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Abstract 

 

SHARRY, JACQUELINE Can an invasive species burn soil 

carbon? Black locust invasion and soil carbon in the Albany Pine 

Bush. Department of Biological Sciences, June 2018.  

 

ADVISOR: Jeffrey Corbin  

 

Invasive plant species can have dramatic and pervasive impacts on ecosystems, from 

species interactions, to resource availability, to biodiversity. One such invasive plant, the 

nitrogen-fixing black locust tree (Robinia pseudoacacia), has had significant effects on the soil 

chemistry in the globally rare inland pine barren ecosystem of the Albany Pine Bush. We have 

documented a loss of soil carbon following invasion by black locust, one that persists long after 

locusts are removed. We hypothesize that the nitrogen added through fixation by the black locust 

increases the carbon flux from soil to the atmosphere. Because decomposition rates are 

dependent on leaf litter quality and carbon:nitrogen ratio, addition of the nitrogen-rich locust 

leaves may accelerate the release of CO2. To test this, we added exotic locust or native scrub oak 

leaf litter to barren soil or locust soil in a factorial design and conducted a 16 week lab 

incubation. The carbon flux of the soil was monitored every 1-2 weeks using a LiCor 6400 

portable photosynthesis analyzer. The invasion simulation treatment had a higher soil flux than 

the native simulation and treatments designed to control for the amount of carbon added and the 

original amount of carbon in the soil. These results indicate that adding nitrogen to the soil by 

nitrogen fixation accelerated the rate of decomposition and the release of CO2 from the soil. 

Future measurements will determine whether there is less stored soil carbon in the soil. If more 

CO2 is released to the atmosphere and stored soil carbon is lost because of species invasion, this 

may indicate another mechanism of carbon emissions and may provide more incentive for 

management of nitrogen fixing invasive species.   



3 
 

INTRODUCTION 

Invasive species are common and pervasive in many ecosystems, with the capability to change 

ecosystems in potentially harmful ways (Mack et al. 2000). They can decrease biodiversity 

(Hejda et al. 2009), drive out native species, change organismal interactions (Carpenter et al. 

2005), impact nutrient dynamics (Ehrenfeld 2003; Laungani 2009; Knopps 2009), and change 

the amount of stored soil carbon (Suseela et al. 2016). N-fixing invasive species specifically 

cause changes in N-cycling in local and global ecosystems (Liao et al. 2008; Ehrenfeld 2010; 

Castro-Dı´ez et al 2014) which has implications for biodiversity levels in these ecosystems and 

worldwide (Broadbent et al. 2017).  

 Invasive species may be particularly damaging as they impact soil biogeochemistry and 

alter the amount of resources in the soil available to plants. Some invasive species produce large 

amounts of litter with distinctive secondary compounds that can influence soil organic matter 

and microbial activity (Suseela et al 2016). Carbon, the building block of all organic matter and 

an element that microbes break down, is stored in soil. It is also dynamic in the soil, and though 

it can accumulate over decades or longer time scales, it can also be lost in some cases due to 

plant invasion, the addition of nitrogen, or the input of fresh carbon (Brumme and Beese 1992; 

Jackson, 2002; Luo et al. 2015).  

Invasive species can have novel litter chemistry relative to native species, which can in 

turn change the rates of decomposition and nutrient cycling. Litter decomposition depends on 

climate, abundance of microarthropods and other decomposer organisms, and leaf litter quality 

(Seastedt et al. 1983; Perez-Harguindeguy et al. 2000). Leaf litter quality is defined as by carbon 

(C) content, nitrogen (N) content, and C-to-N ratio (Perez-Harguindeguy et al. 2000). Microbes 

need carbon and nitrogen to break down organic matter, but their activity depends on C:N ratio. 



4 
 

Generally, lower litter C:N ratios correlate with higher decomposition rates (Perez-Harguindeguy 

et al 2000). The accumulation or loss of soil carbon can be attributed to the function of microbial 

activity in soil and rate of decomposition. Decomposition releases carbon as CO2 and nutrients in 

inorganic nitrogen forms such as N as ammonia (Schlesinger and Bernhardt 2013).  Faster 

decomposition rates due to lower C:N ratio may lead to more release of CO2 and loss of soil 

carbon (Neff et al. 2002).  

 Since litter quality (C:N ratio) can influence decomposition rates, changes in ecosystem 

nitrogen dynamics through nitrogen fixation, fertilization, and invasion can influence microbial 

activity (Broadbent et al. 2017). Accelerated decomposition because of additional nitrogen 

through fertilization may cause the loss of stored soil carbon to the atmosphere (Neff et al. 2002). 

In the Colorado Rocky Mountains, soil carbon stored for many years was released as a result of 

indirect or direct fertilization (Neff et al. 2002). Nitrogen fixation, for example, can accelerate 

decomposition rates in a warm-temperate forest floor (Gallardo and Schlesinger 1994). Invasive 

species that fix nitrogen may provide another mechanism of nitrogen addition in ecosystems.  

 In the Albany Pine Bush Preserve, the black locust tree (Robinia pseudoacaia) is an 

invasive species that inputs atmospheric nitrogen into the nutrient poor, sandy soils of the 

Preserve through the process of nitrogen fixation. As an early successional species, it 

outcompetes most native species (Rice et al. 2004). It establishes well in nutrient poor soils and 

can also add up to 75 kg N ha-1 yr-1 (Boring and Swank 1984). The black locust not only adds 

nitrogen to the soil but may also impact carbon dynamics. The black locust is the target of 

intense management and restoration efforts by the Albany Pine Bush Preserve in its efforts to 

restore native biodiversity and ecosystem function.  
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Previous research at the Albany Pine Bush has shown that there is significantly less 

carbon in invaded locust soils than in barren soils that have never been invaded by the black 

locust (Jeffrey Corbin, unpublished data; Figure 1). This difference in soil percent C between 

barren and locust soil may be due to increased C respiration by microbes decomposing N-rich 

black locust litter. This study seeks to examine the differences in microbial respiration that occur 

as a result of differences in C:N ratio of the inputs from leaves of the locust compared to native 

oak leaves. We hypothesized that areas that experience black locust invasion have lower soil 

percent C than never-invaded soils because the increase in nitrogen accelerates the rate of 

microbial respiration through decomposition which leads to a loss of stored carbon from the soil. 

We tested this hypothesis by exposing Pine Bush soils to several different types of litter in a 

laboratory incubation, and monitored carbon loss.   

 
Figure 1. Soil Percent C in locust, barren, and restored sites of the Albany Pine Bush. This is 

unpublished data from Jeff Corbin collected in 2015.  
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MATERIALS AND METHODS 

Study Area  

 The Albany Pine Bush Preserve is a globally rare Inland Pitch Pine-Scrub Oak 

ecosystem, located in Albany and Schenectady counties (592,800 Easting; 4,730,100 Northing) 

(Rice et al. 2004). It receives 0.92 m average annual rainfall and temperatures range from -6 ̊ C 

to 22 ̊ C. The sandy, nutrient poor soils are a former glacial lake bottom substrate, and its 

dominant species include pitch pine, scrub oak, and dwarf chestnut oak along with a variety of 

perennial herbaceous plants and grasses.  

 The Preserve, intersected by highways and neighborhoods, is broken up into management 

units with different site histories. Soil was collected from 8 different such units during October 

of 2017. Four of these sites, KBE, KBW, King’s Road Barrens, and Blueberry Hill Central, had 

never been invaded by the Black Locust tree (“Barren”). KBW Barrens was last burned in 2014, 

KR Barrens was burned in 2013, KBE Barrens was burned in 2006, and BH Central was last 

burned in 1996.  The other four sites, Siver, BH3, BH5, KR, were mature black locust forests 

(“Locust”) with individual trees that were at least 40 years old. None of the locust stands had 

been burned. The barren soils generally had higher nitrogen and carbon content that the locust 

soils (Table 1), consistent with earlier findings (Figure 1).   

Table 1. Nitrogen and carbon content of sampled plots. List too which ones are barrens and 

which are locust. (In the table legend here.) 

Sites  Percent Nitrogen Percent Carbon  

BH Central 0.22 4.8 

KBE Barrens  0.20 4.9 

KBW Barrens  0.23 5.16 



7 
 

KR Barrens 0.11 3.93 

BH5 0.12 1.35 

KR 0.16 2.66 

BH5 (proxy for BH3)  0.16 2.15 

 

Soil and Litter Collection  

Soil was collected from each site using a 56.71 cm3 soil core to a depth of 10 cm. The 

soils were sieved (2mm) to remove rocks, twigs, insects, roots, and other naturally occurring 

objects. A subsample of soil was weighed before and after drying (104 degrees Celsius) to 

measure gravimetric water content. Two types of litter, scrub oak leaves, and locust leaves, were 

collected from various areas of the Albany Pine Bush in December 2016, dried (60 degrees C), 

and ground into a homogenous mixture. Litter C and N content was determined by mass 

spectrometer analysis at Union College’s Stable Isotope Chemistry Laboratory.  

 Incubation Set Up  

To test the difference in carbon flux due to locust invasion, four treatments were set up. 

Barren-locust, the experimental treatment, simulated invasion of the black locust tree into native 

barren soils. Barren-oak simulated natural native barren soils, and so controlled for soil type. 

Locust-locust controlled for litter type. To control for the greater amount of carbon in locust litter 

compared to the native oak litter, the ratio of litter to soil was increased to match the ratio of 

carbon in locust litter. Each site-litter treatment combination had four replicates made from each 

of the four Barren and Locust sites from the soil was collected. Each replicate was also repeated 

twice, for a total of eight jars per treatment and 32 jars in total. 
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Each jar received 110 grams (dry-weight) of soil. The amount of litter added to each 

treatment was one-third the mass of annual litter biomass (g/m2) in pine-oak stands and black 

locust stands as determined by Rice et al. (2004). It is important to note that roughly 2 times 

more litter mass falls onto locust stands per year than oak stands (Rice et al. 2004). We 

converted g litter biomass per m2 to g litter biomass per g soil using soil bulk density values 

(Table 2, Table 3). Per 110 grams of barren soil, 1.375 grams of locust litter were added; per 110 

grams of locust soil, 1.188 grams of locust litter were added; Per 110 grams of barren soil, 0.616 

grams of oak litter were added. We controlled for the difference in carbon added to treatments 

that received locust litter (Table 3) using our barren-match treatment. For the match control 

treatment, 1.3552 grams of oak litter were added, 2.2 times the ratio for the barren-oak treatment. 

A factor of 2.2 was based on the initial carbon and nitrogen measurements from previous mass 

spectrometer analysis (Table 3).  

The jars were incubated in mason jars ranging in volume from 237-241 mL. The jars were 

kept room temperature, away from natural light. The lids were vented to allow air circulation and 

maintain natural CO2 and O2 concentrations. Water was added twice weekly, maintaining the 

soil’s original weight, to prevent the soil form drying out.   

Table 2. Bulk density measurements used to calculate mass of annual litter fall.  

Diameter of cylinder 3.8 cm 

Depth of measurement 5 cm 

Volume cylinder 18.05 cm  

Locust dry weight of soil   51.88 

Barren dry weight of soil 51.77 

Locust bulk density  0.915 
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Barren bulk density 0.913 

 

Table 3. Average amounts of litter, carbon, and nitrogen added to each incubation jar for each 

treatment.  

Treatment Grams of litter/ 110 

grams of soil 

Grams of carbon per 110 

grams of soil   

Grams of nitrogen per 110 

grams of soil  

Barren-locust 
1.375 

0.670 
0.033 

Barren-oak 
0.616 

0.310 
0.005 

Locust-locust 
1.188 

0.599 
0.029 

Barren match 
1.3552 

0.681 
0.011 

 

Carbon flux measurements  

. The carbon dioxide released from the soil was measured using a converted Li-Cor 6400 

portable photosynthesis system (Figure 2). The Li-Cor 6400 has an infrared gas analyzer that 

detects real-time carbon dioxide concentrations. To convert the system from a photosynthesis 

system to a soil CO2 flux system, the leaf chamber was detached and reconfigured so that each 

mason jar could screw on directly below the sensor head. The software was set on a soil chamber 

configuration, and CO2 concentration (ppm), pressure, and temperature were recorded every 5 

seconds. The soil CO2 flux was measured once per week for the first 8 weeks of the experiment 

and once every two weeks for the remaining 8 weeks Measurements were taken over 3 minutes 

for the first 8 weeks of the experiment. After 8 weeks, the measurement time was increased to 4 

minutes to account for the decreased rate of respiration.  
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Figure 2. The LiCor-6400 adapted for a mason jar to screw on directly below the sensor head.  

Analysis  

 The slope of the CO2 collecting in each jar (ppm/second) was converted to mass loss of 

carbon (µg C g soil-1) using the ideal gas law and soil mass. The molecular weight of carbon was 

12.01 ug/umol and the atmospheric pressure and temperature were recorded by the LiCor. Nearly 

all R2 were >0.98, but where the R2 value was low (<0.90), the timing used to calculate the slope 

was adjusted until R2 was above 0.90.  

We analyzed C lost from each jar in two ways. First, a repeated measures analysis of 

variance test was performed comparing the effect treatments, measurement date and the 

interaction between treatment and date on carbon flux. Second, the total carbon flux during the 5 

month experiment was summed, scaled by time between measurements, for each jar. T-tests with 

randomized block design, in which "sites" were blocks and replicates of each site were nested 

factors were used for planned contrasts of total C lost from the barren-locust treatment versus 

barren-oak treatment and from barren-locust versus barren-match. A one-way t-test in which 

replicates of each site were nested factors was used for barren-locust versus locust-locust. All 

analyses were performed using R software (v. 3.4.3). 
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RESULTS 

 The carbon flux in each treatment generally decreased over time (Figure 3). The carbon 

flux was significantly different between all treatments (p-value = 0.0026) and all dates measured 

(p-value = 0.0001) (Table 4). The interaction between treatment and date was not significant (p-

value = 0.19) (Table 4, Figure 3).  

The experiment-wide averages of each treatment ranged from 1.624 to 2.705. Total 

carbon flux in the barren-locust treatment was significantly higher than in the barren-oak 

treatment (p-value < 0.0001) (Table 5). The carbon flux was significantly higher in the barren-

locust invasion simulation than the locust-locust control treatment (p-value = 0.007) (Table 6, 

Figure 3, Figure 4). The barren-locust treatment also had a significantly higher total carbon flux 

than the barren match control treatment (p-value = 0.0022) (Table 5, Figure 4).  
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Figure 3. Carbon flux values for each treatment from October 26, 2017 to March 15, 2018.  

Table 4. Repeated measures ANOVA analysis of treatment, date, and the interaction of  

treatment and date. The analysis took account of repeated samples and that these samples are not 

independent of each other.  

Source d.f. F p-value 

Treatment 3 9.716 0.0026 

(Residuals) 12   

Date 9 26.4 0.0001 

Treatment*Date 27 1.3 0.19 

(Residuals) 108   
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Figure 4. Total carbon loss of all treatments summed over five months of measurements. B-l 

indicates barren-locust, b-m indicates barren-match, b-o indicates barren-oak, and l-l indicates 

locust-locust.  

 

 
Table 5. Planned contrast t-test using a randomized block design in which “sites” are blocks and 

replicates of each site are nested factors.  

Barren-Locust versus Barren-Match    

 d.F.  F  p-value  

Litter  1 22.12 0.0022 

Residuals 7   

Barren- Locust versus Barren-Oak     

Litter  1 16.11 0.007 
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Residuals  6   

 

Table 6. One-way t-test comparing Barren-Locust versus Locust-Locust in which replicates of 

each site are nested factors.  

 d.F. F p-value  

Soil  1 16.11 0.007 

Residuals 6   

 

DISCUSSION 

 Previous studies suggested that N addition and litter with lower C:N ratios increase 

decomposition and soil C respiration rate (Neff et al. 2002; Brumme and Beese 1992) so we 

hypothesized that locust invasion, simulated by the barren-locust treatment, would have a higher 

carbon flux than an uninvaded stand, simulated by the barren-oak treatment. Our results 

supported this hypothesis as the barren-locust treatment had a higher carbon flux than the barren-

oak treatment (Table 6, Figure 3). The expected mechanism was that, in the barren-locust 

treatment, more nitrogen rich litter was added to the soil than in the than the barren-oak 

treatment. This added nitrogen likely increased soil respiration and therefore, resulted in higher 

total carbon flux. 

  If this increase in soil respiration was responsible for the loss of stored soil carbon 

observed at the Albany Pine Bush (Figure 1), then the larger C flux in the barren-locust treatment 

must be driven by loss of soil C, rather than loss of locust litter C. Our two controls served to test 

this mechanism. If the observed increase in C flux in the barren-locust treatment were due simply 

to the respiration of locust litter, not the respiration of stored soil C, then the C flux in the locust-

locust treatment should be equal to the barren-locust treatment. This was not the case: the barren-
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locust treatment had a higher carbon flux rate the locust-locust treatment (Table 6, Figure 3). 

This suggests that the barren-locust treatment did not have higher flux rates just because of the 

decomposition of the locust leaves but because of the higher N content of the locust leaves. We 

do acknowledge that different amounts of locust litter were added to these two treatments 

because of the differences in soil bulk density between the locust soil and barren soil, but these 

differences were not large enough to account for the dramatic difference in carbon flux.  

 Another possible alternative mechanism to explain the loss of soil C from the barren-

locust treatment is that the higher loss was a function of the quantity of litter, rather than its 

chemistry. We also controlled for the amount of carbon added in litter with the barren match 

treatment. This treatment added the same amount of carbon in litter as the barren-locust 

treatment so that only C:N ratio varied between the two treatments. Because the total carbon flux 

was higher with locust litter than when the same amount of carbon was added as oak litter, we 

can conclude that it was the C:N ratio drove the flux value. Therefore our results suggest that the 

higher N content and lower C:N ratio of the invasive black locust litter increased soil respiration 

and burned stored soil carbon. Future mass-spectrometer analysis will confirm whether the 

barren-locust soils have a lower carbon content than at the beginning of the experiment.  

Soil carbon is one of the largest pools of carbon in our global system so understanding 

soil carbon storage and turnover is necessary to study the global carbon cycle (Jackson et al 

2002). Carbon cycling is complex as evidenced by results of previous studies which find that 

nitrogen addition may increase (Lovett et al. 2013, Rodriguez et al. 2014, Wang et al. 2014, 

Craig 2015), decrease (Neff et al. 2002, Jackson 2002, Brumme and Beese 1992), or have no 

effect on soil C storage. Other studies are consistent with the pattern we observed as evidence 

shows that invasive plant species do have the capacity to destabilize native soil C pools which is 
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of concern for the global carbon cycle (Tamura and Tharayil 2014). However complex carbon 

cycling and soil C storage is, as atmospheric carbon increases to 409 ppm, it is increasingly 

important to understand mechanisms of storage and release of soil carbon (ProOxygen, 2018). 

Any reasons for fluctuation in soil carbon may contribute to climate change.  

The Albany Pine Bush is a barren environment with nutrient poor soils (Rice et al. 2004). 

The average flux of the different soil treatments in our study ranged from 1.623 to 2.704 which is 

low compared to ecosystems such as temperate forests. Temperate forests have slightly higher 

ecosystem respiration rates ranging from approximately 2.77 to 3.53 while arid ecosystems such 

as the tundra or desert had flux values typically less than 1 (Oertel et al. 2016). The Albany Pine 

Bush soils also have low carbon content soils. But this mechanism of carbon emissions by 

nitrogen fixing invasive systems observed in our study could be especially consequential in 

carbon rich soils that either grow nitrogen fixing species or are subject to invasion by nitrogen 

fixers. Ecosystems such as the agricultural fields of the Midwestern United States and boreal 

biomes have carbon rich soils and large amounts of stored carbon. The arctic permafrost regions 

of the Northern Hemisphere store 1672 Pg, 50% of the Earth’s carbon that is stored below 

ground (Tarnocai et al. 2009).   

 As the climate warms, shrubs and trees, many of which are nitrogen fixers, are predicted 

to expand their ranges northward and establish in subarctic tundras (Rousk and Michelsen, 

2016). Nitrogen fixing species will provide a source of N input greater than current litterfall 

inputs (Rousk and Michelsen, 2016).  Hiltbrunner et al (2014) hypothesized that expansion of 

alder, a nitrogen fixing genus of plant, will reduce C storage because of the inhibition of the 

establishment of late-successional stages of plants. If nitrogen fixers in such habitats alter soil 
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carbon dynamics in the same way as the black locust in the Albany Pine Bush, this could be 

impactful for global carbon emissions.  

 In the carbon rich soils of the Midwest, soy is an abundantly produced nitrogen-fixing 

plant. Studies in Brazil and other tropical places, where soybean production has expanded, have 

found that conversion of forest to agricultural land has contributed to carbon emissions (Nagy et 

al. 2017, Noojipady et al. 2017). Data from the Brazilian government estimates that the carbon 

dioxide emissions from conversion to soybean agricultural land of the Cerrado ecosystem in 

Brazil is more than half of the total emissions from the UK in 2009 (Word Wildlife Federation 

2011). Part of these carbon emissions can be attributed to deforestation but the nitrogen fixing 

nature of soybeans may play a role as well. Soybeans are the second most planted field-crop in 

the U.S. and are mainly grown in carbon rich Midwestern U.S. soils (USDA 2017) so if these 

nitrogen-fixing legumes increase the rate of soil respiration, released stored soil carbon dioxide 

into the atmosphere this could be harmful not only because of greenhouse gas emissions but also 

because of the decrease in soil nutrients in these important agricultural areas.  

In sum, our study offers a novel mechanism for carbon emissions that contribute to 

climate change. It also provides more incentive for the strategic and successful management of 

invasive species as a large portion of invasive species are nitrogen fixers (Daehler 1997). These 

types of invasive plant species may not just impact the ecosystems they invade by decreasing 

biodiversity, changing soil chemistry, and leaving soil legacies that even restoration cannot 

remedy (Mack et al. 2000), they also may have an effect on the global ecosystem and climate 

change.Finally, it provides more incentive for agricultural management of nitrogen-fixing 

legumes such as soybeans to ensure that sustainable practices are being employed, including 

consideration of carbon budgets.   



18 
 

ACKNOWLEDGEMENTS 

I would like to thank Dr. Jeffrey Corban for being a wonderful advisor and mentor 

throughout this entire project. I would also like to thank my lab mates for their support.  

I would like to thank the Union College Biology Department and the Union College 

Undergraduate Research program for making this project possible. I would like to thank the 

Surdna Foundation for providing me with a summer research fellowship that allowed me to 

complete this thesis.  

I would also like to thank Adam von Haden at the University of Wisconsin-Madison for his 

invaluable guidance in setting up the experiment and Professor Verheyden-Gillikin and the 

Stable Isotope Lab at Union College for running samples on the mass spectrometer. I would like 

to thank the Albany Pine Bush for allowing us to take soil samples from the preserve.  

 

 

 

 

 

 

 

 

 



19 
 

REFERENCES   

Boring, Lindsay R. and Swank, Wayne T. (1984). Symbiotic Nitrogen Fixation in 

Regenerating Black Locust (Robinia Pseudoacacia L.) Stands. Forest Science. 

30(2): 528 – 537.  

Broadbent, Arthur A. D., Orwin, Kate H., Peltzer, Duane A., Dickie, Ian A, Mason, Mason, 

Noman, W.H., Ostle, Nicholas, J., Stevens, Carly J. (2017). Invasive N-fixer 

Impacts on Litter Decomposition Driven by Changes to Soil Properties Not Litter 

Quality. Ecosystems. Online.  

Brumme, R., Beese, F. (1992). Effects of liming and nitrogen fertilization on emissions of 

CO2 and N20 from a temperate forest. J. Geophys. Res. 97: 12851 

Carpenter, David, Cappuccino, Naomi (2005). Herbivory, time since introduction and the 

invasiveness of exotic plants. Journal of Ecology. 93:315–321. 

Castro-Dı´ez Pilar, Godoy Oscar, Alonso Alvaro, Gallardo A, Saldan˜ a Asuncion (2014). 

What explains variation in the impacts of exotic plant invasions on the nitrogen 

cycle? A meta-analysis. Ecology Letters 17:1–12. 

Craig, Matthew E., Pearson, Scott M., Fraterrigo, Jennifer M. (2015) Grass invasion effects 

on forest soil carbon depend on landscape-level land use patterns. Ecology. 96: 

2265-2279.  

Ehrenfeld, Joan. (2003). Effects of Exotic Plant Invasions on Soil Nutrient Cycling 

Processes. Ecosystems, 6(6), 503-523 

Ehrenfeld, John G (2010). Ecosystem consequences of biological invasions. Annual Review 

of Ecology, Evolution, and Systematics. 41:59–80. 



20 
 

Gallardo, Antonio Schlesinger, William H. (1994) Factors limiting microbial biomass in the 

mineral soil and forest floor of a warm-temperate forest. Soil Biol. Biochem. 26: 

1409-1415.  

Hejda, Martin, Pysek, Petr, Jarosik, Vojtech (2009). Impact of invasive plants on the    

species richness, diversity and composition of invaded communities. Journal of 

Ecology. 97: 393–403. 

Hiltbrunner, Erika, Aerts, Rien, Buhlann, Tobias, Huss-Danell, Kerstin, Magnusson, 

Borgthor, Murold, David D., Reed, Sasha C., Sigurdsson, Bjarni D., Korner, 

Christian (2014). Ecological consequences of the expansion of N2-fixing plants in 

cold biomes. Oecologia. 176(1): 11-24.  

Jackson, Robert B., Banner, Jay L., Jobhagy, Estebang G., Pockman, William T., Wall, 

Diana H (2002). Ecosystem carbon loss with woody plant invasion of grasslands. 

Nature. 418:623-626.  

Laungani, Ramesh, Knops, Johannes M.H. (2009). Species-driven changes in nitrogen 

cycling can provide a mechanism for plant invasions. Proceedings of the National 

Academy of Sciences of the United States of America. 106: 12400–12405. 

Liao Chengzhang, Peng Ronghao, Luo Yiqi, Zhou Xuhui, Wu Xiaowen, Fang Changming, 

Chen Jiakun, Li Bo (2008). Altered ecosystem carbon and nitrogen cycles by plant 

invasion: a meta-analysis. New Phytologist. 177:706–1 

Lovett, Gary M., Arthur, Mary A., Weathers, Kathleen C., Fitzhugh, Ross D., Templer, 

Pamela H. (2013). Nitrogen Addition Increases Carbon Storage in Soils, But Not in 

Trees in an Eastern U.S. Deciduous Forest. Ecosystems. 16: 980-1001.  



21 
 

Luo, Zhongkui, Wang, Enli, Smith, Chris (2015). Fresh carbon input differentially impacts 

soil carbon decomposition across natural and managed systems. Ecology. 96: 2806-

2813.  

Nagy, R. Chelsea, Proder, Stephen, Brando, Paulo, Davidson, Eric A., Figuiera, Adelain 

Michela e Silva, Neill, Christopher, Riskin, Shelby, Trumbore, Susan (2018) Soil 

carbon dynamics in soybean cropland and forests in Mato Grosso, Brazil. Journal of 

Geophysical Research: Biogeosciences. 123: 18-31.  

Neff, Jason C., Townsend, Alan R., Gleixner, Gerd, Lehman, Scott J., Turnbull, Jocelyn, 

Bowman, William D (2002) Variable effects of nitrogen additions on the stability 

and turnover of soil carbon. Nature. 419:915-917. 

Noojipady, Praveen, Morton, C. Douglas, Macedo, N. Marcia, Victoria, C. Daniel, Huang, 

Chengquan, Gibbs, K. Holly, Bolfe, L. Edson (2017). Forest carbon emissions from 

cropland expansion in the Brazilian Cerrado biome. Environmental Research 

Letters. 12(2).  

Oertel, Cornelius, Matschullat, Jor, Zurba, Kamal, Zimmermann, Frank, Erasmi, Stefan 

(2016). Greenhouse gas emissions form soils- A review. Chemie der Erde – 

Geochemistry. 76(3): 327-352.  

Pérez-Harguindeguy, Natalia, Diaz, Sandra, Cornelissen, Johannes, H. C., Vendramini, 

Fernanda, Cabido, Marcelo, Castellanos, Alejandro (2000). Chemistry and 

toughness predict leaf litter decomposition rates over a wide spectrum of functional 

types and taxa in central Argentina. Plant and Soil, 218 (21): 21-30.   

ProOxygen (2018). Daily CO2. CO2-Earth. https://www.co2.earth/daily-co2.  

https://www.co2.earth/daily-co2


22 
 

Rice, Steven K., Westerman, Bryant, Federici, Robert (2004). Impacts of the exotic, 

nitrogen-fixing Black Locust (Robinia pseudoacacia) on nitrogen-cycling in a pine-

oak ecosystem. Plant Ecology. 174 (1): 97-107.  

Rodriguez, Alexandra, Lovett, Gary M., Weathers, Kathleen C., Arthur, Mary A., Templer, 

Pamela H., Goodale, Christine L., Christenson, Lynn M. (2014) Lability of C in 

temperate forest soils: Assessing the role of nitrogen addition and tree species 

composition. Soil Biology and Biochemistry. 77:129-140.  

Rousk, Kathrin and Michelsen, Anders (2017). Ecosystem nitrogen fixation throughout the 

snow-free period in subarctic tundra: effects of willow and birch litter addition and 

warming. Global Change Biology. 23: 1552-1563.  

Seastedt, T., Crossley, D., Meentemeyer, V., & Waide, J. (1983). A two-year study of leaf 

litter decomposition as related to macroclimatic factors and microarthropod 

abundance in the Southern Appalachians. Holarctic Ecology, 6(1): 11-16.  

Suseela, Vidya, Alpert, Peter, Nakatsu, Cindy H., Armstrong, Arthur, Tharayil, Nishanth 

(2016). Plant–soil interactions regulate the identity of soil carbon in invaded 

ecosystems: implication for legacy effects. Funct Ecol, 30: 1227–1238.  

Tamura, Mioko and Tharayil, Nishanth (2014). Plant litter chemistry and microbial priming 

regulate the accrual, composition and stability of soil carbon in invaded ecosystems. 

New Phytologist. 203: 110–124.  

Tarnocai, C., Canadell, J.G., Schurr, E.A.G., Kuhry, P., Mazhitova, G., Zimov, S. (2009). 

Soil organic carbon pools in the northern circumpolar permafrost region. Global 

Biogeochemical Cycles. 23 (2).  



23 
 

United States Department of Agriculture Economic Research Service (2017) Soybeans and 

Oil Crops. https://www.ers.usda.gov/topics/crops/soybeans-oil-crops/background/.  

Wang, Qingkui, Wang, Yanping, Wang, Silong, He Tongxin, Liu, Li (2014). Fresh carbon 

and nitrogen inputs alter organic carbon mineralization and microbial community in 

forest deep soil layers. Soil Biology and Biochemistry. 72: 145-151.  

World Wildlife Federation United Kingdom (2011). Soya and the Cerrado: Brazil’s forgotten 

jewel. http://assets.wwf.org.uk/downloads/soya_and_the_cerrado.pdf.  

 

https://www.ers.usda.gov/topics/crops/soybeans-oil-crops/background/
http://assets.wwf.org.uk/downloads/soya_and_the_cerrado.pdf

