnd= strcat('-g',gammaStr(1:(decInd-1)),'_',... 
            gammaStr((decInd+1):end)); 
         
         
        % loop through all files in the directory 
        for fnum= 3:dirlen 
             
            % read in the current image 
            imname= readDir(fnum).name; 
            im= imread(strcat(readDirName,'/',imname)); 
             
            % gamma correct the image 
            gim= 255*((double(im)./255).^g); 
            gim= uint8(gim); 
             
            % create the filename for this new image block 
            [filepath,name,ext]=fileparts(imname); 
            writename= strcat(writeDirName,'/',name,fNameEnd,'.',writeFmt); 
             
            % write the image to the 'write' directory 
            if sum(strcmp(writeFmt,{'jpeg','jpg','JPEG','JPG'})) 
                imwrite(gim,writename,writeFmt,... 
                    'Quality',writeQF); 
            else 
                imwrite(gim,writename,writeFmt); 
            end 
             
        end % end loop through images   
         
         
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
     
    case {'resize','Resize','RESIZE'} 
         
        scale= param; 
         
        % create string to append to the end of the filename noting the 
        % scaling factor used to modify the image 
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        scaleStr= num2str(scale); 
        decInd= find(scaleStr == '.'); 
        fNameEnd= strcat('-r',scaleStr(1:(decInd-1)),'_',... 
            scaleStr((decInd+1):end)); 
         
         
        % loop through all files in the directory 
        for fnum= 3:dirlen 
             
            % read in the current image 
            imname= readDir(fnum).name; 
            im= imread(strcat(readDirName,'/',imname)); 
             
            % resize the image 
            resizedIm = imresize(im,scale); 
             
            % create the filename for the resized image  
            [filepath,name,ext]=fileparts(imname); 
            writename= strcat(writeDirName,'/',name,fNameEnd,'.',writeFmt); 
             
            % write the image to the 'write' directory 
            if sum(strcmp(writeFmt,{'jpeg','jpg','JPEG','JPG'})) 
                imwrite(resizedIm,writename,writeFmt,... 
                    'Quality',writeQF); 
            else 
                imwrite(resizedIm,writename,writeFmt); 
            end 
             
        end % end loop through images   
         
         
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    case {'rename','Rename','RENAME'} 
         
        % get new filename (excluding image number) 
        newname= param; 
         
        % determine how many digits should be used to add the image 
        % number to the output (write) filename 
        numdig= floor(log10(dirlen-2))+1; 
        numdigstr= strcat('%0',num2str(numdig),'d'); 
         
        % loop through all files in the directory 
        for fnum= 3:dirlen 
             
            % read in the current image 
            imname= readDir(fnum).name; 
            im= imread(strcat(readDirName,'/',imname)); 
             
             
            % create the filename for this new image block 
            [filepath,name,ext]=fileparts(imname); 
            imnum= fnum-2; 
            writename= strcat(writeDirName,'/',newname,... 
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                sprintf(numdigstr,imnum),'.',writeFmt); 
             
            % write the image to the 'write' directory 
            if sum(strcmp(writeFmt,{'jpeg','jpg','JPEG','JPG'})) 
                imwrite(im,writename,writeFmt,... 
                    'Quality',writeQF); 
            else 
                imwrite(im,writename,writeFmt); 
            end 
             
        end % end loop through images   
         
         
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    case {'suffix','Suffix','SUFFIX'} 
         
        % get new filename (excluding image number) 
        suffix= param; 
         
        % loop through all files in the directory 
        for fnum= 3:dirlen 
             
            % read in the current image 
            imname= readDir(fnum).name; 
            im= imread(strcat(readDirName,'/',imname)); 
             
             
            % create the filename for this new image block 
            [filepath,name,ext]=fileparts(imname); 
            imnum= fnum-2; 
            writename= strcat(writeDirName,'/',name,suffix,'.',writeFmt); 
             
            % write the image to the 'write' directory 
            if sum(strcmp(writeFmt,{'jpeg','jpg','JPEG','JPG'})) 
                imwrite(im,writename,writeFmt,... 
                    'Quality',writeQF); 
            else 
                imwrite(im,writename,writeFmt); 
            end 
             
        end % end loop through images   
         
         
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    otherwise 
        disp(char(10)) 
        disp('ERROR: You have chosen an unknown operation'); 
        disp(char(10)); 
        return 
end 
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Appendix B 

Feat_Space_Construct.m 

clear;clc;close all; 
% Comment out the specific feature space construction command you are 
% building. All twelve feature spaces listed will need to be ran. The 
% written code should work with Prof. Dosiek's server import system for the 
% photos.  
  
% % % 1. Matlab demo & R coocc 
% try 
%     diary('log.txt') 
%     Feature_Space = FeatSpace('Matlab','R'); casenum = 1; 
%     csvwrite(['SP_Cup_Block_Feature_Space_' num2str(casenum) 
'.csv'],Feature_Space);  
%     diary off 
% catch err 
%     err.getReport 
%     disp('Uh-oh, we had an error!') 
%     diary off 
% end 
%  
% % 2. Matlab demo & RG coocc 
% try     
%     diary('log.txt') 
%     Feature_Space = FeatSpace('Matlab','RG'); casenum = 2; 
%     csvwrite(['SP_Cup_Block_Feature_Space_' num2str(casenum) 
'.csv'],Feature_Space);  
%     diary off 
% catch err 
%     err.getReport 
%     disp('Uh-oh, we had an error!') 
%     diary off     
% end 
  
% 3. Nearest Neighbor demo & R cooc 
try 
    diary('log.txt') 
    Feature_Space = FeatSpace('neighbor','R'); casenum = 'NN_R'; 
    save(['SP_Cup_Test_Feature_Space_' casenum '.mat'],'Feature_Space');  
    diary off 
catch err 
    err.getReport 
    disp('Uh-oh, we had an error!') 
    diary off 
end 
  
% 4. Nearest Neighbor demo & RG cooc 
try 
    diary('log.txt') 
    Feature_Space = FeatSpace('neighbor','RG'); casenum = 'NN_RG'; 
    save(['SP_Cup_Test_Feature_Space_' casenum '.mat'],'Feature_Space');   
    diary off 
catch err 
    err.getReport 
    disp('Uh-oh, we had an error!') 
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    diary off     
end 
    
% 5. Bilinear demo & R cooc 
try     
    diary('log.txt') 
    Feature_Space = FeatSpace('bilinear','R'); casenum = 'Bi_R'; 
    save(['SP_Cup_Test_Feature_Space_' casenum '.mat'],'Feature_Space');  
    diary off 
catch err 
    err.getReport 
    disp('Uh-oh, we had an error!') 
    diary off     
end 
  
% 6. Bilinear demo & RG cooc 
try     
    diary('log.txt') 
    Feature_Space = FeatSpace('bilinear','RG'); casenum = 'Bi_RG'; 
    save(['SP_Cup_Test_Feature_Space_' casenum '.mat'],'Feature_Space');  
    diary off 
catch err 
    err.getReport 
    disp('Uh-oh, we had an error!') 
    diary off     
end 
  
% % 7. Smooth Hue demo & R cooc 
% try     
%     diary('log.txt') 
%     Feature_Space = FeatSpace('smooth_hue','R'); casenum = 7; 
%     csvwrite(['SP_Cup_Block_Feature_Space_' num2str(casenum) 
'.csv'],Feature_Space);  
%     diary off 
% catch err 
%     err.getReport 
%     disp('Uh-oh, we had an error!') 
%     diary off    
% end 
%  
% % 8. Smooth Hue demo & RG cooc 
% try     
%     diary('log.txt') 
%     Feature_Space = FeatSpace('smooth_hue','RG'); casenum = 8; 
%     csvwrite(['SP_Cup_Block_Feature_Space_' num2str(casenum) 
'.csv'],Feature_Space);  
%     diary off 
% catch err 
%     err.getReport 
%     disp('Uh-oh, we had an error!') 
%     diary off     
% end 
%  
% % 9. Median Interpolation demo & R cooc 
% try     
%     diary('log.txt') 
%     Feature_Space = FeatSpace('median','R'); casenum = 9; 
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%     csvwrite(['SP_Cup_Block_Feature_Space_' num2str(casenum) 
'.csv'],Feature_Space);  
%     diary off 
% catch err 
%     err.getReport 
%     disp('Uh-oh, we had an error!') 
%     diary off     
% end 
%  
% % 10. Median Interpolation demo & RG cooc 
% try    
%     diary('log.txt') 
%     Feature_Space = FeatSpace('median','RG'); casenum = 10; 
%     csvwrite(['SP_Cup_Block_Feature_Space_' num2str(casenum) 
'.csv'],Feature_Space);  
%     diary off 
% catch err 
%     err.getReport 
%     disp('Uh-oh, we had an error!') 
%     diary off 
%     toc 
% end 
%  
% % 11. Gradient-Based demo & R cooc 
% try     
%     diary('log.txt') 
%     Feature_Space = FeatSpace('gradient','R'); casenum = 11; 
%     csvwrite(['SP_Cup_Block_Feature_Space_' num2str(casenum) 
'.csv'],Feature_Space);  
%     diary off 
% catch err 
%     err.getReport 
%     disp('Uh-oh, we had an error!') 
%     diary off     
% end 
%  
% % 12. Gradient-Based demo & RG cooc 
% try     
%     diary('log.txt') 
%     Feature_Space = FeatSpace('gradient','RG'); casenum = 12; 
%     csvwrite(['SP_Cup_Block_Feature_Space_' num2str(casenum) 
'.csv'],Feature_Space);  
%     diary off 
% catch err 
%     err.getReport 
%     disp('Uh-oh, we had an error!') 
%     diary off     
% end 
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FeatSpace.m 

function Feature_Space = FeatSpace(demotype,cooctype) 
% demotype = { 
%   'Matlab' - Matlab's demosaicing function 
%   'neighbor' - nearest neighbor interpolation 
%   'bilinear' - bilinear interpolation             
%   'smooth_hue' - smooth hue transition interpolation 
%   'median' - median-filtered bilinear interpolation 
%   'gradient' - gradient-based interpolation 
%   } 
% cooctype = {'R','RG'} 
  
q = 2; T = 3; 
  
% Creature Feature Space Matrix 
% Feature_Space = zeros(2750,344); 
Feature_Space = zeros(2640,343); %if using Test Image Database 
  
% Make a cell array for camera model strings that we can iterate over 
CameraModel = cell(10);  
CameraModel{1} = 'HTC-1-M7\'; 
CameraModel{2} = 'iPhone-4s\'; 
CameraModel{3} = 'iPhone-6\'; 
CameraModel{4} = 'LG-Nexus-5x\'; 
CameraModel{5} = 'Motorola-Droid-Maxx\'; 
CameraModel{6} = 'Motorola-Nexus-6\'; 
CameraModel{7} = 'Motorola-X\'; 
CameraModel{8} = 'Samsung-Galaxy-Note3\'; 
CameraModel{9} = 'Samsung-Galaxy-S4\'; 
CameraModel{10} = 'Sony-NEX-7\'; 
  
% File Directory Import 
% PathToFiles = '\\unionpdc\SPcupPhotos\'; %if on Windows 
% PathToFiles = 'F:\Altered Image Database\Altered Image 
Database\Cameras_Blocks\'; %for Altered Image Blocks 
% [~, uid] = system('echo $UID');  uid = uid(1:end-1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% PathToFiles = ['/run/user/' uid '/gvfs/smb-share:server=EELAB-
21080,share=Altered_Image_Database/']; %if on Linux 
  
PathToFiles = ['D:\SP_Cup_Test_Images\Images']; %if using Test Image Database 
  
% % Camera Feature Spaces 
% cam1_feature_space = 
camfeatspace(PathToFiles,CameraModel{1},1,q,T,demotype,cooctype); 
% cam2_feature_space = 
camfeatspace(PathToFiles,CameraModel{2},2,q,T,demotype,cooctype); 
% cam3_feature_space = 
camfeatspace(PathToFiles,CameraModel{3},3,q,T,demotype,cooctype); 
% cam4_feature_space = 
camfeatspace(PathToFiles,CameraModel{4},4,q,T,demotype,cooctype); 
% cam5_feature_space = 
camfeatspace(PathToFiles,CameraModel{5},5,q,T,demotype,cooctype); 
% cam6_feature_space = 
camfeatspace(PathToFiles,CameraModel{6},6,q,T,demotype,cooctype); 
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% cam7_feature_space = 
camfeatspace(PathToFiles,CameraModel{7},7,q,T,demotype,cooctype); 
% cam8_feature_space = 
camfeatspace(PathToFiles,CameraModel{8},8,q,T,demotype,cooctype); 
% cam9_feature_space = 
camfeatspace(PathToFiles,CameraModel{9},9,q,T,demotype,cooctype); 
% cam10_feature_space = 
camfeatspace(PathToFiles,CameraModel{10},10,q,T,demotype,cooctype); 
%  
% % Compile Feature Spaces together 
% Feature_Space(1:275,:) = cam1_feature_space; 
% Feature_Space(276:550,:) = cam2_feature_space; 
% Feature_Space(551:825,:) = cam3_feature_space; 
% Feature_Space(826:1100,:) = cam4_feature_space; 
% Feature_Space(1101:1375,:) = cam5_feature_space; 
% Feature_Space(1376:1650,:) = cam6_feature_space; 
% Feature_Space(1651:1925,:) = cam7_feature_space; 
% Feature_Space(1926:2200,:) = cam8_feature_space; 
% Feature_Space(2201:2475,:) = cam9_feature_space; 
% Feature_Space(2476:2750,:) = cam10_feature_space; 
  
% Test Image Database Feature Space 
Feature_Space = 
camfeatspace(PathToFiles,'VOID','VOID',q,T,demotype,cooctype); %if using Test 
Image Database 
  
end 
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camfeatspace.m 

function cam_feat_space = 
camfeatspace(PathToFiles,camname,camnum,q,T,demotype,cooctype) 
  
% PathToPics = [PathToFiles camname]; %this gives us the full path to the 
folder containing the images for a particular camera. Then we can query for 
file names and iterate over them for analysis 
% imgFile = dir(PathToPics); 
PathToPics = PathToFiles; %if using Test Image Database 
imgFile = dir(PathToFiles); %if using Test Image Database 
camname = 'TEST_DATA'; %if using Test Image Database 
% %%%%%%%%%%%%%%%%%%%%%%%%%% 
% remove '.*' files 
idxToKill = []; 
for k = 1:length(imgFile) 
    M = length(imgFile(k).name); 
    if strcmp(imgFile(k).name(1),'.') 
        idxToKill = [idxToKill k]; 
    end 
end 
imgFile(idxToKill) = []; 
% only keep '*.tif' 
idxToKill = []; 
for k = 1:length(imgFile) 
    M = length(imgFile(k).name); 
    if M < 5 %kill if file name is too small to have been '*.tif' 
        idxToKill = [idxToKill k]; 
    elseif ~strcmp(imgFile(k).name(M-3:M),{'.tif', '.TIF'}) %kill if file 
isnt tif 
        idxToKill = [idxToKill k]; 
    end 
end 
imgFile(idxToKill) = [];     
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
% cam_feat_space = zeros(275,344); 
cam_feat_space = zeros(2640,343); %if using Test Image Database 
  
for l = 1:length(imgFile) 
    %CurrentIMG = fullfile(camnum,imgFile(l).name); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    CurrentIMG = fullfile(PathToPics,imgFile(l).name); 
    A = imread(CurrentIMG); 
     
    % Linux:  
    % disp([camname ', ' demotype ', ' cooctype ': Analyzing image ' 
num2str(l) ' of ' num2str(length(imgFile)) ', ' num2str(get_free_mem()) ' MB 
of free memory']) 
    % Windows: 
    [userview,systemview] = memory; 
    disp([camname ', ' demotype ', ' cooctype ': Analyzing image ' num2str(l) 
' of ' num2str(length(imgFile)) ', ' 
num2str(systemview.PhysicalMemory.Available/1024/1024) ' MB of free memory']) 
     
    E = demotrunc(A, demotype, q, T); 
    cooc = makecooc(E, cooctype); 
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    %cam_feat_space(l,344) = 1; %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%     cam_feat_space(l,344) = camnum; 
    cam_feat_space(l,1:343) = cooc'; 
end 
  
end 
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demotrunc.m 

function E = demotrunc(A, type, q, T) 
% Types: 
%   'Matlab' - Matlab's demosaicing function 
%   'neighbor' - nearest neighbor interpolation 
%   'bilinear' - bilinear interpolation             
%   'smooth_hue' - smooth hue transition interpolation 
%   'median' - median-filtered bilinear interpolation 
%   'gradient' - gradient-based interpolation 
% q = 2, T = 3 
  
% gbrg Bayer CFA filter 
A_raw = uint8(zeros(size(A))); 
[nrows, ncols] = size(A(:,:,1)); 
for i=1:nrows 
   for j = 1:ncols 
        if mod(i,2)~=0 && mod(j,2)~=0 %i odd, j odd, keep G 
                A_raw(i,j,2) = A(i,j,2); 
        elseif mod(i,2)~=0 && mod(j,2) ==0 % i odd, j even, keep B 
                A_raw(i,j,3) = A(i,j,3); 
        elseif mod(i,2)==0 && mod(j,2)~=0 % i even, j odd, keep R 
                A_raw(i,j,1) = A(i,j,1); 
        elseif mod(i,2)==0 && mod(j,2)==0 % i even, j even, keep G 
                A_raw(i,j,2) = A(i,j,2); 
        end 
    end 
end 
  
Afloat = double(A); % For error image calculation 
  
% Image resampling based on specified demosaicing algorithm 
switch type 
    case 'Matlab' 
        I = uint8(sum(A_raw,3));  
        A_demosaic = demosaic(I,'gbrg'); 
         
        % error image calculation 
        E = Afloat - double(A_demosaic); 
    case 'neighbor' 
        I = sum(A_raw,3); 
        A_demosaic = demosaicing_v2(I,type); 
          
        % error image calculation 
        E = Afloat - A_demosaic; 
    case 'bilinear' 
        I = sum(A_raw,3); 
        A_demosaic = demosaicing_v2(I,type); 
          
        % error image calculation 
        E = Afloat - A_demosaic; 
    case 'smooth_hue' 
        I = sum(A_raw,3); 
        A_demosaic = demosaicing_v2(I,type); 
          
        % error image calculation 
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        E = Afloat - A_demosaic; 
    case 'median' 
        I = sum(A_raw,3); 
        A_demosaic = demosaicing_v2(I,type); 
          
        % error image calculation 
        E = Afloat - A_demosaic; 
    case 'gradient' 
        I = sum(A_raw,3); 
        A_demosaic = demosaicing_v2(I,type); 
          
        % error image calculation 
        E = Afloat - A_demosaic; 
end 
  
% Image value compression via truncation and quantization 
Emax = T; 
Emin = -T; 
  
E = round(E/q); 
E(E > Emax) = Emax; E(E < Emin) = Emin; 
  
end 
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makecooc.m 

function cooc = makecooc(E, type) 
% E = output of demotrunc() 
% type = "'R', 'RG'} 
[nrows, ncols] = size(E(:,:,1)); 
  
% bust out R and G layers 
R = E(:,:,1);  
G = E(:,:,2);  
    
%reshape layers so 3d, with each slice a CFA tile 
R3d =  permute(reshape(permute(reshape(R, size(R, 1), 2, []), [2 1 3]), 2, 2, 
[]), [2 1 3]); 
G3d =  permute(reshape(permute(reshape(G, size(G, 1), 2, []), [2 1 3]), 2, 2, 
[]), [2 1 3]); 
%get number of tiles 
Ntiles = size(R3d,3); 
  
%get number of permuations 
Nd = 7^3; 
  
%initialize label vector 
d_labels = zeros(Nd,3); 
  
%get cardinality of G1 and G2 sets 
G1rows = 1:2:nrows; 
G1cols = 1:2:ncols; 
G2rows = 2:2:nrows; 
G2cols = 2:2:ncols; 
NG1 = length(G1rows) * length(G1cols); 
NG2 = length(G2rows) * length(G2cols); 
     
     
switch type 
    case 'R' 
        %initialize co-occurance matrices 
        CR = zeros(Nd,1); 
        %loop through different combos of d1, d2, and d3  
        idx = 1; 
         
        for d1 = -3:3 
            for d2 = -3:3 
                for d3 = -3:3 
                    % initial stuff 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                    d_labels(idx,:) = [d1, d2, d3];             
                    %make reference matrices for our desired values 
                    dmatR3d = repmat([d1, d2; 0, d3],1,1,Ntiles);  
     
                    % CR 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                    %make vector of tile matches 
                    matchvec = sum(sum(R3d==dmatR3d)); 
                    %count up matches (if matchvec == 4, we have a match!) 
                    %and assign to co-occurance matrix 
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                    CR(idx) = sum(matchvec(:) == 4)/NG1; 
                     
                    idx = idx+1; 
                end 
            end 
        end 
         
        cooc = CR; 
    case 'RG' 
        %initialize co-occurance matrices 
        CRG = zeros(Nd,1); 
        %loop through different combos of d1, d2, and d3  
        idx = 1; 
         
        for d1 = -3:3 
            for d2 = -3:3 
                for d3 = -3:3 
                    % initial stuff 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                    d_labels(idx,:) = [d1, d2, d3];             
                    %make reference matrices for our desired values    
                    dmatR1 = repmat([d1, d2],1,1,Ntiles); 
                    dmatR2 = repmat([d2; d1],1,1,Ntiles); 
                    % CRG 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                    % match up G vals 
                    matchvecG = squeeze(G3d(1,2,:)) == d3; 
                    % match up R values for 1st term 
                    matchvecR1 = sum(R3d(1,:,:) == dmatR1); 
                    % match up R values for 2nd term 
                    matchvecR2 = sum(R3d(:,2,:) == dmatR2); 
                    % combine (matchvec == 3 means we have a match! 
                    matchvecRG1 = matchvecG + matchvecR1(:);             
                    matchvecRG2 = matchvecG + matchvecR2(:); 
                    CRG(idx) = sum(matchvecRG1 == 3)/NG1 + sum(matchvecRG2 == 
3)/NG2; 
                    
                   idx = idx+1; 
                end 
            end 
        end 
         
        cooc = CRG; 
end 
  
end 
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demosaicing_v2.m 

function output = demosaicing_v2(input,type) 
% Code modified from CFA Interpolation Detection by Leszek Swirski (Nov 30, 
% 2009), accessed on 07/05/2017 
% The paper can be found here:  
% https://www.cl.cam.ac.uk/teaching/0910/R08/work/essay-ls426-
cfadetection.pdf 
% Types: 
%   'neighbor' - nearest neighbor interpolation 
%   'bilinear' - bilinear interpolation             
%   'smooth_hue' - smooth hue transition interpolation 
%   'median' - median-filtered bilinear interpolation 
%   'gradient' - gradient-based interpolation 
% Input MUST be in double for code to run successfully 
  
  
% Load image 
S = input; 
% Create CFA filter for each of the three colours in GBRG format 
Rcfa = repmat([0 0;1 0],size(S)/2); 
Gcfa = repmat([1 0;0 1],size(S)/2); 
Bcfa = repmat([0 1;0 0],size(S)/2); 
% Split data into 'hat' variables 
Rh = S.*Rcfa; 
Gh = S.*Gcfa; 
Bh = S.*Bcfa; 
switch type 
    case 'neighbor' % nearest neighbor interpolation 
        R = Rh(floor([0:end-1]/2)*2+2,floor([0:end-1]/2)*2+1); 
        G = zeros(size(Gh)); 
        G(floor([0:end-1]/2)*2+1,:) = Gh(floor([0:end-1]/2)*2+1,floor([0:end-
1]/2)*2+1); 
        G(floor([0:end-1]/2)*2+2,:) = Gh(floor([0:end-1]/2)*2+2,floor([0:end-
1]/2)*2+2); 
        B = Bh(floor([0:end-1]/2)*2+1,floor([0:end-1]/2)*2+2); 
    case 'bilinear' % bilinear interpolation 
        R = conv2(Rh,[1 2 1;2 4 2;1 2 1]/4,'same'); 
        G = conv2(Gh,[0 1 0;1 4 1;0 1 0]/4,'same'); 
        B = conv2(Bh,[1 2 1;2 4 2;1 2 1]/4,'same'); 
    case 'smooth_hue' % smooth hue transition interpolation 
        G = conv2(Gh,[0 1 0;1 4 1;0 1 0]/4,'same') ; 
        tmp = Rh./G; 
        tmp(isnan(tmp)) = 0;         
        tmp(isinf(tmp)) = 255; 
        R = G.*conv2(tmp,[1 2 1;2 4 2;1 2 1]/4,'same') ; 
        tmp = Bh./G; 
        tmp(isnan(tmp)) = 0; 
        tmp(isinf(tmp)) = 255; 
        B = G.*conv2(tmp,[1 2 1;2 4 2;1 2 1]/4,'same') ; 
    case 'median' % median-filtered bilinear interpolation 
        R = conv2(Rh,[1 2 1;2 4 2;1 2 1]/4,'same') ; 
        G = conv2(Gh,[0 1 0;1 4 1;0 1 0]/4,'same') ; 
        B = conv2(Bh,[1 2 1;2 4 2;1 2 1]/4,'same') ; 
        Mrg = R-G; 
        Mrb = R-B; 
        Mgb = G-B; 



Geiger 499 Report: IEEE Signal Processing Cup 

 82 

        R = S+Mrg.*Gcfa+Mrb.*Bcfa ; 
        G = S-Mrg.*Rcfa+Mgb.*Bcfa ; 
        B = S-Mrb.*Rcfa-Mgb.*Gcfa ; 
    case 'gradient' % gradient-based interpolation 
        H = abs((S(:,[1 1 1:end-2])+S(:,[3:end end end]))/2-S); 
        V = abs((S([1 1 1:end-2],:)+S([3:end end end],:))/2-S); 
        G = Gh+(Rcfa+Bcfa).*((H<V).*((Gh(:,[1 1:end-1])+Gh(:,[2:end 
end]))/2)+(H>V).*((Gh([1 1:end-1],:)+Gh([2:end end],:))/2)+(H==V).*((Gh(:,[1 
1:end-1])+Gh(:,[2:end end])+Gh([1 1:end-1],:)+Gh([2:end end],:))/4)); 
        R = G+conv2(Rh-Rcfa.*G,[1 2 1;2 4 2;1 2 1]/4,'same'); 
        B = G+conv2(Bh-Bcfa.*G,[1 2 1;2 4 2;1 2 1]/4,'same'); 
end 
%% Output 
output(:,:,1)=R; output(:,:,2)=G; output(:,:,3)=B; 
end 
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Appendix C – NestedClassifier.m 

% Image Classification Script 
clear;clc;close all 
  
% Load Test Image Directory and Classifiers 
load Test_imgFile.mat 
% load trainedSD_35L_300sd.mat 
% load trainedFullSVM_Reduced150.mat 
load trainedFullSVM_Reduced12Extreme.mat 
% load trainedAltSD.mat 
% load trainedAlt_Type_675.mat 
% load trainedAlt_Type_1_1.mat 
% load trainedAlt_Type_2_1.mat 
% load trainedAlt_Type_3_1.mat 
% load trainedAlt_Type_4_1.mat 
% load trainedAlt_Type_5_1.mat 
% load trainedAlt_Type_6_1.mat 
% load trainedAlt_Type_7_1.mat 
% load trainedAlt_Type_8_1.mat 
  
  
%% Build Camera ID References 
CameraModel = cell(10,1);  
CameraModel{1} = 'HTC-1-M7'; 
CameraModel{2} = 'iPhone-4s'; 
CameraModel{3} = 'iPhone-6'; 
CameraModel{4} = 'LG-Nexus-5x'; 
CameraModel{5} = 'Motorola-Droid-Maxx'; 
CameraModel{6} = 'Motorola-Nexus-6'; 
CameraModel{7} = 'Motorola-X'; 
CameraModel{8} = 'Samsung-Galaxy-Note3'; 
CameraModel{9} = 'Samsung-Galaxy-S4'; 
CameraModel{10} = 'Sony-NEX-7'; 
  
% Build Test Feature Space 
Bi_R = load('SP_Cup_Test_Feature_Space_Bi_R.mat'); 
Bi_RG = load('SP_Cup_Test_Feature_Space_Bi_RG.mat'); 
NN_R = load('SP_Cup_Test_Feature_Space_NN_R.mat'); 
NN_RG = load('SP_Cup_Test_Feature_Space_NN_RG.mat'); 
  
% Bi_R = load('Test Image Feature 
Spaces\SP_Cup_Test_Feature_Space_Bi_R.mat'); 
% Bi_RG = load('Test Image Feature 
Spaces\SP_Cup_Test_Feature_Space_Bi_RG.mat'); 
% NN_R = load('Test Image Feature 
Spaces\SP_Cup_Test_Feature_Space_NN_R.mat'); 
% NN_RG = load('Test Image Feature 
Spaces\SP_Cup_Test_Feature_Space_NN_RG.mat'); 
  
TestFeatureSpace(:,1:343) = Bi_R.Feature_Space; 
TestFeatureSpace(:,344:686) = Bi_RG.Feature_Space; 
TestFeatureSpace(:,687:1029) = NN_R.Feature_Space; 
TestFeatureSpace(:,1030:1372) = NN_RG.Feature_Space; 
  
[~,x] = size(TestFeatureSpace); 
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%% Classifier Test #1:  
    %Classifying Unaltered Images using Best Unaltered Classifier & 
    %Manually Classifying Altered Images to Cam1 
  
% Build Classified Matrix 
yfit = zeros(2641,2); 
yfit = num2cell(yfit); %converts yfit to cell array 
yfit(1,:) = {'fname' 'camera'}; 
  
for k = 2:2641 
    disp([num2str(k-1) ' of 2640']) 
    yfit{k,1} = Test_imgFile(k-1).name; 
    if sum(ismember('unalt',yfit{k,1})) == 5 %separating unaltered images 
        yfit{k,2} = 
trainedFullSVM_Reduced12Extreme.predictFcn(array2table(TestFeatureSpace(k-
1,1:x))); 
    else %classifying altered images 
        yfit{k,2} = 1; 
    end 
     
end 
  
%% Classifier Test #2:  
    %Classifying Unaltered Images using Best Unaltered Classifier & 
    %Classifying Altered Images using Altered-only-trained Classifier 
  
% Build Classified Matrix 
yfit = zeros(2641,2); 
yfit = num2cell(yfit); %converts yfit to cell array 
yfit(1,:) = {'fname' 'camera'}; 
  
for k = 2:2641 
    disp([num2str(k-1) ' of 2640']) 
    yfit{k,1} = imgFile(k-1).name; 
    if ismember('unalt',yfit{k,1}) %separating unaltered images 
        yfit{k,2} = 
trainedSD_35L_300sd.predictFcn(array2table(TestFeatureSpace(k-1,1:x))); 
         
    else %classifying altered images 
        yfit{k,2} = trainedAltSD.predictFcn(TestFeatureSpace(k-1,1:end)); 
         
    end 
     
end 
  
%% Classifier Test #3:  
    %Classifying Unaltered Images using Best Unaltered Classifier & 
    %Classifying Altered Images Based on Alteration Type and then 
    %Classifying Camera Model w/in each Type 
  
% Build Classified Matrix 
yfit = zeros(2641,2); 
yfit = num2cell(yfit); %converts yfit to cell array 
yfit(1,:) = {'fname' 'camera'}; 
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for k = 2:2641 
    disp([num2str(k-1) ' of 2640']) 
    yfit{k,1} = Test_imgFile(k-1).name; 
    if ismember('unalt',yfit{k,1}) %separating unaltered images 
%         yfit{k,2} = 
trainedSD_35L_300sd.predictFcn(array2table(TestFeatureSpace(k-1,1:x))); 
         
    elseif ismember('manip',yfit{k,1})%classifying altered images 
        yfit{k,2} = trainedAlt_Type_675.predictFcn(TestFeatureSpace(k-
1,1:x)); 
%         if yfit{k,2} == 1 
%             yfit{k,2} = trainedAlt_Type_1_1.predictFcn(TestFeatureSpace(k-
1,1:x)); 
%         elseif yfit{k,2} == 2 
%             yfit{k,2} = trainedAlt_Type_2_1.predictFcn(TestFeatureSpace(k-
1,1:x)); 
%         elseif yfit{k,2} == 3 
%             yfit{k,2} = trainedAlt_Type_3_1.predictFcn(TestFeatureSpace(k-
1,1:x)); 
%         elseif yfit{k,2} == 4 
%             yfit{k,2} = trainedAlt_Type_4_1.predictFcn(TestFeatureSpace(k-
1,1:x)); 
%         elseif yfit{k,2} == 5 
%             yfit{k,2} = trainedAlt_Type_5_1.predictFcn(TestFeatureSpace(k-
1,1:x)); 
%         elseif yfit{k,2} == 6 
%             yfit{k,2} = trainedAlt_Type_6_1.predictFcn(TestFeatureSpace(k-
1,1:x)); 
%         elseif yfit{k,2} == 7 
%             yfit{k,2} = trainedAlt_Type_7_1.predictFcn(TestFeatureSpace(k-
1,1:x)); 
%         elseif yfit{k,2} == 8 
%             yfit{k,2} = trainedAlt_Type_8_1.predictFcn(TestFeatureSpace(k-
1,1:x)); 
%         end 
     
    end 
     
end 
  
%% Replace Camera Numbers w/ Camera Names 
  
for i = 2:2641 
    if yfit{i,2} == 1 
       yfit{i,2} = CameraModel{1}; 
    elseif yfit{i,2} == 2 
       yfit{i,2} = CameraModel{2}; 
    elseif yfit{i,2} == 3 
       yfit{i,2} = CameraModel{3}; 
    elseif yfit{i,2} == 4 
       yfit{i,2} = CameraModel{4}; 
    elseif yfit{i,2} == 5 
       yfit{i,2} = CameraModel{5}; 
    elseif yfit{i,2} == 6 
       yfit{i,2} = CameraModel{6}; 
    elseif yfit{i,2} == 7 
       yfit{i,2} = CameraModel{7}; 
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    elseif yfit{i,2} == 8 
       yfit{i,2} = CameraModel{8}; 
    elseif yfit{i,2} == 9 
       yfit{i,2} = CameraModel{9}; 
    elseif yfit{i,2} == 10 
       yfit{i,2} = CameraModel{10}; 
    end 
end 
  
% Export Results as .csv File 
fid = fopen('FullSVM_Reduced150_Test.csv','wt'); 
for i=1:size(yfit,1)  
    fprintf(fid, '%s,%s\n', yfit{i,:}); 
end 
fclose(fid); 
 

 
  



Geiger 499 Report: IEEE Signal Processing Cup 

 87 

Appendix D – ConfMatGen.m 

% Confusion Matrix Builder Code 
clear; clc; close all 
  
%% Import .csv files 
  
% actuals = csvread('D:\SP_Cup_Test_Images\AnswerKeyCameraModel.csv',1); 
% predictions = load('NestedClass3_vTest.mat'); 
  
actuals = AnswerKeyCameraModel(2:end,:); 
% predictions = NestedClass3vTest(2:end,:); 
predictions = yfit(2:end,:); 
actuals = sortrows(actuals,1); 
  
%% Convert Camera Names to Camera Numbers (1-10) 
  
CameraModel = cell(10,1);  
CameraModel{1} = 'HTC-1-M7'; 
CameraModel{2} = 'iPhone-4s'; 
CameraModel{3} = 'iPhone-6'; 
CameraModel{4} = 'LG-Nexus-5x'; 
CameraModel{5} = 'Motorola-Droid-Maxx'; 
CameraModel{6} = 'Motorola-Nexus-6'; 
CameraModel{7} = 'Motorola-X'; 
CameraModel{8} = 'Samsung-Galaxy-Note3'; 
CameraModel{9} = 'Samsung-Galaxy-S4'; 
CameraModel{10} = 'Sony-NEX-7'; 
  
% Actuals 
for i = 1:2640 
    if ismember(CameraModel{1},actuals{i,2}) 
       actuals{i,2} = {1}; 
    elseif ismember(CameraModel{2},actuals{i,2}) 
       actuals{i,2} = {2}; 
    elseif ismember(CameraModel{3},actuals{i,2}) 
       actuals{i,2} = {3}; 
    elseif ismember(CameraModel{4},actuals{i,2}) 
       actuals{i,2} = {4}; 
    elseif ismember(CameraModel{5},actuals{i,2}) 
       actuals{i,2} = {5}; 
    elseif ismember(CameraModel{6},actuals{i,2}) 
       actuals{i,2} = {6}; 
    elseif ismember(CameraModel{7},actuals{i,2}) 
       actuals{i,2} = {7}; 
    elseif ismember(CameraModel{8},actuals{i,2}) 
       actuals{i,2} = {8}; 
    elseif ismember(CameraModel{9},actuals{i,2}) 
       actuals{i,2} = {9}; 
    elseif ismember(CameraModel{10},actuals{i,2}) 
       actuals{i,2} = {10}; 
    end 
end 
  
% % Predictions 
% for i = 1:2640 
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%     if ismember(CameraModel{1},predictions{i,2}) 
%        predictions{i,2} = {1}; 
%     elseif ismember(CameraModel{2},predictions{i,2}) 
%        predictions{i,2} = {2}; 
%     elseif ismember(CameraModel{3},predictions{i,2}) 
%        predictions{i,2} = {3}; 
%     elseif ismember(CameraModel{4},predictions{i,2}) 
%        predictions{i,2} = {4}; 
%     elseif ismember(CameraModel{5},predictions{i,2}) 
%        predictions{i,2} = {5}; 
%     elseif ismember(CameraModel{6},predictions{i,2}) 
%        predictions{i,2} = {6}; 
%     elseif ismember(CameraModel{7},predictions{i,2}) 
%        predictions{i,2} = {7}; 
%     elseif ismember(CameraModel{8},predictions{i,2}) 
%        predictions{i,2} = {8}; 
%     elseif ismember(CameraModel{9},predictions{i,2}) 
%        predictions{i,2} = {9}; 
%     elseif ismember(CameraModel{10},predictions{i,2}) 
%        predictions{i,2} = {10}; 
%     end 
% end 
%% Convert Alteration Type to Alteration Number (1-8) 
actualTypes = AnswerKeyManipType(2:end,:); 
actualTypes = sortrows(actualTypes,1); 
predictionTypes = cell2table(yfit(2:end,:)); 
  
CameraType = cell(9,1);  
CameraType{1} = 'unalt'; 
CameraType{2} = 'gamma_0.8'; 
CameraType{3} = 'gamma_1.2'; 
CameraType{4} = 'jpeg_90'; 
CameraType{5} = 'jpeg_70'; 
CameraType{6} = 'resize_0.5'; 
CameraType{7} = 'resize_0.8'; 
CameraType{8} = 'resize_1.5'; 
CameraType{9} = 'resize_2.0'; 
  
% Actuals 
for i = 1:2640 
    if ismember(CameraType{1},actualTypes{i,2}) 
       actualTypes{i,2} = {0}; 
    elseif ismember(CameraType{2},actualTypes{i,2}) 
       actualTypes{i,2} = {1}; 
    elseif ismember(CameraType{3},actualTypes{i,2}) 
       actualTypes{i,2} = {2}; 
    elseif ismember(CameraType{4},actualTypes{i,2}) 
       actualTypes{i,2} = {4}; 
    elseif ismember(CameraType{5},actualTypes{i,2}) 
       actualTypes{i,2} = {3}; 
    elseif ismember(CameraType{6},actualTypes{i,2}) 
       actualTypes{i,2} = {5}; 
    elseif ismember(CameraType{7},actualTypes{i,2}) 
       actualTypes{i,2} = {6}; 
    elseif ismember(CameraType{8},actualTypes{i,2}) 
       actualTypes{i,2} = {7}; 
    elseif ismember(CameraType{9},actualTypes{i,2}) 
       actualTypes{i,2} = {8}; 
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   end 
end 
  
%% Build Confusion Matrix (Overall) 
  
ConfMat = zeros(10); 
  
for k = 1:2640 
    x = cell2mat(actuals{k,2}); 
    y = predictions{k,2}; 
    ConfMat(x,y) = ConfMat(x,y) + 1; 
end 
  
ConfMat = ConfMat/264*100 
  
Overall_Accuracy = 
(ConfMat(1,1)+ConfMat(2,2)+ConfMat(3,3)+ConfMat(4,4)+ConfMat(5,5)+ConfMat(6,6
)+ConfMat(7,7)+ConfMat(8,8)+ConfMat(9,9)+ConfMat(10,10))/10 
  
%%  Build Confusion Matrix (Unaltered) 
  
ConfMat = zeros(10); 
  
for k = 1:2640 
    str = actuals{k,1}; 
%     name = str{1}; 
    if ismember('unalt',str) 
        x = cell2mat(actuals{k,2}); 
        y = predictions{k,2}; 
        ConfMat(x,y) = ConfMat(x,y) + 1; 
    end 
end 
  
ConfMat = ConfMat/132*100 
  
Overall_Accuracy = 
(ConfMat(1,1)+ConfMat(2,2)+ConfMat(3,3)+ConfMat(4,4)+ConfMat(5,5)+ConfMat(6,6
)+ConfMat(7,7)+ConfMat(8,8)+ConfMat(9,9)+ConfMat(10,10))/10 
  
%%  Build Confusion Matrix (Manipulated) 
  
ConfMat = zeros(10); 
  
for k = 1:2640 
    str = actuals{k,1}; 
    name = str{1}; 
    if ismember('unalt',name) 
    else 
        x = cell2mat(actuals{k,2}); 
        y = cell2mat(predictions{k,2}); 
        ConfMat(x,y) = ConfMat(x,y) + 1;  
    end 
end 
  
ConfMat = ConfMat/132*100 
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Overall_Accuracy = 
(ConfMat(1,1)+ConfMat(2,2)+ConfMat(3,3)+ConfMat(4,4)+ConfMat(5,5)+ConfMat(6,6
)+ConfMat(7,7)+ConfMat(8,8)+ConfMat(9,9)+ConfMat(10,10))/10 
  
%% Build Confusion Matrix (Types) 
  
ConfMat = zeros(8); 
  
for k = 1:2640 
    x = cell2mat(actualTypes{k,2}); 
    y = predictionTypes{k,2}; 
     
    if x == 0 
    elseif y == 0 
    else 
        ConfMat(x,y) = ConfMat(x,y) + 1;     
    end 
end 
  
for n = 1:8 
    ConfMat(n,:) = ConfMat(n,:)/sum(ConfMat(n,:)); 
end 
  
ConfMat 
Overall_Accuracy = 
(ConfMat(1,1)+ConfMat(2,2)+ConfMat(3,3)+ConfMat(4,4)+ConfMat(5,5)+ConfMat(6,6
)+ConfMat(7,7)+ConfMat(8,8))/8 
 
 


