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Most students know the quadratic formula for the solution of the general quadratic polynomial in terms

of its coefficients. There are also similar formulas for solutions of the general cubic and quartic polynomials.

In these three cases, the roots can be expressed in terms of the coefficients using only basic algebra and

radicals. We then say that the general quadratic, cubic, and quartic polynomials are solvable by radicals.

The question then becomes: Is the general quintic polynomial solvable by radicals? Abel was the first to

prove that it is not. In turn, Galois provided a general method of determining when a polynomials roots can

be expressed in terms of its coefficients using only basic algebra and radicals. To do so, Galois studied the

permutations of the roots of a polynomial. We will use the result that the Galois group of a polynomial is

solvable if the polynomial is solvable by radicals to show that the general quintic is not solvable by radicals.
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1 Introduction

Most students know the quadratic formula for the solution of general quadratic polynomial ax2 + bx+ c = 0

in terms of its coefficients:

x =
−b±

√
b2 − 4ac

2a
.

There are also similar formulas for solutions of general cubic and quartic polynomials. General cubic

polynomials in the form x3 + ax2 + bx + c = 0 can be reduced to the polynomial y3 + py + q = 0. By

calculation and applying the quadratic formula, we can reach the Cardano’s formula for one of the solutions

of a general cubic polynomial:

y =
3

√
−q

2
+

√
p3

27
+
q2

4
+

3

√
−q

2
−

√
p3

27
+
q2

4
([Tig01, p.16 ]).

These formulas are similar in the way that they are all solutions by radicals, that is the solutions for x

where f(x) = 0 can be written by basic operations of addition, subtraction, multiplication, division and

taking the nth roots of the coefficients of the polynomials. Since the solution of the general quadratic, cubic,

and quartic polynomials can be written in the described formula, we can say that they are solvable by radicals.

The questions then becomes: Is the general quintic polynomial solvable by radicals? In 1824, Niels-

Henrik Abel(1802−1829) was the first to prove that the general quintic polynomial is not solvable by radicals.

Abel settled the solvability of general equations, and published his proof in 1826 in Crelle’s journal. ([Tig01,
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p.210 ]) Abel came very close to providing a necessary and sufficient condition for solving the problem, while

Evariste Galois (1811− 1832) found a complete solution to this problem. Galois submitted a memoir to the

Paris Academy of Sciences in which he described what is now known as the Galois group of a polynomial,

and used this to determine whether the roots of a polynomial can be solvable by radicals. ([Tig01, p.232 ])

Galois’ work was originally very hard to understand, but Joseph Liouville (1809− 1882) explained Galois’s

work in his own terms which helped the world to understand Galois’s project. Galois associates polynomi-

als to a group of permutation of the roots, and Galois Theory connects field theory and group theory by

providing a correspondence between subfields of fields and subgroups of permutations. Thus the problem

of solvability of the polynomial by radicals can now be solved in terms of the associated group.([Tig01, p.233 ])

The statement we will show in this thesis is that the general quintic polynomial is not solvable by

radicals. We should not take this to mean that every quintic polynomial is not solvable by radicals. For some

quintic polynomials, we can find a radical solution. For example, one of the solutions for the polynomial

x5 − 5 = 0 is 5
√

5. The statement means that we cannot provide a single radical formula for every general

quintic polynomial as we can for the quadratic polynomials. Therefore, to show the statement is true, it is

sufficient for us to find one quintic polynomial with rational coefficients that cannot be solved by radicals,

for example, x5 − 6x+ 3 = 0 has no radical solution. This is certainly a huge task.

In fact, this is not an amazing phenomena that the general quintics have no radical solutions. We

can understand this as a limitation of the operations of addition, subtraction, multiplication, division and

taking the nth roots. Given the operation of addition, subtraction, multiplication, division, we can only

write solutions for linear equations of one variable. In this case, we don’t even have a solution for the gen-

eral quadratic polynomial. This can be interpreted as a limitation of addition, subtraction, multiplication,

division. By introducing the operation of taking the nth root, we can finally write down quadratic formula

and solve the general quadratic polynomial. Thus it shouldn’t surprise us that taking the nth roots are also

limited just as the operations of addition, subtraction, multiplication, division.

But why is general quintic polynomials not solvable by radicals instead of general cubic, quartic or

quadratic polynomials? This will be discussed in the following passage. We’ll assume that the reader has had

some basic abstract algebra course. After studying polynomial rings, we need to learn about field extension

to find the roots of the polynomial in discussion, as in many cases the roots of the polynomials are not in the
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rational field where the coefficients are in. In the exploration, we will see that what the quadratic formula

does is actually extending the field Q to Q(
√
b2 − 4ac). As the expression x = −b±

√
b2−4ac
2a is radical and not

necessary in Q ,then to find an extension field of Q that contains x, we can adjoin Q with
√
b2 − 4ac which

is a radical expression and get Q(
√
b2 − 4ac). The radical extension field Q(

√
b2 − 4ac) has the operations

of addition, subtraction, multiplication, division . The quadratic polynomial is thus solvable by radicals as

there’s a radical extension field where its roots are in. Though it is complicated to write out the expression

for the solution to the general cubic and quartic polynomials, we know that the roots of general cubic and

quartic polynomials can be found in some radical extension field of Q, and are thus solvable by radicals.

We can see from the above example that any radical expression is contained in some radical extension field.

Then if we can find some radical extension field over a polynomial where all of its roots are in, we can say

that the polynomial is solvable by radicals.

In the course of studying, we will show the fact that the Galois group of a polynomial is solvable if the

polynomial is solvable by radicals. Generally, the Galois group of a quintic polynomial is not solvable. Using

the contrapositive of this statement, we will choose a quintic polynomial and show that its Galois group is

not solvable. Thus, we are able to prove that general quintic polynomials are not solvable by radicals.

2 About polynomial

In this section, we’ll learn what a polynomial ring is, so that we will be able to study polynomials in the

language of group theory. We will learn irreducibility of polynomials over a field, thus we will later be able

to understand the constructing of an algebraic extension field, as well as the construction of a splitting field.

This section will mainly follow chapter 16, 17 from [Gal17].

We first give a definition of ring of polynomials over R. The idea is to construct a ring using the

coefficient of the set of the polynomials.

Definition 2.1. Let R be a commutative ring, then

R[x] = {anxn + an−1x
n−1 + . . .+ a1x+ a0|ai ∈ R}

is called the ring of polynomials over R in the indeterminate x. We say that two elements

anx
n + an−1x

n−1 + . . .+ a1x+ a0
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and

bmx
m + bm−1x

m−1 + . . .+ b1x+ b0

are equal if and only if ai = bi for all i ∈ N and a0 = b0. When i > n, we define ai = 0, when i > m, bi = 0.

We can see that the equivalence of two elements in a polynomial ring fits our intuition of polynomials

that two polynomials are equal if and only if their corresponding coefficients are equal in the commutative

ring R. An obvious example of equivalence of two elements in Z[x] is that f(x) = x5 − x3 + x equals to

g(x) = 0x6 +x5−x3 +x where f(x), g(x) ∈ Z[x]. A lesser obvious example of equivalence of two elements in

Z2[x] is that f(x) = g(x) where f(x) = x and g(x) = 3x, the coefficients a1 = 1 and b1 = 3 are equal since

1 = 3mod2 as a1, b1 ∈ Z2.

In order to define a ring, it remains for us to define the way of addition and multiplication for R[x],

which will be the same way as polynomials are added and multiplied.

Definition 2.2. Let R be a commutative ring, and let f(x), g(x) ∈ R[x] be arbitrary with

f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0

and

g(x) = bmx
m + bm−1x

m−1 + . . .+ b1x+ b0

We define addition first,

f(x) + g(x) = (al + bl)x
l + (al−1 + bl−1)xl−1 + . . .+ (a1 + b1)x+ (a0 + b0),

where l is the max of m and n, ai = 0 when i > n, bi = 0 when i > m. We now define multiplication,

f(x)g(x) = cm+nx
m+n + cm+n−1x

m+n−1 + . . .+ c1x+ c0,

where

ci = aib0 + ai−1b1 + . . .+ a1bi−1 + a0bi

where i = 0, . . . ,m+ n.

Complicated as these operations might seem, the addition and multiplication on elements of polyno-

mial rings are just the way we normally add and multiply the polynomials while doing algebra.
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Let’s see an example of addition and multiplication. Let f(x) = x2 + 3, g(x) = x5 − 5x3 − x2 ∈ R[x]. Then

f(x) + g(x) = (0 + 1)x5 + 0x4 + (0− 5)x3 + (1− 1)x2 + 3 = x5 − 5x3 + 3

f(x)g(x) = (0·0+0·0+0·(−1)+0·(−5)+0·0+1·1++0·0+3·0)x7+(0·0+0·0+0·(−1)+0·0+1·0+0·1+3·0)x6+

(0 · 0 + 0 · 0 + 0 · (−1) + 1 · (−5) + 0 · 0 + 3 · 1)x5 + (0 · 0 + 0 · 0 + 1 · (−1) + 0 · (−5) + 3 · 0)x4+

(0 · 0 + 1 · 0 + 0 · (−1) + 3 · (−5))x3 + (1 · 0 + 0 · 0 + 3 · (−1))x2 + (0 · 0 + 3 · 0)x+ (3 · 0)

= x7 − 2x5 − x4 − 15x3 − 3x2

Theorem 2.3. R[x] is a ring.

Proof. We will show this by definition. Let f(x), g(x), h(x) ∈ R[x] be arbitrary with f(x) = anx
n +

an−1x
n−1 + . . .+a1x+a0,g(x) = bmx

m + bm−1x
m−1 + . . .+ b1x+ b0, h(x) = ckx

k + ck−1x
k−1 + . . .+ c1x+ c0

1. We want to show that f(x) + g(x) = g(x) + f(x). By our definition of addition, we have that f(x) +

g(x) = (al + bl)x
l + (al−1 + bl−1)xl−1 + . . .+ (a1 + b1)x+ (a0 + b0) = (bl + al)x

l + (bl−1 + al−1)xl−1 +

. . . + (b1 + a1)x + (b0 + a0) = g(x) + f(x) where l is the max of m and n, ai = 0 when i > n, bi = 0

when i > m as R is a commutative ring.

2. We want to show that (f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x)). By our definition of addition,

(f(x) + g(x)) +h(x) = (al + bl)x
l + (al−1 + bl−1)xl−1 + . . .+ (a1 + b1)x+ (a0 + b0) + ckx

k + ck−1x
k−1 +

. . .+ c1x+ c0 = (ap + bp + cp)xl + (ap−1 + bp−1)xp−1 + . . .+ (a1 + b1 + c1)x+ (a0 + b0 + c0) = anx
n +

an−1x
n−1+. . .+a1x+a0+(bq+cq)xl+(bq−1+cq−1)xl−1+. . .+(b1+c1)x+(b0+c0) = f(x)+(g(x)+h(x))

where l is the max of m and n, p is the max of m,n and k,q is the ma of n, k, ai = 0 when i > n,

bi = 0 when i > m, ci = 0 when i > k as R is a commutative ring.

3. Let j(x) = 0 ∈ R, we want to show that f(x) + j(x) = f(x). f(x) + 0 = anx
n + an−1x

n−1 + . . . +

a1x+ a0 + 0 = anx
n + an−1x

n−1 + . . .+ a1x+ a0 = f(x)

4. Let d(x) = −anxn − an−1xn−1 − . . .− a1x− a0, it is obvious that d(x) ∈ R[x], we want to show that

f(x) + d(x) = j(x) = 0. f(x) + d(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0 − anxn − an−1xn−1 − . . .−

a1x− a0 = 0xn + 0xn−1 + . . .+ 0x+ 0 = 0 = j(x) by addition in the ring R.
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5. We want to show that f(x)(g(x)h(x)) = (f(x)g(x))h(x). We calculate f(x)(g(x)h(x) = f(x)(c′m+kx
m+k+

. . .+c′1x+c′0) = c′′n+m+kx
n+m+k+. . .+c′′1x+c′′0 where c′i = bic0+bi−1c1+. . .+b0ci where i = 0, . . . ,m+k

and c′′o = aic
′
0 + . . .+ a0c

′
o where o = 0, . . . , n+m+ k. Similarly for (f(x)g(x))h(x), thus we have that

f(x)(g(x)h(x)) = (f(x)g(x))h(x).

6. We want to show that f(x)(g(x) + h(x)) = f(x)g(x) + f(x)h(x) and (g(x) + h(x))f(x) = g(x)f(x) +

h(x)f(x). We calculate f(x)(g(x) +h(x)) = f(x)((bl + cl)x
l + . . .+ (b1 + c1)x+ (b0 + c0) = a′n+lx

n+l +

. . .+a′1x+a′0 where l is the max of m and k and a′ = ai(b0+c0)+. . .+a1(bi−1+ci−1)+a0(b0+c0) where

i = 0, . . . , n+m+k. Since a′ = ai(b0 +c0)+ . . .+a1(bi−1 +ci−1)+a0(b0 +c0), we split bi and ci up and

get a′n+lx
n+l + . . .+ a′1x+ a′0 = f(x)g(x) + f(x)h(x). Thus f(x)(g(x) + h(x)) = f(x)g(x) + f(x)h(x).

We now want to show that (g(x) +h(x))f(x) = g(x)f(x) +h(x)f(x), we calculate (g(x) +h(x))f(x) =

f(x)(g(x) + h(x)) this is shown by 5, we then have that f(x)(g(x) + h(x)) = f(x)g(x) + f(x)h(x) =

g(x)f(x) + h(x)f(x) by applying 5 again. Thus we have shown that (g(x) + h(x))f(x) = g(x)f(x) +

h(x)f(x), and R[x] is a ring, as desired.

In the way we define a polynomial ring, we can see that Q[x],R[x],Z[x],C[x] are polynomials rings

with coefficient of rational numbers, real numbers, integers and complex numbers respectively. In order to

study more of the polynomial ring R[x], such as knowing the properties of polynomial rings, our intuition

is that whether the properties of the commutative ring R can be carried to the polynomial ring R[x] with

respect to the ring R. In fact, some of the properties do. We start with the following theorem.

Theorem 2.4. If F is integral domain, then F [x] is integral domain.

Proof. Assume F is an integral domain, we want to show that F [x] is an integral domain. Since we have

that F [x] is a ring, we need to show that F [x] is a commutative ring with a unity and no zero-divisors.

Since F is commutative, as our coefficients of our polynomials are in F , by our definition of addition and

multiplication of F [x], we know that F [x] is commutative as well since the coefficients are also in F [x].

We now show that there’s a unity in F [x]. Since F is an integral domain, since 1 is a unity in F , we have

that f(x) = 1 is a unity of F [x].

It remains for us to show that there are no zero-divisors in F [x]. Assume f(x) = anx
n +an−1x

n−1 + . . .+a0

and g(x) = bmx
m + bm−1x

m−1 + . . .+ b0 where an, bm 6= 0. Multiply f(x) with g(x), we get that anbm is the

leading coefficient of f(x)g(x), since F is an integral domain and anbm ∈ F , we have that anbm 6= 0 since an
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integral domain contains no zero-divisors. Since the leading term is not equal to 0, f(x)g(x) 6= 0,then there

are no zero-divisors in F [x]. Thus F [x] is an integral domain as well.

We now introduce division algorithm on polynomials over a field. This is analogous to the division

algorithm of integers that we learnt earlier.

Theorem 2.5. Suppose F is a field and f(x), g(x) ∈ F [x] where g(x) 6= 0. Then there exist unique

polynomials q(x), r(x) ∈ F [x] where f(x) = g(x)q(x) + r(x) with r(x) = 0 or deg r(x) < deg g(x).

Just as we normally define a root of polynomial, we say that an element a is a zero(root) of a polynomial

f(x) if f(a) = 0. Let F be a field with a ∈ F and f(x) ∈ F [x]. We then say that a is a zero with multiplicity

n where n ≥ 1, if (x− a)n is a factor of f(x) and (x− a)n+1 is not a factor of f(x).

Theorem 2.6. A non-zero polynomial of degree n over a field has at most n zeros, counting multiplicity.

Proof. In the case that n = 0, since a degree 0 non-zero polynomial has no zeros, it has at most 0 zeros.

In the case that n > 0, assume that f(x) is a degree n non-zero polynomial over a field and a is a zero of

f(x) of k multiplicity. Then we can write f(x) as (x − a)kq(x) where q(a) 6= 0, since n = deg f(x) = k+

deg q(x), we have that k ≤ n since a degree is greater than or equal to 0. If a is the only zero, we’re done.

If ∃b 6= a and b is a zero of f(x), then we have that f(b) = (b− a)kq(b), then we have that b is a zero of q(x)

with the same multiplicity for f(x). By induction, we have that q(x) has at most deg q(x) = n − k zeros,

thus f(x) has at most k + n− k = n zeros, counting multiplicity.

We then introduce the definition of irreducible polynomial for the future understanding of extension

fields, later we’ll state the method of determining whether a polynomial is reducible over the polynomial

ring it’s in.

Definition 2.7. If F is an integral domain, let f(x) ∈ F [x], then if f(x) is not a unit over F [x] nor a zero

polynomial, we say that f(x) is irreducible over F if f(x) = g(x)h(x) where g(x), h(x) ∈ F [x], then g(x) or

h(x) must be a unit in F [x]. If f(x) is not irreducible over F , then it is called reducible over F .

If F is a field, then if f(x) ∈ F [x] is irreducible over F [x], then we can interpret this as f(x) cannot be

written in the form of a product of two other polynomials of lower degrees on variable in F [x]. Nevertheless,

determining whether a polynomial is irreducible over an integral domain remains to be a hard task, and we

want to provide some preliminaries for one to find out whether a polynomial is irreducible over F [x].

Theorem 2.8. Suppose f(x) ∈ Z[x], if f(x) is reducible over Q, then it is reducible over Z.
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Proof. Let f(x) ∈ Z[x], assume f(x) = g(x)h(x) such that g(x), h(x) ∈ Q[x]. We want to show that exists

m(x), n(x) ∈ Z[x] such that f(x) = m(x)n(x).

We want to show that exist c ∈ Z such that cf(x) = m(x)n(x), and later show that c = 1. Let a be the least

common multiple of the denominators of all coefficients for g(x) and b be the least common multiple of the

denominators of all coefficients for g(x). (For example, if g(x) = x6 + 1
5x

3 − 1
3x

2, then our a for g(x) is 15.)

We choose m(x) = ag(x) and n(x) = bh(x), we have that m(x), n(x) ∈ Z[x]. By calculation, we know that

abf(x) = (ag(x))(bh(x)) = m(x)n(x), thus we have that c = ab.

We now show that c = 1. We choose c to be the smallest positive number with c = ab by the minimum value

theorem and proceed by contradiction, assume c > 1, let p be a prime divisor of c, and letmp(x), np(x) ∈ Zp[x]

with modulo p operation on coefficients of m(x), n(x). Since cf(x) = m(x)n(x), we do mod p operation on

both sides,

0 = (cf(x)) mod p = m(x)n(x) mod p = mp(x)np(x)

.

Since Zp[x] is an integral domain, we know that either mp(x) or np(x) is 0. WLOG, assume mp(x) = 0. Then

we know that all the coefficients of m(x) are divisible by p. Then let d = c/p, and m′(x) = m(x)/p ∈ Z[x].

Since cf(x) = m(x)n(x), we divide both sides by p and get df(x) = m′(x)n(x). Since d < c, this is a

contradiction by our choice of c to be smallest one. Then we know that c > 1 is false. Since c = ab ∈ Z

and a, b positive, we have that c = 1, as desired. Thus, we’ve shown that f(x) = m(x)n(x) for some

m(x), n(x) ∈ Z[x].

With the preliminaries ready, we now introduce a straightforward method to simplify the problem of

determining whether a polynomial is irreducible over Q.

Theorem 2.9. Eisenstein’s Criterion: Suppose f(x) = anx
n + an−1x

n−1 + . . . + a0 ∈ Z[x]. If there’s a

prime p that p - an, p|an−1, . . . , p|a0 and p2 - a0, then f(x) is irreducible over Q.

Proof. We prove by contradiction. Assume f(x) is reducible over Q, then by theorem 2.8 we have that f(x)

is reducible over Z, that is, exist g(x), h(x) in Z[x] such that f(x) = g(x)h(x) with deg g(x) ≥ 1, and n ≥

deg g(x) ≥ 1. Let g(x) = brx
r + . . .+ b0 and h(x) = csx

s + . . .+ c0, since by our settings, p|a0, p2 - a0, and

a0 = b0c0, then we have that p|b0 or p|c0. If p|b0, since p - an = brcs, we have that p - br. Then we have that

there exist a least integer t such that p - bt. Then there’s at = btc0 + bt−1c1 + . . . + b0ct, since p|at, by our

choice of t, we have that p|btc0. But since p is prime and p - bt and p - c0, thus leads to a contradiction.
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3 Field extension and splitting field

In this section, we will discuss definition and properties of field extension and splitting fields. The discussion

will enable us to have some necessary knowledge required to talk about Galois Theory later, which will help

us with our latter goal of showing quintic polynomials are not solvable by radicals. The progression of this

section follows from chapter 20, 21 in [Gal17].

We first define what is an extension field. Let F be a field.

Definition 3.1. A field E is an extension field of field F if F ⊆ E and F has the same operation as E.

Then we know that a field E is a field extension of F if F is a subfield of E. We denote that E is a

extension field over F as E/F . This notation is not equivalent to the notation we used for quotient groups

and rings.

Theorem 3.2. Let F be a field and f(x) be a non-constant polynomial in F [x], then there’s an extension

field of F where f(x) has a zero.

Proof. Since F [x] is a unique factorization domain, we know that f(x) has an irreducible factor, g(x). We

want to show that there’s an extension field of F where f(x) has a zero, this is equivalent to showing that

there’s an extension field E of F where g(x) has a zero. Let E = F [x]/〈g(x)〉, since 〈g(x)〉 is prime and

maximal ideal in F [x], we know that E is a field, we want to show g(x) has a zero in E.

Note that we still have a problem here that since F is not necessary a subset of E. But we can find a subfield

of E that is isomorphic to F via composing an isomorphism. Let φ : F → E with φ(a) = a + 〈g(x)〉, we

show that this is homomorphism and injective as we know that F exists, and we only want to find a subfield

inside E that is isomorphic to F .

Let a, b ∈ F be arbitrary, we want to show that φ(a+ b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b).

φ(a+ b) = (a+ b) + 〈g(x)〉

= a+ 〈g(x)〉+ b+ 〈g(x)〉

= φ(a)φ(b)

We now calculate φ(ab) = ab+ 〈g(x)〉

= (a+ 〈g(x)〉)(b+ 〈g(x)〉)
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= φ(a) + φ(b)

We show it is injective, assume φ(a) = φ(b), we want to show that a = b. Since a + 〈g(x)〉 = b + 〈g(x)〉 by

assumption, we have that a = b. This shows that there’s a subfield of E that is isomorphic to F . We can

think of F is contained in E, that is we can just think of a+ < g(x) > as same as a.

Let g(x) = anx
n + an−1x

n−1 + . . .+ a0. We claim that x+ 〈g(x)〉 is a zero in E, we calculate,

g(x+ 〈g(x)〉) = an(x+ 〈g(x)〉)n + an−1(x+ 〈g(x)〉)n−1 + . . .+ a0

= an(xn + 〈g(x)〉) + an−1(xn−1 + 〈g(x)〉) + . . .+ a0

= anx
n + an−1x

n−1 + . . .+ a0 + 〈g(x)〉

= g(x) + 〈g(x)〉

= 0 + 〈g(x)〉

Thus we’ve shown that x+ 〈g(x)〉 is a zero of g(x) in E, then there’s an extension field of F where f(x) has

a zero, as desired.

Let’s see an example of the how this theorem works.

Example 3.3. Consider the polynomial f(x) = x3 − 2x2 + x− 2 over Q.

Since x3 − 2x2 + x − 2 = (x2 + 1)(x − 2), we can see that the roots of the polynomial in C are ±i and 2.

Since we know the roots, we can write down a splitting field for f(x), Q(i) as 2 is in Q.

We now want to turn to the algebraic structure of field extension.

Definition 3.4. Suppose E is an extension field of F and a ∈ E. Then a is algebraic over F if a is the

zero of some nonzero polynomial in F [x]. If a is not algebraic over F , then it is transcendental over F . An

extension E of F is called an algebraic extension of F if every element of E is algebraic over F , else it is a

transcendental extension of F .

We continue with the following theorem to show that we make the distinction of elements that are

algebraic and transcendental over a field. F (x) is the field of quotients of F [x], where

F (x) = {f(x)/g(x)|f(x), g(x) ∈ F [x], g(x) 6= 0}.
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Theorem 3.5. Let E be an extension field of F and a ∈ E. If a is transcendental over F , then F (a) ≈ F (x).

If a is algebraic over F , then F (a) ≈ F [x]/〈f(x)〉 where f(x) ∈ F [x] such that f(a) = 0, and f(x) is

irreducible over F .

Proof. Let homomorphism φ : F [x]→ F [a] be f(x)→ f(a). If a is transcendental over F , then Kerφ = {0},

then we can write a isomorphism α : F (x)→ F (x) with α(f(x)/g(x) = f(a)/g(a).

If a is algebraic, then Kerφ 6= {0},then exists a polynomial p(x) in F [x] such that Kerφ = 〈p(x)〉 where

p(x) is the minimum degree polynomial in Kerφ. Then p(a) = 0, p(x) is irreducible, as desired.

We also know that an element a is algebraic over F if a is the zero of some polynomial f(x) ∈ F [x].

Definition 3.6. If a is algebraic over F , then the minimal polynomial of a is the monic polynomial of

minimal degree that has a as a root.

We then introduce the degree of an extension field.

Definition 3.7. Let E be an extension field of F . Then we note that E has degree n over F and write

[E : F ] = n if E has dimension n as a vector space over F . If [E : F ] is finite, E is a finite extension,

otherwise, E is an infinite extension.

Theorem 3.8. If E is a finite extension of F , then E is algebraic.

Proof. Assume that [E : F ] = n and a ∈ E, we have that {1, a, . . . , an} is linearly dependent over F , then

we have that there are c0, c1, . . . , cn in F , such that cna
n + cn−1a

n−1 + . . .+ c1a+ c0 = 0. Thus it is obvious

to see that a is the root of the polynomial f(x) = cnx
2 + cn−1x

n−1 + . . .+ c1x+ c0.

The following theorem serves the function of Lagrange’s Theorem for finite groups for field theory.

Lagrange’s Therorem states that for a group G, if H is a subgroup of G, and K is a subgroup of H, we know

that (G : K) = (G : H)(H : K), where (G : K) is the index for the subgroup K of G (the number of the set

of left cosets of K in G). We will know that the degree of the extension is able to tower up.

Theorem 3.9. If K is a finite extension field of E and E is a finite extension of F . Then K is a finite

extension field of F and [K : F ] = [K : E][E : F ].

Proof. Assume the settings, we want to show that the basis stacks. Assume the set α = {α1, α2, . . . , αi}

form a basis for K over E and β = {β1, β2, . . . , βj} form a basis for E over F . We want to show that the

products αβ = {αmβn|1 ≤ m ≤ i, 1 ≤ n ≤ j} form a basis for K over F . If γ ∈ K, then we have that γ is

a linear combination of the αis with coefficients ai ∈ E and the αis are linear combinations of the βj with
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bij ∈ F . Then we know that αiβj span K over F . If
∑

i,j γijαiβj = 0, then
∑

i γijαi = 0 for j, then we

have that γij = 0 for i, j and αiβj are linearly independent. Then we have that if [E : F ] = |β| = j and

[K : E] = |α| = i, then we have that [K : F ] = |α||β| = ij, as desired.

We should then see some examples on degrees of field extensions.

Example 3.10. 1.

F

F

1

Given any field F , we know that F is a finite extension over itself, with degree [F : F ] = 1.

2.

Q(
√

5)

Q

2

Since {1,
√

5} is a basis for Q(
√

5) over Q, we know that the degree of the extension is 2.

3.

Q(
√

2,
√

5)

Q

4

We know that {1,
√

2} is a basis for Q(
√

2,
√

5) over
√

5, and {1,
√

5} is a basis for Q(
√

5) over Q. Thus

{1,
√

2,
√

5,
√

10} is a basis for Q(
√

2,
√

5) over Q.

4.

Q( 3
√

2)

Q

3

As shown by the previous examples, 3
√

2 is a root for f(x) = x3− 2, and is irreducible over Q, we know

that [Q( 3
√

2) : Q] = 3.

Theorem 3.2 and the above example show us that one can adjoin any root of a polynomial of f(x)

to the extension field. In fact, if a1, a2, . . . , an are algebraic over F , we can adjoin ai to obtain the field

in the following way and get the finite extension E = F (a1, . . . , an). We first adjoin a1 to F , we will get

F (a1) and then adjoin a2 to F (a1) and get F (a1)(a2) = F (a1, a2), repeating the same process, we can get
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F (a1, a2, . . . , an) in the end. This is an extension field consisting of all polynomials over F with the ais as

the root.

We now can see that the quadratic formula for the general quadratic polynomial f(x) = ax2 + bx +

c where f(x) ∈ Q[x] is essentially showing that in which extension field are the roots of the quadratic

polynomial f(x) contain. Recall the quadratic formula:

x =
−b±

√
b2 − 4ac

2a
,

since
√
b2 − 4ac is not necessary contained in Q, we now know that we can adjoin

√
b2 − 4ac to Q and find

the root there, that is, we have the extension field Q(
√
b2 − 4ac) over Q where the roots of f(x) is in. This

example can also be considered in the later context of solvable by radicals. We will know by then that the

quadratic formula for general quadratic formula is in fact an example of solvable by radicals, that is, there

is an expression of the root of the polynomial in terms of the coefficients with basic algebraic operations and

taking nth roots. In other words, we can find an extension field in which contains the roots of the polynomial

over the base field in which contains the coefficients of the polynomial.

As the degree of the extension is able to tower up, we consider that whether the algebraic properties

can tower up.

Theorem 3.11. If K is an algebraic extension of E and E is an algebraic extension of F , then K is an

algebraic extension of F .

Proof. Let a ∈ K, we need to show that a is in some finite extension of F . Since a is algebraic over E, we

have that a is the root of some irreducible polynomial p(x) in E[x], let ai be coefficients of f . Since ai ∈ E,

so ais are algebraic over F , then we can write a finite extension field of F that L = F (a0, a1, . . . , ai), and

(x) is also a polynomial in L[x] and p(a) = 0 so a is algebraic over L. We have that L(a) is a finite extension

of L. Then we have that [L(a) : F ] = [L(a) : L][L : F ], then L(a) is a finite extension of F . thus we have

thata is algebraic over F as L, since a is arbitrary in K, we have that K is an algebraic extension of F , as

desired.

Corollary 3.12. Let E be an extension field of field F . The set of all elements of E that are algebraic over

E is a subfield of E.
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Proof. Suppose that a, b ∈ E are algebraic over F and b 6= 0,we want to show that a+ b,a− b,ab, and a/b are

algebraic over F , it is sufficient to show that [F (a, b) : F ] is finite. Since [F (a, b) : F ] = [F (a, b) : F (b)][F (b) :

F ], and a is algebraic over F , then a is algebraic over F (b). Thus, [F (a, b) : F (b)] and [F (b) : F ] are finite,

then [F (a, b) : F ] is finite, as desired.

By theorem 3.11, we’re able to see the following example,

Example 3.13. Let f be an irreducible polynomial over Q, we have that C contains the splitting field of f .

We are interested in the field extensions that are created by adjoining algebraic elements to a base

field. Let F be a field and a be algebraic over F , then we know that F (a) is an algebraic over F . Moreover,

F (a) is the smallest field containing F and a. We can adjoin any finite number of algebraic elements over F

to F to get an algebraic extension.

We should see an example of polynomial ring that will motive us to provide the definition of splitting

field.

Example 3.14. Let R = R[x] be the set of all polynomials with real coefficients, e.g. x+1, x5+x4−2x2−8.

Let A = 〈x2 + 1〉 where the elements look like 〈x2 + 1〉 = {f(x)(x2 + 1)|f(x) ∈ R[x]}. Since A is a maximal

ideal, we have that R[x]/〈x2 + 1〉 is a field. Since f(x) + 〈x2 + 1〉 = g(x) + 〈x2 + 1〉 iff f(x)− g(x) ∈ 〈x2 + 1〉,

particularly, if f(x) = x2 and g(x) = −1, then we know that x2 + 〈x2 + 1〉 = (−1) + 〈x2 + 1〉, since

x2 − (−1) = x2 + 1 ∈ 〈x2 + 1〉.

The idea here for us is that one can think of x2 as −1 in R[x]/〈x2 + 1〉. Also, considering the zero for

f(x) = x2 + 1, we can see there is no zero for f(x) in R, but as we have that the zero can be found in

R[x]/〈x2 + 1〉, thus R[x]/〈x2 + 1〉 ∼= C.

By example 3.14, we know that R[x]/〈x2 + 1〉 is a field that has a zero of x2 + 1, this will motivate us

to have the intuition of the following fact.

Definition 3.15. If E is an extension field of F and f(x) ∈ F [x] which degree is at least 1. Then f(x)

splits in E if there exists a ∈ F and a1, a2, . . . , an ∈ E such that f(x) = a(x− a1)(x− a2) . . . (x− an). E is

a splitting field for f(x) over F is E = F (a1, a2, . . . , an).

A splitting field depends on both polynomial and the field that the polynomial is over. If we have

that f(x) ∈ F [x] and f(x) splits over E, then we can pick any root a of f(x) and adjoin it to F and get

the extension F (a). Thus we can see that a splitting field E of f(x) over F is a smallest extension field
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of F where f(x) splits, in the sense that E is a subfield of every field containing F and all the roots of

f(x). We then show there the existence of a splitting field for a non-constant polynomial. With the previous

knowledge, we know that F (a1, a2, . . . , an) is actually an algebraic extension over F if the ais are algebraic

over F .

We want to then show the existence of a splitting field for every f(x) ∈ F [x].

Theorem 3.16. Suppose F is a field and f(x) is a non-constant polynomial in F [x], then exists a splitting

field for f(x) over F .

Proof. We prove by induction on degree of f(x). We first show the base step, if deg f(x) = 1 , then f(x)

obviously splits as f(x) is linear. We then show the inductive step, we first assume that there exists a

splitting field for all polynomials of degree less than f(x)’s over F , then by theorem 3.2, we know that

there’s an extension E of F where f(x) has a zero, we name such zero a1, then we can write f(x) as

(x − a1)g(x), where g(x) ∈ E[x]. Since deg g(x) <deg f(x), by our assumption in induction step, we have

that there’s a field contains E and all the zeros of g(x), a2, . . . , an. Thus a splitting field for f(x) over F can

be F (a1, a2, . . . , an).

We will use the next theorem to show that F (a) ∼= F [x]/〈p(x)〉 if p(x) is irreducible over F and a is a

zero of p(x) in some extension of F .

Theorem 3.17. Suppose F is a field and p(x) ∈ F [x] is irreducible over F , if a is a zero of p(x) in some

extension E of F , then F (a) ∼= F [x]/〈f(x)〉. If deg p(x) = n (a is algebraic over F ),then element of F (a) is

uniquely in the form cn−1a
n−1 + cn−2a

n−2 + . . .+ c1a+ c0, where ci ∈ F .

Proof. We show that φ : F [x]/〈f(x)〉 → F (a)where φ(f(x)) = f(a) is an isomorphism. We first show φ is a

homomorphism.

We want to show that φ(f(x)) + φ(g(x)) = φ(f(x) + g(x)) and φ(f(x)) · φ(g(x)) = φ(f(x) · g(x)) for

f(x), g(x) ∈ F [x]. Let h(x) = f(x) + g(x), k(x) = f(x) · g(x). We calculate,

φ(f(x)) + φ(g(x)) = f(a) + g(a) = h(a) = φ(h(x)) = φ(f(x) + g(x))

We then show,

φ(f(x)) · φ(g(x)) = f(a) · g(a) = k(a) = φ(k(x)) = φ(f(x) · g(x)).

We first show that ker(φ) = 〈p(x)〉. Since we know that p(a) = 0 and p(x) ∈ F [x], thus 〈p(x)〉 ⊆ ker(φ),
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we have that ker(φ) 6= 0. As ker(φ) 6= F [x] since it does not contain constant polynomials, we have that

ker(φ) = 〈p(x)〉. As we know this fact, then we have that F [x]/〈p(x)〉 ∼= F [a] by first isomorphism theorem.

Since F [x] is a principle domain, we have that F [a] is a domain. Then ker(φ) is a prime ideal, thus a maximal

ideal, and that F [a] is a field.Since F (a) is the smallest field containing F [a], then F (a) = F [a] ∼= F [x]/〈p(x)〉,

we rewrite that,F (a) ∼= F [x]/〈f(x)〉, as desired.

Corollary 3.18. If a is a zero of p(x) in some extension E of F and b a zero of p(x) in some extension G

of F , then F (a) ∼= F (b).

Proof. Since p(x) ∈ F [x] be irreducible, and a is a zero of p(x) in some extension E of F , we know by

theorem 3.17, F (a) ∼= F [x]/〈p(x)〉. Similarly, we know that F (b) ∼= F [x]/〈p(x)〉. Thus, we have that

F (a) ∼= F [x]/〈p(x)〉 ∼= F (b), as desired.

Now that we have shown the existence of splitting fields for every f(x) ∈ F [x], we now want to know

if there’s more than one non-isomorphic splitting field, that is the uniqueness of splitting fields. We will

utilize the following theorem to show that the splitting fields of a polynomial are in fact unique with respect

to isomorphism.

Lemma 3.19. Let F,G be field, and g(x) ∈ F [x] be irreducible over F , and let a be a zero of g(x) in some

extension of F . Then if φ is a field isomorphism from F to G and b is a zero of φ(g(x)) in some extension

of G, then there is an isomorphism from F (a) to G(b) that takes a to b.

Proof. Since g(x) irreducible over F , we have that φ(g(x)) is irreducible over G.Then the mapping from

F [x]/〈g(x)〉 to G[x]/〈φ(g(x))〉 is f(x) + 〈g(x)〉 → φ(f(x)) + 〈φ(g(x))〉 is field isomorphism.By theorem 3.17,

we have that there exist an isomorphism α from F (a) to F [x]/〈g(x)〉, this carries a to x+ 〈g(x)〉. Similarly,

exists an isomorphism ω from G[x]/〈φ(g(x))〉 to G(b) carries x + 〈φ(g(x))〉 to b, thus ωφα is the desired

mapping.

Theorem 3.20. Let F, F ′ be field and f(X) ∈ F [x] and φ be an isomorphism from F to F ′. If E is a

splitting field for f(x) over F and E′ is a splitting field for φ(f(x)) over F ′, then there’s an isomorphism

from E to E′ that agrees with φ on F .

Proof. We prove by induction on the degree of f(x).

Base case: deg f(x) = 1, we have that E = F , E′ = F ′, then we have that φ is the isomorphism we want.

Induction case: deg f(x) > 1, let g(x) be an irreducible factor of f(x), let a be a zero of g(x) in E, b be a
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zero of φ(g(x)) in E′. We know that there exists isomorphism τ : F (a)→ F ′(b) that agrees with φ on F and

carries a to b by lemma 3.19. Let f(x) = (x− a)g(x). Then we know that E is a splitting field for g(x) over

F (a) and E′ splits for τ(g(x)) over F ′(b). As deg g(x) < deg f(x), we have that there exists an isomorphism

from E to E′ that agrees with τ on F (a), thus agrees with φ on F , as desired.

Corollary 3.21. If F is a field and f(x) ∈ F [x], then splitting fields of f(x) over F are isomorphic.

Proof. Let E and E′ be two arbitrary splitting fields of f(x) over F . We choose φ be the identity isomorphism

from F to F , then by theorem 3.20, we have that there’s an isomorphism from E to E′,thus that E ∼= E′.

Knowing the fact that the splitting fields of f(x) over F are isomorphic enables us to say that roots

of the irreducible f(x) gives us the same extension of F . We now construct some splitting fields.

Example 3.22. We can adjoin the positive cube roots of 3 to Q and get E = Q( 3
√

3). We know that the

roots of the irreducible polynomial f(x) = x3 − 3 are 3
√

3, ω 3
√

3 and ω2 3
√

3, where omega is the primitive

roots of unity. We can see that though f(x) has a root in E, but f(x) doesn’t splits in E. Since there are

two complex roots while Q( 3
√

3) are entirely made up of real numbers.

More generally,

Example 3.23. The splitting field of xn − a over Q is Q( n
√
a, ω). Let a be positive real number and ω be

nth root of unity, then a
1
n , ωa

1
n , ω2a

1
n , . . . , ωn−1a

1
n are zeros of xn − a in Q( n

√
a, ω).

We then show that if an irreducible polynomial has multiple zeros, the zeros will have the same

multiplicities.

Theorem 3.24. Let f(x) be irreducible over a field F , and E is a splitting field of f(x) over F . Then all

the zeros of f(x) in E have the same multiplicity.

Proof. Let a,b be different roots of f(x) in E. Let a have multiplicity m, then f(x) = (x − a)mg(x) in

E[x]. We also have that there exist an isomorphism φ from E to E that carries a to b, then we have that

f(x) = φ(f(x)) = (x− b)mφ(g(x)), thus the multiplicity of b is greater than or equal to m. Similarly, repeat

the process by switching a and b, we have that the multiplicity of a is greater than or equal to that of b.

Thus a,b have the same multiplicity.

Thus we can write the following corollary.
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Corollary 3.25. Let f(x) be an irreducible polynomial over field F and E a splitting field of f(x) over E.

Then f(x) can be written as a(x − a1)m(x − a2)m . . . (x − an)m, where a1, a2, . . . an are distinct in E and

a ∈ F .

4 Galois Theory

Now we move on to the Galois theory to solve the question if a polynomial can be solved by radicals . Galois

linked any polynomial p ∈ C[x] with a group of permutation, these groups are also known as Galois groups.

We wish to use Galois theory to study the solutions of polynomial equations, whether they can be expressed

by a radical formula. A radical expression consists of the coefficients of the polynomial with operations of

addition, multiplication, subtraction, division, as well as taking nth root. This section mainly builds on

chapter 32 of [Gal17, p. 535], and the proof of the Fundamental Theorem of Galois theory partially follows

chapter 8 and 12 from [Ste04]. The aim of learning this is to study the solutions of polynomial equations,

and to know whether a polynomial can be solved by a formula with radicals or not. We will begin with the

definition of the Galois Group of E over F .

Definition 4.1. Let E be an extension field of F . The automorphism of E is a ring isomorphism from

E to itself. The Galois group of E over F , denoted: Gal(E/F ), is the set of all automorphisms of E

taking every element of F to itself, that is the set {φ ∈ Aut(E)}. If H is a subgroup of Gal(E/F ), the set

EH = {x ∈ E|φ(x) = x∀φ ∈ H} is the fixed field of H.

Before moving on, let’s see an example of how the definition works.

Example 4.2. Let E = Q( n
√
a) where a ∈ Z. Since a ring isomorphism must map the unity to unity, and we

know that field automorphisms are ring isomorphisms, then we have that Q will be fixed by all φ ∈ Aut(E).

Thus we know that Aut(E) = Gal(E/Q), and Q ⊆ EH . Since E is generated as a ring by 1, n
√
a, we know

that φ ∈ Aut(E) is completely determined by φ( n
√
a). We know that what this automorphism is going to do

to 1, what we care about is what this automorphism does to n
√
a, i.e. where does the automorphism send

n
√
a to.

To show the Fundamental Theorem of Galois Theory, we need some preliminaries...

Lemma 4.3. Let E be an extension field of F , and K be the fixed field of Gal(E/F ), then Gal(E/F ) =

Gal(E/K).
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Proof. We show mutual containment. Let p ∈ F , then for all φ ∈ Gal(E/F ), φ(p) = p. Since K is the fixed

field of Gal(E/F ) and p ∈ K, we have that F ⊆ K. Then Gal(E/K) ≤ Gal(E/F ).

Let φ in Gal(E/F ). Then we have that φ(p) = p for all p ∈ K. Then φ ∈ Gal(E/K), and Gal(E/F ) ≤

Gal(E/K), as desired.

Lemma 4.4. Let E be a normal extension of field F , and K be an intermediate extension of E/F . For

φ ∈ Gal(E/F ), Gal(E/φ(K)) = φGal(E/K)φ−1.

Proof. Let φ(K) = G, and τ ∈ Gal(E/K) be arbitrary, and g ∈ G. We have that g = φ(k) for some k ∈ K.

Then we have that

φτφ−1(g) = φτ(k) = φ(k) = g.

Then we have that φGal(E/K)φ−1 ⊆ Gal(E/G). Let ω ∈ Gal(E/G) be arbitrary, similarly, ω ∈ φGal(E/K)φ−1,

thus

Gal(E/φ(K)) = φGal(E/K)φ−1,

as desired.

Theorem 4.5. [Gal17, p. 535] Fundamental Theorem of Galois Theory(The theorem is the version of : Let

F be a field with characteristic 0, if E splits over F for some polynomial in F [x], then the mapping from the

set of subfields of E containing F to the set of subgroups of Gal(E/F ) from K → Gal(E/K) is one to one.

For subfield K of E containing F ,

1. [E : K] = |Gal(E/K)| and [K : F ] = |Gal(E/F )|/|Gal(E/K)|.

2. If K splits in F [x], we have that Gal(E/K) is a normal subgroup of Gal(E/F ) and Gal(K/F ) is

isomorphic to Gal(E/F )/Gal(E/K)

3. The fixed field of Gal(E/K) is K.

4. Let H be a subgroup of Gal(E/F ), we have that H = Gal(E/EH)

Proof. 1. Assume E splits over F for some polynomial in F [x], and let K ⊆ E be arbitrary with containing

F , H ≤ Gal(E/F ), we want to show that there is a bijection under the operation K → Gal(E/K).

We first show K → Gal(E/K) is injective. Let K1,K2 ⊆ E be arbitrary with containing F , and

assume Gal(E/K1) = Gal(E/K2), we want to show that K1 = K2. Since K1,K2 contains F , we

can write that K1 = EH1
,K2 = EH2

where H1, H2 ≤ Gal(E/F ). Since H1 = Gal(E/EH1
) and
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H2 = Gal(E/EH2), and Gal(E/K1) = Gal(E/K2) by assumption, we have that H1 = H2, then we

have that K1 = EH1
= EH2

= K2, as desired.

Now we show that K → Gal(E/K) is surjective. Assume H ≤ Gal(E/F ) be arbitrary, we want to

show that there exists K ⊂ E containing F such that Gal(E/K) = H. We choose K = EH , then we

have that H = Aut(E/K). Since E/F is Galois, and K is an intermediate field where F ⊂ K ⊂ E,

we have that E/K is Galois as well, thus Gal(E/K) = H, as desired.

2. Since K = EGal(E/K) is a fixed field of Gal(E/K) and |Gal(E/F )| = [E : F ], we have that [E : K] =

|Gal(E/K)| and [E : F ] = |Gal(F/E)|, with theorem 3.9 we know that |Gal(E/F )|/|Gal(E/K)| =

[E : F ]/[E : K] = [K : F ],as desired.

3. Assume K is a splitting field of some f(x) ∈ F [x] over F , then we know that the zeros of f(x) in K

are also the zeros of f(x) in E. We know that Gal(E/K) generates the zeros of f(x) in E, thus the

zeros of f(x) in K is also generated by Gal(E/K). Let φ ∈ Gal(E/F ) be arbitrary, by the previous

discussion, we know that φ(K) = K. Then by lemma 4.4, we have that

Gal(E/K) = Gal(E/φ(K)) = φGal(E/K)φ−1,

thusGal(E/K) is normal inGal(E/F ). It now remains to show thatGal(K/F ) ∼= Gal(E/F )/Gal(E/K).

SinceGal(E/K) is normal inGal(E/F ), we have that for all φ ∈ Gal(E/F ), Gal(E/K) = φGal(E/K)φ−1.

Then by lemma 4.4, we know that Gal(E/K) = Gal(E/φ(K), thus φ is an automorphism of K. By

the first isomorphism theorem, we have that Gal(E/F )/Gal(E/K) is isomorphic to a subgroup of

Gal(K/F ). By part 1 we proved, we have that [K : F ] = |Gal(E/F )|/|Gal(E/K)| ≤ |Gal(K/F )|.

Since |Gal(K/F ) ≤ [K : F ] = |Gal(E/F )/Gal(E/K)|. Then by simple algebraic calculation of the

degrees, we know that this subgroup is Gal(K/F ) itself, thus Gal(K/F ) ∼= Gal(E/F )/Gal(E/K), as

desired.

4. Suppose f(x) is monic irreducible polynomial over K. Since E splits on f(x) over K, let K ′ be the

fixed field of Gal(E/K). We have that E is also the splitting field of f(x) ∈ K ′[x]. By previous

proof 1, we have that [E : K] = |Gal(E/K)| and [E : K ′] = |Gal(E/K ′)|. By lemma 4.3, we

have that Gal(E/K) = Gal(E/K ′). Then [E : K] = [E : K ′]. By theorem 3.9, we have that

[E : K] = [E : K ′][K ′ : K]. Thus [K ′ : K] = 1, by our choice of K ′, we know that K = K ′, that is ,K

is the fixed field of Gal(E/K), as desired.

21



The following example help us to understand field extensions and Galois correspondence.

Example 4.6. Let E = Q(
√

2,
√

5,
√

7). We want to show that E is Galois over Q and identify Gal(E/Q).

We know that E is Galois over Q as it is the splitting field for f(x) = (x2 − 2)(x2 − 5)(x2 − 7). We

can see that f(x) splits in E with the way it is constructed.

We can also understand the degree of E over Q by adjoining the roots of the polynomial to the base

field. Let F = Q(
√

2), we know that
√

5 /∈ Q(
√

2), and we have that the minimal polynomial of F over
√

5 is

x2−5. Then we adjoin
√

5 to F and get K = F (
√

5). Similarly,
√

7 /∈ K, then the minimal polynomial of K

over
√

7 is x2 − 7, then we can adjoin
√

7 to G and result us E. This shows that E = K(
√

7) = F (
√

5,
√

7)

has degree 8 over Q.

Now that we have the size of Gal(E/Q), we want to see what it does. Since we defined G = F (
√

5),

we can now extend the identity map on the intermediate field G to an element α of Gal(E/Q) that sends
√

7 to −
√

7, but fixes
√

2 and
√

5. Similarly, we can get a member β of Gal(E/Q) that sends
√

5 to −
√

5

from the extension of identity map on Q(
√

2,
√

7) and a member φ of Gal(E/Q) sending
√

2 to −
√

2 from

the extension of identity map on Q(
√

5,
√

7).

We can see that all the 3 mappings have order 2. Since these mappings are elements of Gal(E/Q)

which is a group, we can compose them together in the following way, αβ sending
√

7 to −
√

7 and
√

5 to

−
√

5 but fixing
√

2, αφ that sends
√

7 to −
√

7 and
√

2 to −
√

2 but fixing
√

5, βφ sending
√

2 to −
√

2 and
√

5 to −
√

5 but fixing
√

7, αβφ send each square roots to their negatives. Note that all the above maps

have order 2. We now have 7 members of Gal(E/Q) and the identity map. Thus by theorem 4.5, since

|Gal(E/Q)| = 8, we have that the collection of the maps is Gal(E/Q). Since there’s 7 elements of order 2,

by previous study of group theory, we have that Gal(E/Q) ∼= Z2 × Z2 × Z2.

We also know that there are 3 degree 2 field extensions Q(
√

2),Q(
√

5),Q(
√

7) and 3 degree 4 exten-

sions Q(
√

2,
√

5),Q(
√

2,
√

7),Q(
√

5,
√

7), and E itself is a degree 8 extension.
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E

Q(
√

2,
√

5) Q(
√

2,
√

7) Q(
√

5,
√

7)

Q(
√

2) Q(
√

5) Q(
√

7)

Q

2 2
2

2
2

2 2
2

2

2 2 2

Knowing the fundamental theorem of Galois Theory let us apply group theory to polynomials. Later,

we will study solvable groups to see how a group can be solvable and then we will show that if a polynomial

is solvable by radicals, its corresponding Galois group is a solvable group. After that, we will apply this

fact to show that our choice of quintic polynomial is not solvable by radicals since its Galois group is not

solvable.

5 Solvable groups

Let’s start with defining what it means to be solvable for a group, and learn some properties of solvable

group. We will link solvable groups with solvable by radicals in the latter chapter. We’ll also introduce the

definition of simple groups, these will help to prove the simplicity of the alternating group of degree 5. Then

tinkering with the definition of simple groups and the definition of solvable groups will yield us the fact that

S5 is not solvable. This fact will be extremely helpful to our final proof, as we will later show that the Galois

group of the quintic polynomial selected in the final proof is isomorphic to S5. The progression of definition

and theorems is based on chapter 14 ”Solubility and Simplicity” from [Ste04, p. 143].

Below is the definition for a solvable group.

Definition 5.1. A group G is solvable if it has a finite series of subgroups

1 = G0 ⊆ G1 ⊆ . . . ⊆ Gn = G

such that

1. Gi / Gi+1 for i = 0, . . . , n− 1.

2. Gi+1/Gi is abelian for i = 0, . . . , n− 1.

The following lemma is indeed the first and the second isomorphism theorem.
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Lemma 5.2. Suppose G,H,A are groups, then

1. If H / G and A ⊆ G, then H ∩A / A and

A

H ∩A
∼=
HA

A

2. If H / G and H ⊆ A / G then H / A, A/H / G/H and

G/H

A/H
∼=
G

A

We now proceed to show some properties of solvable groups with the previous lemma, that is solvable

groups remain solvable with certain operations.

Theorem 5.3. Suppose G is a group, H 6 G, and N / G.

1. If G is solvable, then H is solvable.

2. If G is solvable, then G/N is solvable.

3. If N and G/N are solvable, then G is solvable.

Proof. 1. Assume G is solvable, we want to show that H is solvable. Since G is solvable by assumption.

let 1 = G0 / G1 / . . . / Gn = G be a series for G where Gi+1/Gi is abelian. Let Hi = Gi ∩H. Then H

has a series 1 = H0 / H1 / . . . / Hn = H, it remains to be show that Hi+1/Hi is abelian. We calculate

Hi+1

Hi
=

Gi+1 ∩H
Gi ∩ (Gi+1 ∩H)

∼=
Gi(Gi+1 ∩H)

Gi

by lemma 5.2(1), and since Gi(Gi+1∩H)
Gi

6 Gi+1

Gi
where Gi+1/Gi is abelian, hence Hi+1/Hi is abelian,

thus we have that H is solvable.

2. Assume G is solvable, we want to show that G/N is solvable. Let 1 = G0 / G1 / . . . / Gn = G be a

series for G where Gi+1/Gi is abelian. Then G/N has a series

1 = N/N = G0N/N / G1N/N / . . . GnN/N = G/N,
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it remains to show that Gi+1N/N
GiN/N is abelian,

Gi+1N/N

GiN/N
∼=
Gi+1N

GiN
=
Gi+1(GiN)

GiN
∼=

Gi+1

Gi+1 ∩ (GiN)
∼=

Gi+1/Gi

(Gi+1 ∩ (GiN))/Gi

by lemma 5.2, and is a quotient of Gi+1/Gi which is abelian, hence Gi+1N/N
GiN/N is abelian, thus G/N is

solvable.

3. Assume N and G/N are solvable, we want to show that G is solvable. Let 1 = N0 /N1 / . . . /Nm = N ,

and 1 = G0/N / G1/N / . . . / Gn/N = G/N be series for N and G/N . Then we can combine the two

series together and get 1 = N0 / N1 / . . . / Nm = N = G0 / G1 / . . . / Gn = G, then we have that the

quotients of the series are either in the form of Ni+1/Ni or Gi+1/Gi, which are both abelian by our

assumption that N and G/N are solvable and Gi+1/Gi
∼= Gi+1/N

Gi/N
. Thus, we have that G is solvable.

We now wish to introduce the definition of simple group, then we will move on to show that A5 is

indeed a simple group. The main idea is to use this fact, and correlate it with the fact that A5 is simple to

show that S5 is not solvable.

Definition 5.4. Let G be a group, then G is simple if its only normal subgroups are 1 and G.

We will proceed to show that A5 is simple using the definition of a simple group.

Theorem 5.5. The alternating group A5 is simple.

Proof. If A5 had a nontrivial proper normal subgroupH, then the order ofH must be equal to 2, 3, 4, 5, 6, 10, 12, 15, 20

or 30. Since A5 contains 24 elements of order 5, 20 elements of order 3, and no element of order 15. Then

if |H| = 3, 6, 12 or 15, we have that |A5/H| is prime to 3, and H need to contain all 20 elements of order 3,

a contradiction. If |H| = 5, 10 or 20, then |A5/H| is prime to 5, and H needs to contain all 24 elements of

order 5, a contradiction. If |H| = 30, |A5/H| is prime to 5 and 3,thus H needs to contain all 44 elements of

3 and 5, a contradiction. If |H| = 2 or |H| = 4, then |A5/H| = 30or15, but groups of order 30 or 15 contains

an element of order 15 which A5 doesn’t have, then we reach another contradiction. Thus we have that A5

is simple, as desired.

We now use the definition of solvable group and simple group to show that the condition of a solvable

group being simple. Later we will use this theorem to show that S5 is not solvable by contradiction.

Theorem 5.6. A solvable group G is simple if and only if G is cyclic and has prime order.
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Proof. ←−: Assume G is simple, we want to show it is cyclic and has prime order. Since G is solvable, then

we know that it has series 1 = G0 / G1 / . . . / Gn = G, with Gi 6= Gi+1. Then Gn−1 is a normal subgroup

of G. Since G is simple by assumption, we have that G = Gn/Gn−1, and G is abelian. Since subgroups of

an abelian group is normal, and elements of G generates a cyclic subgroup, G is cyclic without non-trivial

proper subgroups. Thus we have that G has prime order.

−→: Assume G is cyclic, then we have that it s only normal subgroups are 1 and itself, thus G is simple.

We now show that S5 is not solvable as a corollary to the since in the final proof we will be showing

that the Galois group of the choosing quintic is not solvable, where we will show that the Galois group for

the choosing quintic is isomorphic to S5. Thus we can show that Galois group in question is not solvable.

Corollary 5.7. The symmetric group S5 is not solvable.

Proof. We prove by contradiction. Assume S5 are solvable, then by theorem 5.3, A5 is solvable since A5 6 S5,

also A5 is simple by theorem 5.5, then by theorem 5.6, A5 has prime order. Since |A5| = 1
2 (5!) = 60 which is

not a prime order, thus we have a contradiction, then Sn of degree n is not solvable for n = 5, as desired.

We now show the fact that a 2-cycle and a 5-cycle generate S5, thus we will later be able to show that

Galois group of the quintic polynomial selected is isomorphic to S5, as it will permute all five zeros of the

polynomial, where the polynomial has exactly three real zeros and two complex zeros.

Theorem 5.8. A 2-cycle and a 5-cycle generate S5.

Proof. Let α = (12) be the 2-cycle, and β = (12345) be the 5-cycle. We want to show that α and β can

generate S5. We calculate that βαβ−1 = (23). Similarly, β(23)β−1 = (34), and β(34)β−1 = (45). Similarly,

we can get (51) from operations by α and β. Now we let a, b ∈ {1, 2, 3, 4, 5} be arbitrary with a < b. Then

for any 2-cycles (ab), we can write (ab) as composition of 2-cycles that can be generated from α and β, that

is (ab) = ((a+ 1)a)((a+ 2)(a+ 1)) . . . ((b− 1)(b− 2))((b− 1)b)((b− 2)(b− 1)) . . . ((a+ 1)(a+ 2))(a(a+ 1)).

Since every permutation in S5 is a product of 2-cycles, and these 2-cycles can be generated by α and β, we

have that a 2-cycle and a 5-cycle can generate S5.

6 Final Proof

A radical expression is written by the coefficients of the formula by operation of addition, multiplication,

subtraction, division, as well as taking the nth root. We now want to understand such an expression in

26



the sense of extension field. In this section, we will show that any polynomial equations that are solvable

by radicals satisfy the condition that the associated Galois group is a solvable group. We will, in the end,

construct a quintic function, x5 − 4x + 2 = 0, and show that this quintic equation cannot be solved by

radicals. Some of the techniques of the proof in this section are partially based on chapter 32 of [Gal17].

Definition 6.1. Let E be an extension field of F in C, then E is radical if E = F (a1, a2, . . . , an) and for each

i = 1, . . . , n, exist integer ki such that aki
i ∈ F (a1, a2, . . . , ai−1). The elements ai form a radical sequence for

E/F , and the degree of ai is ki.

Then we say that a polynomial is solvable by radicals if all of its roots can be written in radical

expressions over the rational field. We first see a radical expression.

Example 6.2. The following expression is radical:

3
√

11
5

√
3 +
√

2

6
,

as this involves only basic operations and taking nth root.

To see it is contained in a radical extension, let a = 3
√

11, b =
√

2, c = 5

√
3+b
6 . We can then find a radical

extension E over Q where E = Q(a, b, c). To see why this is radical, we calculate that a3 = 11, b2 = 2,

c5 = 3+b
6 .

We can understand that any radical expressions are contained in radical extensions.

By the following example, we will able to understand why the quadratic formula is in fact a radical

expression, and general quadratic polynomials can be solved by radicals.

Example 6.3. All the roots of general quadratic polynomial of rational coefficients in the form ax2 + bx+ c

can be written in quadratic formula,

x =
−b±

√
b2 − 4ac

2a
.

It is obvious that this is an radical expression. A radical extension field over Q is Q(
√
b2 − 4ac) as

(
√
b2 − 4ac)2 = b2 − 4ac. Thus we can say that the general quadratic polynomials are solvable by radi-

cals.

Our target is to show that general quintic polynomials are not solvable by radicals. That is, not all of

the roots can be written in radical expressions. To show this straight forwardly is overwhelming, but thanks
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to the previous study of Galois Theory, we can transform the problem to solvability of the Galois group

corresponding to the polynomial in discussion.

The theorem we want to show next is that the Galois group of a polynomial is solvable implies the

polynomial is solvable by radicals. However, we need one more trick to help us with the proof. We want to

show the following theorem.

Theorem 6.4. Let F be a field with char(F ) = 0 and a ∈ F . Suppose E is the splitting field of xn− a over

F , then Gal(E/F ) is solvable.

Proof. There are two cases, either F contains the primitive nth root of unity ω, or F doesn’t.

In the case that F contains the primitive nth root of unity, let b be a zero of f(x) = xn − a in E, then we

know that the roots of f(x) are b, ωb, ω2b, . . . , ωn−1b, then we know that E = F (b). Since E splits over F ,

we know that ω ∈ F . We want to show that Gal(E/F ) is abelien. Since b is a zero of f(x), we have that

elements in Gal(E/F ) take b to another zero of f(x). Let φ, τ ∈ Gal(E/F ) be arbitrary. Since ω ∈ F is

constant, we know that φ, τ fix ω, and φ(b) = ωib and τ(b) = ωjb, we want to show that φτ = τφ. We

calculate that φ(τ(b)) = φ(ωjb) = φ(ωj)φ(b) = ωjωib = ωi+jb, and τ(φ(b)) = τ(ωib) = τ(ωi)τ(b) = ωiωjb =

ωi+jb = φ(τ(b)), thus we have that Gal(E/F ) is abelian, since all subgroups of an abelian group is normal,

we have that Gal(E/F ) is solvable by definition of solvable group.

In the case that F doesn’t contain the nth root of unity, ω, let b be a zero of f(x) = xn − a in E. In

the case a = 0, we have that b = 0, then we know that the automorphisms fix b, then Gal(E/F ) is

abelian,and thus solvable. In the case that a 6= 0, assume b 6= 0. Since we know that b and ωb ∈ E,

then we have that ωb/b = ω ∈ E, thus F (ω) ⊂ E, and F (ω) is the splitting field of xn − 1 over F . Let

φ, τ ∈ Gal(F (ω)/F ), where φ(ω) = ωi and τ(ω) = ωj , then we wish to show that φτ = τφ, we calculate

φ(τ(ω)) = φ(ωj) = (φ(ω))j = (ωi)j , and τ(φ(ω)) = τ(ωi) = tau(ω))i = (ωj)i = (ωi)j = φ(τ(ω)), thus we

have that Gal(F (ω)/F ) is abelian. Since E is also the splitting field of f(x) over F (ω) where F (ω) contains

ω the primitive nth root of unity, by the previous proof in the above case we have that Gal(E/F (ω)) is

abelian. By theorem 4.5, we have that the series 1 ⊆ Gal(E/F (ω)) ⊆ Gal(E/F ) is a normal series. Since we

have that Gal(E/F (ω)), Gal(F (ω)/F ) are abelian, where Gal(F (ω)/F ) ∼= Gal(E/F )/Gal(E/F (ω)), they

are solvable by previous argument, thus by theorem 5.3, we have that Gal(E/F ) is solvable, as desired.

We now show that a function is solvable implies its Galois group is solvable by radicals. But what we

will actually be using for the final proof is its contrapositive statement, if Galois group of the polynomial is

not solvable, then the polynomial is not solvable by radicals, that is we won’t be able to produce a radical
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expression for the solutions of the polynomial in discussion.

Theorem 6.5. Let f(x) ∈ F [x] and char(F ) = 0, then suppose that f(x) is solvable by radicals , then the

Galois group of f over F is solvable.(contrapositive: If the Galois group of f over F is not solvable, f is not

solvable by radicals.)

Proof. Assume that f(x) is solvable by radicals, that is, f(x) splits in F (a1, a2, . . . , at), where ai
n1 ∈ F and

ai
ni ∈ F (a1, . . . , ai−1) for i = 2, . . . , t. Let E be the splitting field for f(x) over F in F (a1, a2, . . . , at), we

want to show that Gal(E/F ) is solvable. We proceed by induction on t.

Base step: t = 1. We have that F ⊆ E ⊆ F (a1) since E is the splitting field for f(x) over F in F (a1). Let

a = a1
n1 and L be a splitting field of xn1 − a over F , then we know that E ⊆ L since a ∈ F . Since E and L

are splitting fields of polynomial over F , by theorem 4.5, we know that Gal(E/F ) ∼= Gal(L/F )/Gal(L/E).

We have that Gal(L/F ) is solvable by theorem 6.4, then by theorem 5.3, we know that Gal(L/F )/Gal(L/E)

is solvable. Thus we have that Gal(E/F ) is solvable as Gal(E/F ) ∼= Gal(L/F )/Gal(L/E).

L

E

F

Induction step: Let t > 1, let a = a1
n1 ∈ F , and L be a splitting field of xn1 − a over E, and K ⊆ L

be the splitting field of xn1 − a over F . Since E is a splitting field for f(x) over F , we have that L is a

splitting field for f(x)(xn1 − a) over F . Since K ⊆ L and K is a splitting field of xn1 − a over F by our

definition, we have that L is a splitting field of f(x) over K. Since F (a1) ⊆ K, we have that f(x) splits in

K(a2, . . . , at), by induction, we have that Gal(L/K) is solvable, and since K is a splitting field of xn1 − a

over F , then by theorem 6.4, we have that Gal(K/F ) is solvable. As Gal(L/K) and Gal(K/F ) solvable,

then by theorem 4.5, we have that Gal(L/F )/Gal(L/K) is solvable as Gal(K/F ) ∼= Gal(L/F )/Gal(L/K).

By theorem 5.3, we then know that Gal(L/F ) is solvable, by theorem 4.5 and theorem 5.3, we have that

Gal(E/F ) ∼= Gal(L/F )/Gal(L/E) is solvable.

L

K E

F

f(x) xn−a

f(x)(xn−a)

xn−a f(x)
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Now with all the prerequisites we needed, we are now able to prove a general quintic is not solvable

by radicals. We start with choosing a specific quintic polynomial, by showing it is not solvable by radicals,

we will be able to show that quintic polynomials don’t have a general radical expression. To prove this, it

is sufficient for us to find out that its Galois group is not solvable. We will first show that this Galois group

is isomorphic to S5, we will then capitalize the fact that we proved in the previous chapter that S5 is not

solvable.

We choose the polynomial x5 − 4x+ 2.

Theorem 6.6. The Galois group of the polynomial x5 − 4x+ 2 over Q is S5

Proof. Let f(x) = x5 − 4x + 2, we have that f is irreducible over Q by theorem 2.9. Since there are two

sign changes in the polynomial, then by Descartes’ rule of signs, we have that f(x) has 2 or 0 positive real

roots. Since f(0) = 2 and f(1) = −1, then by intermediate value theorem, we have that ∃x ∈ (0, 1) such

that f(x) = 0, thus we have that f(x) has at least one positive real zero, then by previous proof, we have

that f(x) has 2 positive real roots. By calculation, we have that f(−x) = −x5 + 4x + 2, and there’s one

change of signs, then by corollary to Descartes’ rule of signs, we have that f(x) has 1 real negative zero. By

combination, we have that f(x) has 3 real zeros, each has multiplicity 1. Then we know that there are 2

complex conjugating zeros, namely a+ bi and a− bi by theorem 2.6.

It remains for us to show that the Galois group of f over Q is S5. Let the five roots of f(x) be a1, a2, a3, a4, a5,

letK = Q(a1, a2, a3, a4, a5), aK-automorphism that permutes ai, thus we know thatGal(K/Q) is isomorphic

to a subgroup of S5. Since we know that a1 is a zero of an irreducible polynomial of degree 5, we have that

[Q(a1) : Q] = 5, and 5|[K : Q]. By theorem 4.5, we know that 5||Gal(K/Q)|, then we have that Gal(K/Q)

contains an element of order 5. Since Gal(K/Q) is isomorphic to a subgroup of S5, and Gal(K/Q) has an

element of order 5, we know that Gal(K/Q) contains a 5-cycle. We also have that Gal(K/Q) contains a

mapping α sending a + bi to a − bi, which fixes the three real roots and permutes the two complex roots,

then we have that α is a 2-cycle since it has 2 distinct elements. By theorem 5.8, we know that a 2-cycle

and a 5-cycle generates S5, thus we have that Gal(K/Q) ∼= S5, as desired.

Corollary 6.7. The polynomial x5 − 4x+ 2 over Q is not solvable by radicals.

Proof. Since the Galois group of x5 − 4x + 2 over Q is S5 b y theorem 6.6, and by theorem 5.7 that S5 is

not solvable, then it follows that the Galois group of x5 − 4x + 2 over Q is not solvable. Thus by theorem

6.5, we have that f(x) is not solvable by radicals, as desired.
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We now come to the final conclusion...

Theorem 6.8. General quintic polynomials are not solvable by radicals.

Proof. As we have shown in corollary 6.7 that the polynomial x5− 4x+ 2 over Q is not solvable by radicals,

we know that there is at least one quintic polynomial not solvable by radicals. Thus we can conclude that

general quintic polynomials of rational coefficients are not solvable by radicals, as desired.
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