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ABSTRACT

TURNER, JASON Elementary Computational Fluid Dynamics Using Finite-Difference

Methods. Department of Physics and Astronomy, June 2018.

ADVISOR: LaBrake, Scott

Fluids permeate all of human existence, and fluid dynamics serves as a rich field of re-

search for many physicists. Although the mathematics involved in studying fluids tends to get

complicated, the physical intuition gained through daily exposure to such systems bridges the

gap between abstract calculations and their physical meaning. We discuss the mathematical

treatment and simulations of fluid flows found in everyday life, such as flow in a cavity and

through a pipe. Our discussions follow the example set by several notable texts, such as [1],

[3], [4], and [5].
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Chapter 1: Introduction

The study of fluid mechanics dates back to the ancient Greeks, who introduced ideas such as

Archimedes’ Principle1 and elementary hydraulic machinery. It continues to be a highly active

research area, featuring many popular subfields including:

• Astrophysical fluids, including galaxies and stars;

• Geophysical fluids, including the earth’s atmosphere and oceans;

• Biological fluids, including blood, and;

• Aerodynamics, including airplanes and other aircraft.

Fluids consist of a very large number of individual molecules, whose motion we cannot eas-

ily calculate. For instance, 18 grams of water contains approximately 6.022 × 1023 molecules,

each of which undergoes various accelerations as the fluid flows. However, many practical ap-

plications of fluid mechanics are on length scales much longer than the typical intermolecular

spacing.

Hence, in our study of fluids, we “smooth out” the molecular details by assigning the veloc-

ity of a fluid at a point x and time t to be the average velocity in a fluid element �V centered on

x at time t. We define the velocity field u (x, t) of the fluid as a smooth function. We similarly

define the density of a fluid at a point x and time t as the quotient of the mass contained in a

volume element �V and the volume element �V . This is known as the continuum hypothesis.
1Archimedes’ Principle states that the force of buoyancy an object experiences is equal to the weight of fluid

it displaces. This is different than the infamous tale of his “eureka” moment, in which he realized that the volume
of displaced fluid is equal to the volume of the submerged object.
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In addition to the continuum hypothesis, we limit our study to fluids and flows with the

following properties:

i. Isotropic: There are no preferred directions in a fluid.

ii. Newtonian: There is a linear relationship between the local shear stress and the local rate

of strain, as well as between the local heat flux density and the local temperature gradient.

iii. Classical: The flow is well-described by Newtonian mechanics, and both quantum and

relativistic effects may be ignored.

iv. Incompressible: A given fluid element maintains its volume as it moves. This is expressed

by the incompressibility condition

∇ ⋅ u = 0. (1.1)

A fluid is said to be ideal if, in addition to (i) − (iv), we have

v. Inviscid: Each fluid element does not exert a stress on nearby fluid elements. In other

words, the force exerted across a surface element n̂ �S within the fluid is

p n̂ �S,

where p (x, t) is a scalar function independent of the normal n̂, called the pressure. Using

Stokes’ Theorem, we find that the net force exerted on a volume of fluid V enclosed in a

surface S by the surrounding fluid is

−∫S
p n̂ dS = −∫V

∇p dV .

Hence, the net force on �V due to the pressure of the surrounding fluid is −∇ p �V .

Although not every fluid we study will be ideal, they will have properties (i) − (iv).
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Section 1.1: Elementary Ideal Flows
Through studying ideal flows, one is able to cross the frontier into studying fluid dynamics

without the burden of considering more complicated properties of real-world fluids, such as

compressibility and viscosity. We begin by defining some special classes of flows with simpli-

fying features, and then introduce several useful geometric and mathematical tools for studying

them. We describe flow velocity as a vector u = ⟨u, v, w⟩ dependent on position x = ⟨x, y, z⟩

and time t.

A steady flow is one which is not dependent on time, i.e.,

)u
)t
= 0. (1.2)

This implies that, at any fixed point in space, the speed and direction of flow are constant.

Example 1.1. Consider the steady flow defined by

u = U y, v, w = 0,

for some positive constant U (with units of inverse time) and y is the vertical height in the fluid

(shown in Figure 1.1). This is known as a shear flow, as adjacent layers of fluids move parallel

to each other with different speeds. Real-world examples of shear flow include wind blowing

across a lake and water flowing down a stream. As both U and y are constant with respect to

time, this flow is steady.

3
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y = 0

y = d

Figure 1.1: A shear flow with U = 0.1.

Example 1.2. A stagnation-point flow is one for which u = 0 at some point x. For instance,

the flow defined by

u = U x, v = −U y, w = 0

has a stagnation point located at the origin, as shown in the figure below. Water flowing

vertically outward from a small fountain is an example of a stagnation-point flow.

Figure 1.2: A stagnation-point flow with U = 0.1, featuring a stagnation point at the origin.

A two-dimensional flow is one which is independent of some spatial coordinate. It follows
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that a steady two-dimensional flow is independent of both some spatial coordinate and time

(see Example 1.2). In reality, no flow can be truly two-dimensional, although there are cases

where such a simplification is valid, such as flow down a pipe.

When studying fluid flow, one may wish to create neat geometric objects which “match” the

flow velocity at various points. The concept of streamlines accomplishes this task handily;

they are curves which have the same direction as the fluid flow u (x, t) at every point at a

specific moment in time. A streamline (x(s), y(s), z(s)) parametrized by the variable s satisfies

the equation
dx∕ds
u

=
dy∕ds
v

=
dz∕ds
w

, (1.3)

at a particular time t.

Example 1.3. Recall the stagnation-point flow defined in Example 1.2:

u = U x, v = −U y, w = 0.

By solving the differential equation

dx
U x

= −
dy
U y

,

we may find that the streamlines of the flow are of the form

y = a
x

for some real constant a, and can be seen in Figure 1.3.
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Figure 1.3: The streamlines of a stagnation-point flow with U = 0.1, featuring a stagnation
point at the origin.

From this idea, the question of how properties of the fluid change along streamlines nat-

urally arises. We denote a given property of interest as f (x, t), which may be a component

of flow velocity u or density �. The partial derivative )f∕)t denotes the rate of change of f

with respect to time at a fixed position. In contrast, the rate of change of f following the fluid,

denoted Df∕Dt, is
Df
Dt

= d
dt
f (x(t), y(t), z(t), t)

where x(t), y(t), and z(t) are understood to change with time at the local flow velocity u

dx
dt
= u,

dy
dt
= v, dz

dt
= w.

Through applying the chain rule, we obtain

Df
Dt

= d
dt
f (x(t), y(t), z(t), t)

=
)f
)t
+ u

)f
)x

+ v
)f
)y

+w
)f
)z

(1.4)

=
)f
)t
+ (u ∙ ∇) f.
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Hence, the acceleration of a fluid element at x is

Du
Dt

= )u
)t
+ (u ∙ ∇) u. (1.5)

In any steady flow, the rate of change of f following a fluid element is (u ∙ ∇) f . To see

this, let es be the unit vector which always points in the direction of the streamlines. It follows

that

u ∙ ∇f = |u| es ∙ ∇f = |u| )f
)s
,

where s denotes the distance along the streamline.

Example 1.4. Let the concentration of some pollutant in the fluid be

c(x, y, t) = � x2 y e−U t,

for y > 0, where � is a constant, and let u be the stagnation-point flow defined in Example 1.2.

One natural question is if the pollutant concentration for any particular fluid element changes

with time? To see whether is does or not, we calculate the following derivative:

Dc
Dt

= )c
)t
+ (u ⋅ ∇) c

= −U � x2 y e−U t +
(

U x )
)x
− U y )

)y

)

� x2 y e−U t

= −U � x2 y e−U t + 2U � x2 y e−U t − U � x2 y e−U t = 0.

As this derivative is zero, we see that the concentration of pollutant in a given fluid element is

constant with time.

The equation (u ∙ ∇) f = 0 implies that f is constant along a streamline, although it offers

no information about its value elsewhere. Likewise, Df∕Dt = 0 implies f is constant for a

particular fluid element.

With this in mind, we are ready to derive Euler’s equations of motion, which are the basic
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equations of motion for an ideal fluid. Recall from the definition of an invsicid flow that the

net force on a fluid element of volume �V is −∇ p �V . Including a gravitational body force per

unit mass g, the total force on the element is

(−∇ p + � g) �V .

From Newton’s Second Law, we know that this force must be equal to the product of the

volume element’s mass (which is conserved due to an ideal fluid’s incompressibility) and its

acceleration,

� �V D u
D t

.

We thus obtain Euler’s equations of motion:

Du
Dt

= −1
�
∇p + g, (1.6)

∇ ⋅ u = 0.

Example 1.5. A Rankine vortex, defined as

u� =

⎧

⎪

⎨

⎪

⎩

Ω r r ≤ a,
Ω a2
r

r > a,

ur = uz = 0,

where Ω is a real constant, is commonly used as a simple model of real vortices, such as

whirlpools and tornadoes. The pressure at the center of both of these real-world systems is

notably lower than the pressure elsewhere. Using Euler’s equations in cylindrical coordinates,

we may find the difference in pressure both inside and outside of the core of the Rankine vortex,

and compare its behavior to the real-world equivalents.
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Figure 1.4: The “core” or a Rankine vortex, i.e., the region r ≤ a.

Note the following identities for cylindrical coordinates:

)êr
)�

= ê�,
)ê�
)�

= −êr,
)êz
)�

= 0,

∇p =
)p
)r

êr +
1
r
)p
)�

ê� +
)p
)z

êz,

u ∙ ∇ = ur
)
)r
+
u�
r
)
)�
+ uz

)
)z
.

Using these alongside Euler’s equations, we obtain

−1
�

(

)p
)r

êr +
1
r
)p
)�

ê� +
)p
)z

êz
)

− g êz = −
u�2

r
êr

keeping in mind that ur = uz = 0 and )u�∕)� = 0 for both r < a and r > a.

In the case that r < a, u� = Ω r and we obtain the following two equations:

−1
�
)p
)r
= −Ω2 r, −1

�
)p
)z
− g = 0

9
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By integrating these two equations, we find that

pr<a(r) =
1
2
Ω2 r2 � − g z � + c1

which notably attains a value of −g z � + c1 at r = 0 and 1
2
Ω2 a2 � − g z � + c1 at r = a.

In the case that r > a, u� =
Ω a2
r

and we obtain the following equations:

−1
�
)p
)r
= −Ω

2 a4

r3
, −1

�
)p
)z
− g = 0

By integrating these two equations, we find that

pr>a(r) = −
Ω2 a4 �
2 r2

− g z � + c2

which notably approaches −g z �+ c2 as r →∞ and attains the value − 1
2
Ω2 a2 �− g z �+ c2 at

r = a.

By continuity of the pressure in the fluid, pr<a(a) = pr>a(a), and thus c2 − c1 = Ω2 a2 �.

This is also the difference in pressure at r = 0 and as r → ∞. Hence, the pressure is lower at

the center of the Rankine vortex.

Elementary ideal flows serve as a sufficient introduction to the theoretical study of fluid

flows. They are, however, fundamentally different than viscous flows; the behavior of a fluid

as its viscosity approaches 0 is completely unlike an inviscid flow. For this reason, we must

consider viscosity if we are to apply our ideas to real-world flows.
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Chapter 2: Viscous Fluid Flows

In contrast to inviscid fluids, in a viscous fluid each fluid element may exert a force on all

nearby elements, referred to as the stresses within the fluid. For example, consider the sheer

flow u = ⟨u(y), 0, 0⟩. The tangent component of the stress in this flow �, which is the com-

ponent perpendicular to a fluid element surface, is typically zero for inviscid fluids. As we are

dealing instead with a viscous Newtonian fluid, there is a linear relationship between the local

shear stress and the local rate of strain

� = � du
dy

(2.1)

where � is the coefficient of viscosity of the fluid.

Of greater interest is the kinematic viscosity of the fluid, which is given by

� =
�
�
. (2.2)

Throughout our studies, we concentrate on a simple model of fluid flow in which �, �, and �

are all constant.

This ability to exert stress extends to fluid flowing along a boundary, resulting in a boundary

layer present between the bulk fluid and said boundary. In fact, at a rigid boundary, both the

normal and tangential components of fluid velocity must be equal to those of the boundary

itself. This is called the no-slip condition, which holds for a fluid of any viscosity, despite

how small. It is one of the many reasons that the behavior of a fluid of low viscosity may be
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completely different to that of an inviscid fluid.

To account for viscosity, we must add an additional term to the Euler equations

)u
)t
+ (u ⋅ ∇) u = −1

�
∇p + �∇2 u + g, (2.3)

∇ ⋅ u = 0.

These are known as the Navier-Stokes equations for an isotropic, Newtonian, classical, in-

compressible fluid of constant density � and constant viscosity �.

Section 2.1: Examples of Elementary Viscous Flows
Example 2.1. Consider a viscous fluid flowing between two stationary rigid boundaries located

at y = ±ℎ under a constant a pressure gradient P = −dp∕dx. Due to the constant pressure

gradient, the fluid must flow entirely in the x̂ direction. If the flow speed were dependent on x,

the pressure gradient would not be constant, as the pressure would fluctuate with flow velocity

throughout the fluid. A similar argument may be made for any possible dependence on z and t.

Thus, the flow velocity is of the from u = ⟨u(y), 0, 0⟩, and we simplify the Navier-Stokes

equations to

−1
�
dp
dx
+ � )

2u
)y2

= 0,

∇ ⋅ u = 0.

We may rearrange this equation to obtain

)2u
)y2

= − P
� �
,

and integrate twice to obtain

u(y) = −
P y2

2�
+ C1 y + C2,

12
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where C1 and C2 are constants of integration. The no-slip condition implies u(−ℎ) = u(ℎ) = 0.

Hence, we obtain

0 = −P ℎ
2

2�
+ C1 ℎ + C2,

0 = −P ℎ
2

2�
− C1 ℎ + C2,

which we may add and subtract cleverly to obtain C1 = 0 and C2 =
P ℎ2

2�
. Hence,

u(y) = P
2�

(

ℎ2 − y2
)

.

Example 2.2. Consider a viscous fluid flowing down a pipe of circular cross-section r = a

under a constant pressure gradient P = −dp∕dz, where the z-axis is the axis of the pipe. In

a similar argument to the previous example, ur = u� = 0 and we obtain a reduced form of the

Navier-Stokes equations in cylindrical coordinates

1
r
d
dr

(

r
duz
dr

)

= −P
�
, (2.4)

∇ ⋅ u = 0, (2.5)

with uz = uz(r) and boundary conditions uz(a) = 0 and uz(0) < ∞ from the no-slip condition

and physical constraints of containment in a pipe, respectively.

By rearranging and integrating the Equation 2.4, we obtain

uz(r) = −
P r2

4�
+ C1 log r + C2,

where C1 and C2 are constants of integration. By applying the boundary conditions, we find

that C1 = 0 and C2 =
P a2

4�
. Thus, we obtain

uz(r) =
P
4�

(

a2 − r2
)

.

13
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The methods of analysis we have discussed may only “go so far”, as we have heavily relied

on symmetries within our system and have restricted the range of flows we have study to those

which have analytic solutions to the Navier-Stokes equations. By using numerical methods to

approximate fluid flows, we are able to study more complicated and even chaotic phenomena,

such as turbulence.

14



Chapter 3: The Finite-Difference Method

and the Navier-Stokes Equation

The finite difference method is a numerical method for solving differential equations by

approximating them with difference equations. They serve as one of the most dominant ap-

proaches to numerical solutions of partial differential equations, and are particularly easy to

implement. We resort to numerical method approximations for complicated fluid flows with

no clear analytic solution, which are common in the study of aerodynamics and turbulence.

Sections 3.1 - 3.3 describe how we discretize first- and second-order derivatives, and using

those to discretize the Navier-Stokes equations for use in programming. Section 3.4 includes

examples of some elementary simulations.

Section 3.1: First-Order Derivatives
In order to guide our discussion on approximating first-order derivatives using finite difference

methods, we will implement the method to simulate the 1-D linear convection equation

)u
)t
+ c )u

)x
= 0. (3.1)

Given initial conditions of a system u, Equation 3.1 describes the propagation of the system

with speed c without change of shape. This equation is one of the simplest in all of compu-

tational fluid dynamics, and may be derived from the Navier-stokes equation by only keeping

15
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the accumulation and convection terms for the x-component of the fluid velocity.

As mentioned previously, the finite difference method is centered on the idea of a secant-

line approximation of the derivative (see Figure 3.1), i.e., we use a difference approximation in

place of actual derivatives.

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

Figure 3.1: A secant-line approximation (red, dashed) of the line (blue, dashed) tangent to
x3 + x2 − x + 4 at x = −1.5.

Assume that we know the value of some function f = f (x) at a point x0, and we wish to

approximate its value at some other x value, say x0 + Δx. From the Taylor series of f at x0,

we obtain

f
(

x0 + Δx
)

= f
(

x0
)

+ Δx
df
dx

|

|

|

|x0

+ 
(

Δx2
)

,

where 
(

Δx2
)

denotes a term of order Δx2. By rearranging this equation and assuming

the error term 
(

Δx2
)

is small, we obtain an approximation for the derivative

df
dx

|

|

|

|x0

≈
f
(

x0 + Δx
)

− f
(

x0
)

Δx
.

This is sometimes referred to as a forward-difference scheme, as we use information about
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the point x0 to gather information about a further point x0 + Δx. We may instead consider the

x-coordinate as a linear spatial grid, in which the first point is x0 = x0, the second point is

x1 = x0 + Δx, and the ith point is xi = x0 + iΔx.

When applying this approximation to Equation 3.1, we must also introduce a temporal grid

in which the first point is t0 and the nth point is tn = t0 + nΔt for some fixed temporal spacing

Δt. Hence, we may rewrite the 1-D linear convection equation as

un+1i − uni
Δt

+ c
uni − u

n
i−1

Δx
= 0,

where n and n + 1 in the superscripts are two consecutive steps in time while i and i − 1

in the subscripts are neighboring points of the discretized spatial coordinate x. Note that we

have used a forward-difference scheme for the temporal derivative and a backward-difference

scheme for the spatial derivative (in which we use information about a previous time ti−1 to

approximate information about the current time ti). By rearranging this equation, we obtain

un+1i = uni − c
Δt
Δx

(

uni − u
n
i−1

)

. (3.2)

If we are given initial conditions uni for all i, then the only unknown value in this equation

is un+1i , as c is determined by the system while Δt and Δx are chosen based on the desired

accuracy of the approximation.

Section 3.2: Poisson’s Equation and Second-Order

Derivatives
Poisson’s equation, in a similar vein to the 1-D linear convection equation, describes typical

diffusion phenomena and is given by

)2p
)x2

+
)2p
)y2

= b (3.3)
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where p is a scalar function such as pressure, and b is a “source” term, or an initial distribu-

tion of p. For our purposes, using Poisson’s equation for the pressure p of our fluid flow allows

us to “smooth out” sharp peaks and discontinuities that may arise from turbulence or trailing

edges.

We begin by discretizing second-order derivatives using Taylor series using a central-

difference scheme, i.e., using information from xi+1 and xi−1 to approximate the value of p

at xi. First, consider the Taylor expansions of pi+1 and pi−1 about pi with respect to x:

ui+1 = ui + Δx
)u
)x

|

|

|

|i
+ Δx

2

2
)2u
)x2

|

|

|

|i
+ Δx

3

6
)3u
)x3

|

|

|

|i
+ 

(

Δx4
)

,

ui−1 = ui − Δx
)u
)x

|

|

|

|i
+ Δx

2

2
)2u
)x2

|

|

|

|i
− Δx

3

6
)3u
)x3

|

|

|

|i
+ 

(

Δx4
)

.

By adding these two expansions, we find that

ui+1 + ui−1 = 2 ui + Δx2
)2u
)x2

|

|

|

|i
+ 

(

Δx4
)

,

which we may rearrange, assuming 
(

Δx4
)

is small, to obtain

)2u
)x2

≈
ui+1 − 2 ui + ui−1

Δx2
.

Using this approximation for Equation 3.3, we obtain

pni+1, j − 2 p
n
i, j + p

n
i−1, j

Δx2
+
pni, j+1 − 2 p

n
i, j + p

n
i, j−1

Δy2
= bni, j ,

where n corresponds to the temporal grid, i corresponds to the x-spatial grid, and j corre-

sponds to the y-spatial grid. Rearranging this equation, we obtain

pni, j =

(

pni+1, j + p
n
i−1, j

)

Δy2 +
(

pni, j+1 + p
n
i, j−1

)

Δx2 + bni, j Δx
2Δy2

2
(

Δx2 + Δy2
) . (3.4)
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Note that there are no terms in this equation of future temporal steps, specifically that it

only gives information about p at time step n. We may, however, step through “psuedotime”

by recursively iterating this approximation using known information. For instance, assume the

source term b consists of two discrete spike and p = 0 everywhere initially. After the first

use of this approximation, p will be non-zero in the immediate vicinity of the spikes. We may

then use the constant source term along with the new distribution of p to obtain a “smoother”

approximation of p (see Figure ).

Figure 3.2: Using the finite-difference method, we are able to smooth out the two initial spikes
in a source term b = 100 at (1.75, 1.75), b = −100 at (0.75, 0.75), and b = 0 everywhere else.

Section 3.3: The Navier-Stokes Equations
We are now ready to simulate fluid flows using a finite difference approximation of the Navier-

Stokes equations. Recall the Navier-Stokes equations (Equation 2.3):

)u
)t
+ (u ⋅ ∇) u = −1

�
∇p + �∇2 u, (3.5)

∇ ⋅ u = 0, (3.6)

where we are now ignoring gravity for simplicity (its inclusion would constitute a constant

term in Equation 3.5). We may rewrite these equations as
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)u
)t
+ u )u

)x
+ v )u

)y
= −1

�
)p
)x
+ �

(

)2u
)x2

+ )2u
)y2

)

,

)v
)t
+ u )v

)x
+ v )v

)y
= −1

�
)p
)y
+ �

(

)2v
)x2

+ )2v
)y2

)

,

)u
)x
+ )v
)y

= 0.

There is a slight complication when immediately using these equations to simulate fluid

flow; each equation has coupled pressure and flow velocity, which we need to approximate

separately. To amend this, we take a spatial derivative of the first two equations

)
)t
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+ u )
2u
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+
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+ v )2u
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)x
+ v )
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(

)v
)y

)2

= −1
�
)2p
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)3v
)y)x2

+ )3v
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,

and sum them together to obtain
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)2
+ 2 )u

)y
)v
)x
+
(

)v
)y

)2

= −1
�

(

)2p
)x2

+
)2p
)y2

)

,

where we have liberally used the incompressibility condition to simplify terms. Thus, we

obtain three equations
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�
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)x
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)v
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+
(

)v
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)2

= −1
�

(

)2p
)x2

+
)2p
)y2

)

,

which we may discretize using forward-difference, midpoint, and backward-difference
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schemes
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and rearrange to obtain
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, (3.7)
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⎤

⎥

⎥

⎦

. (3.9)

We may now use Equations 3.7, 3.8, and 3.9 sequentially to approximate fluid flows in the

following manner:

1. Have initial conditions based on the physical constraints of the system.

2. Iterate Equation 3.9 repeatedly to “smooth out” the pressure.

3. Use the “smoothed out” pressure in Equations 3.7 and 3.8 to approximate the fluid flow

velocity at the next time step.

4. Use the approximated fluid flow velocity to repeat Step 2.

Section 3.4: Implementation Examples
In this section, we present several elementary fluid flows simulated in Python, including cavity

flow and channel flow. For examples of code for such simulations, see [2].

Cavity Flow

Imagine blowing across the surface of your morning cup of coffee or tea to cool it down, or

wind blowing across a small puddle. One would expect, as an effect of the no-slip condition,

22



Jason Turner Union College

that the surface would move at the same speed of the air, colliding with the opposite side of the

container and creating an area of higher pressure. The fluid would then flow downward into

the cavity, as the air is not moving fast enough to push it out of the container. The fluid would

then cycle around, rising back to the surface to meet the air once more.

To simulate this system, we begin creating a cavity for our system, the range of spatial

values we wish to simulate. For our purposes, we assume a square cavity with walls at x = 0, 2

and y = 0 in units of length, and the open “lid” at y = 2. We assume the moving air acts

uniformly across this lid, such that u = 1 at y = 2. From the no-slip condition, we have

u, v = 0 along the other boundaries. We must also account for boundary conditions for the

pressure, for which we assume )p
)y
= 0 at y = 0 and )p

)x
= 0 at x = 0, 2.

Assuming this system will achieve a steady state under these constant conditions, we may

assume u, v, p = 0 everywhere else and execute the simulation until the flow is sufficiently

approximated, i.e., the difference in flow at each point between steps ti and ti+1 is small (see

Figure 3.3).

Figure 3.3: A cavity flow simulated in Python, where the flow is represented by the vector field
and pressure by the contour plot in the background. See [2] for an example source code.
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Channel Flow

We now consider a model for channel flow, such as that of water through plumbing or blood

through veins and arteries. We again use a spatial grid between x = 0, 2 and y = 0, 2, where

y = 0, 2 are rigid boundaries. Hence, we have u, v, )p
)y
= 0 at these boundaries. To obtain

a constant pressure gradient, we slightly modify Equation 3.7 to include an additional term F

which we assign a value of 1,

un+1i, j = u
n
i, j + Δt

(

−1
�

pni+1, j − p
n
i−1, j

2Δx
+ �

(

uni+1, j − 2 u
n
i, j + u

n
i−1, j

Δx2
+
uni, j+1 − 2 u

n
i, j + u

n
i, j+1

Δy2

)

−uni, j
uni, j − u

n
i−1, j

Δx
− vni, j

uni, j − u
n
i, j−1

Δy

)

+ F . (3.10)

To simulate this flow, we require one additional tool: periodic boundary conditions. With

periodic boundary conditions, we assume that our system is translationally symmetric, i.e., our

system is unit cell in a perfect tiling (see Figure 3.4).
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Figure 3.4: A channel flow simulated in Python, where the flow is represented by the vector
field and pressure by the contour plot in the background. See [2] for an example source code.

Channel Flow with Blockage

We now insert a rectangular blockage into our channel, which may serve as a simple model of

debris in pipes or plaque buildup in arteries. We extend our channel to x = 0, 12 and y = 0, 4,

in order for the flow to at the end of the channel to become regular once more. Our blockage

consists of a rectangle in the region x = 4.2, 7.8 and y = 1.5, 2.5. Throughout this region we

have u, v, p = 0, while on the boundary of this region we apply the no-slip condition and the

boundary conditions for the pressure.
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Figure 3.5: A channel flow with a blockage simulated in Python, where the flow is represented
by the vector field and pressure by the contour plot in the background.
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