
 

 
 
 
 
 
 

 
 
 

Development of a Fully Instrumented, Resonant 
Tensegrity Strut 

 
MER 498 – Report 

03/13/2017 
Student: Kentaro Barhydt 

Advisor: Professor William Keat 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I affirm that I have carried out all academic endeavors with full academic honesty 
 
 

X______________________________________________________ 
  



 

Contents 

Introduction & Background …………………………………………………………………… 1 

Theoretical Models of a Single Tensegrity Strut ……………………………………………… 6 

Implementation of Inertial Measurement Unit on Tensegrity Strut …………………………… 15 

Design and Implementation of a Low-Frequency Vibration Motor …………………………… 21 

Conclusions …………………………………………………………………………………… 31 

References ……………………………………………………………………………………… 32 

Appendices …………………………………………………………………………………… 33 

 

 



 

 1 

Introduction & Background 

A tensegrity is a structure composed of purely compressive members (struts) held in 

equilibrium by tensile elements (springs). The springs and struts act in synergy with each other in 

that the compression in the struts keep the structure from collapsing into itself while the tension 

in the springs hold the struts in their upright position (Fig.1). This project will focus on the 

development of an active modular tensegrity strut capable of actuating its resonant frequencies 

and capturing its dynamics using onboard motion tracking instrumentation. The vibration of the 

strut will also be modeled to gain a theoretical understanding of its dynamic behavior. 

The term “tensegrity”, coined by Buckminster Fuller, is a portmanteau of the two words: 

tensile, and integrity, which describes its ability to maintain mechanical stability through its 

natural tendency to disperse stresses throughout its entire body [1]. This is possible because the 

dynamic coupling between nodes (ends of struts where springs are connected) allow for a 

continuous compliance in tension distance between nodes, meaning it can deform to virtually any 

shape without changing its topology and will return to its original geometry when all external 

forces are removed. The robust compliance of tensegrity structures make them attractive in the 

 
 Fig.1 – 6-bar tensegrity Fig.2 – Vibrating tensegrity robot 



 

 2 

field of soft robotics. The spring connections between struts absorb external forces and disperse 

stress throughout its body, giving them a high strength-to-weight ratio and making them resilient 

against impact forces that would cause traditional rigid robots to break. Tensegrities can adjust 

the prestresses in its tensile connections as well, allowing it to deform under its own weight and 

comply to different terrains.  For these reasons, the NASA Ames Research Center is currently 

developing a tensegrity-based robotic platform for planetary exploration, called SUPERball [2]. 

The current prototype locomotes by shifting its center of mass to achieve a rolling gait, which is 

controlled by adjusting the prestress in its individual tensile connections. Its tensegrity-based 

structure allows its gait to mechanically comply to different surfaces, making its ability to 

traverse variable terrains more robust than previous planetary explorers. The high impact 

resistance also enables high speed entry and landing without the use of airbags [3]. 

In addition to compliance, the deformation capabilities of tensegrity structures allow for a 

greater range of complex dynamic motion than rigid structures. The dynamic coupling between 

struts also allows for simplified actuation of complex motions that would otherwise require 

multiple actuators using a rigid structure design. These characteristics parallel the robust 

complexity of biomechanical locomotive systems found in animals and have caused tensegrities 

to gain interest in the field of bioinspired robotics. Thomas Bliss et al. developed autonomous 

control of a tensegrity-based swimmer that mimics a fishtail using Central Pattern Generators 

(CPGs), which are systems of neurons found to control rhythmic motion responsible for 

locomotion in animals, to achieve closed-loop entrainment to desired swimming gaits [4]. The 

BEST Lab at University of California, Berkeley, has also developed a quadruped that utilizes a 

tetrahedral tensegrity structure as a spine to support complex motions between the robot’s front 

and rear legs, allowing for greater efficiency and stability in traversing irregular terrains [5]. 
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 Research at Union College lead by Professor John Rieffel has focused specifically on 

exploiting the nonlinear complex dynamics of tensegrity structures. The tensegrities used are 

designed to locomote through the vibration of the struts, which is evolved to achieve optimal 

locomotion and control using genetic algorithms. These algorithms are based on the concept of 

morphological communication. In, “Morphological Communication: Exploiting Coupled 

Dynamics in a Complex Mechanical Structure to Achieve Locomotion”, Rieffel et al. presents 

morphological communication as phenomena commonly found in nature in which dynamically 

coupled physical systems act as neural networks capable of transferring signals through nodes 

that can simultaneously actuate and sense other nodes [6]. This applies to the evolutionary 

process in that the individual active (vibrating) struts are able to individually adapt their driving 

frequency without direct communication with any of the other struts so that the gait of the entire 

tensegrity structure evolves as a whole. The struts only have knowledge of their own dynamics, 

and the forces applied by the springs affect those dynamics and act as feedback for the strut to 

adjust to. This reduces the necessary computation significantly, allowing the tensegrity to bypass 

the processing limitations of controlling its nonlinear coupled dynamics and take advantage of its 

compliant properties and wide range of motion patterns. 

 Complex dynamic coupling is typically avoided in engineering design due to this 

inability to control it through traditional means. Additionally, dynamic coupling is also typically 

avoided to prevent resonance from occurring. This is because it can cause uncontrollable 

increases in vibrational magnitude, which can be harmful to a rigid system’s operation and 

structure. As a part of exploiting nonlinear dynamic coupling, Rieffel’s research hypothesizes 

that optimal locomotion in vibrating tensegrities is achieved when driven at its resonant 

frequencies due to the conservation of vibrational energy that causes the increase in amplitude. 
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This extends the implication that the natural frequencies, if known, should be utilized when 

finding optimal gaits. The current version of the genetic algorithms only tracks the net motion of 

the entire tensegrity robot and does not observe the dynamics of individual struts, making the 

evolutionary process inefficient in that it cannot guide its genotype selection towards dynamic 

behaviors known to correlate with optimal locomotion. Implementing methods of artificial 

selection based on individual strut dynamics would significantly increase the efficiency of 

evolution, therefore increasing the tensegrity’s ability to quickly adapt to variable environments. 

 Previous research has explored the dynamic response of tensegrity structures under 

forced vibration. Oppenheim and Williams have demonstrated that the natural geometric 

flexibility of tensegrities at equilibrium reduces the effect of natural damping in the tensile 

elements, causing a longer rate of amplitude retention [7]. Bel Hadj Ali and Smith demonstrated 

vibration control of a fixed, five-module tensegrity vertically actuated at one fixed node, and 

determined that natural frequencies can be shifted away from excitation by adjusting prestress 

levels [8]. Bohm and Zimmermann developed a symmetrical, single-actuated vibrating tensegrity 

robot that could control the speed and direction of locomotion by adjusting prestress and driving 

frequency respectively [9]. Bliss et al. developed and experimentally validated closed-loop 

resonance entrainment of a linearly constrained biomimetic tensegrity swimmer to optimal 

locomotive gaits using linear oscillators for cable actuation [10]. 

 
Fig.3 – Wireless modular strut for tensegrity robot 
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This project follows those of Union College graduates Alexander Chu (ME ‘17) and 

Riley Konsella (CPE ‘17), whose senior projects (partially and fully respectively) aimed to 

develop a modular vibrating strut for a new wireless version of the tensegrity [11][12]. The first 

prototype of the wireless tensegrity strut (Fig.3) was completed afterward by Kentaro Barhydt 

(ME ‘18) during a summer research fellowship. This project will utilize this wireless tensegrity 

prototype for experimentation and make modifications and/or additions to its design where 

necessary. In addition to developing a modular strut, Chu’s project aimed to fabricate an 

irregular 15-bar tensegrity robot using topology determined using Professor William Keat’s 

form-finding algorithm. This algorithm takes defined properties of the tensegrity as parameters 

and deduces its topology at its lowest energy state, its vibrational mode, and its natural frequency 

[12]. Using this algorithm, the topology of a tensegrity resulting in specific natural frequencies 

can be deduced. 

The goal of this project is to develop a modular strut capable of actuating and capturing 

these resonant modes so that their relationship to optimal locomotion can be determined. 

Achieving this will allow for further work in testing Rieffel’s hypothesis and experimental 

validation of theoretical models developed in characterizing resonance. 
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2. Theoretical Models of a Single Tensegrity Strut 

To properly characterize the dynamics of a multi-strut vibrating tensegrity, the dynamics 

of a single strut must first be understood. Analyzing the behavior of an isolated strut provides the 

insight necessary to analytically interpret experimental observations of the full tensegrity. 

Therefore, the dynamics of an isolated single strut were first modeled using analytical and 

numerical methods. In order to validate Keat’s small-angle linearity assumption used in the 

predictive natural frequency algorithm, both a linear and nonlinear model were developed to 

observe possible differences in their results given the same parameters. Having a computational 

model also allowed for extensive parameter analysis, providing insight into how different 

geometric constants and input variables affect the natural frequency of the strut. 

2.1 Nonlinear Model 

The nonlinear models for single strut vibration were derived based on the experimental 

setup in which the strut vibration would be isolated, as seen in Figure 4. The model is nonlinear 

simply as a result of the system. The setup included a total of eight springs with four on attached 

 
Fig.4 – Force diagram of single strut in test configuration (left) and eccentric weight of vibration motor 
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to each end. Only the vertical displacement was observed and motion in other dimensions were 

considered negligible because the strut movement along its axis was assumed to be dominant in 

the particular tensegrity structure that the isolated spring geometry is based on. The lack of 

actuation in the horizontal plane also implies that the spring configuration stays symmetric along 

the axis of the strut at any given time, meaning the length and angle each spring is always equal 

to all other springs connected to the same strut end. The motor speed was assumed to be 

constant, as the electronic user input given to the tensegrity robot should translate directly 

through to the mechanical input of the motor. If the voltage input and motor function do not have 

a constant and direct relation, then experiments that rely on controlling frequency parameters, 

like the genetic algorithm experiments conducted at Union College, could not properly 

characterize the frequency response of the tensegrity as the input function would be accurately 

represented. Since tensegrity structures are assumed to have negligible damping, the theoretical 

models initially do not account for potential damping forces. The nonlinear model was first 

derived as a second order differential equation as a function of time t with state variables of 

vertical displacement y and acceleration ÿ: 

 ÿ = − $
%&

𝑦 + ℎ* 𝑘 − ,-./0.

-123 435. 2
 

 − $
%&
(𝑦 − ℎ*) 𝑘 − ,-./0.

-123(4/5.)2
+ 8

%9
𝑃4(𝑡) − 𝑔 (1) 

where Py(t) denotes the vertical component of the centripetal force input of the motor: 

 𝑃4(𝑡) = 𝑀>𝑟𝜔A𝑠𝑖𝑛(𝜔𝑡) (2) 

The first and second terms of the equation denote the top and bottom sets of springs respectively. 

The variables and constants of both the nonlinear and linear equations are defined as: 

𝑡 = time (s) 
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𝑦 = Vertical displacement of strut from y=0 (m) 
𝑦& = Vertical distance between end of strut and respective spring mounting points (m) 
ℎE = 𝑦& @ y=0 (m) 
𝜃 = Angle of spring from horizontal (rad) 
𝑙H = Spring length @ θ=0° (rad) 
𝑙E = Free length of spring (m) 
𝑔 = Acceleration of gravity (m/s2) 
𝐹4 = Vertical component of spring tension (N) 
𝐹E = Initial tension in springs (N) 
𝑀& = Mass of strut (Kg) 
𝑀> = Mass of eccentric weight (Kg) 
𝑟 = Centroidal radius of eccentric weight (m) 
𝜔 = Motor speed (rad/s) 

 The strut displacement is solved for though Runge-Kutta state propagation using MATLAB 

(App. A). Both models were run at a sampling rate of 10,000 Hz and set the parameters of the 

strut properties similarly to that of the physical strut currently in use. The model output the 

overall strut displacement, velocity, and acceleration over time, as seen in Figure 5. 

 
Fig.5 – Displacement, velocity, and acceleration of single strut over time 
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2.2 Linear Model 

 The linear model was derived based on the same experimental setup used for the 

nonlinear model with the exception that the assumption that the change in spring angle is small 

enough to consider negligible, as seen in figure 6. 

 
Fig.6 – Spring tension diagram of single spring for linear model. Small angle assumption assumes distance Y 

is small enough to assume angle ⍺ is negligible. θ is constant. 
 

This assumption resulted in the following equation for acceleration: 

 ÿ = 	− K
%&

𝑘𝑠𝑖𝑛A𝜃 − L

-1235.2
𝑐𝑜𝑠A𝜃 𝑦 + 8

%9
𝑃4(𝑡) − 𝑔 (3) 

where T denotes the tension in the springs when y = 0: 

 𝑇 = 	𝑘 𝑙H
A + ℎ*

A − 𝑙* + 𝐹* (4) 
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The spring constant term (multiple of y) could then be determined from this equation since θ	is	

constant,	making	the	entire	term	constant:	

 𝛴𝑘 = 𝑘𝑠𝑖𝑛A𝜃 − L

-1235.2
𝑐𝑜𝑠A𝜃 (5) 

This	was	then	used	to	derive	the	natural	frequency	of	the	system,	resulting	in:	

 𝑓R =
8
AS

T,
%9
= 8

AS

,&UR2V	/	 W

X1
2YZ.

2
[E&2V

%9
 (6) 

2.3 Results 

 The nonlinear and linear models generated fundamentally equal results and therefore 

validated the small angle displacement assumption. 

 
Fig.7 – Nonlinear model: vertical displacement of strut over time 
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Fig.8 – Linear model: vertical displacement of strut over time 

 
As shown in figure 7 and 8, the function and periods of the frequency responses for both 

models aligned with each other. Both plots reveal one overarching and one underlying sine wave 

with frequencies of 10.6 Hz and 200 Hz respectively. The amplitude of the linear model is 

slightly larger than that of the nonlinear model and there is an apparent phase shift of 

approximately 20 degrees between them. However, both these discrepancies can be ignored for 

the purposes of characterizing the strut dynamics because the function for both models are the 

same and change proportionally as input frequency is adjusted. The frequency is crucial in that it 

must stay consistently equal between the two models in order for the small angle displacement to 

be valid. The frequency for both the nonlinear and linear responses aligned, therefore 

theoretically confirming the assumption. A Fast Fourier Transform (FFT) was performed on the 

numerical displacement results of the linear model, which confirmed the existence of two sine 

waves and their respective frequencies (Fig. 9). 
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Fig. 10 – Fast Fourier Transform of linear displacement results 

 
The natural frequency was calculated using (6) resulting in fn = 10.93 Hz, which aligned 

with the overarching sine wave frequency found in both models with an error of 3.1%. When 

tested at different motor speeds, the numerical and analytical natural frequency results stay 

within a 3.5% to 4.5 % range of error with each other. While the significance of this error to 

predicting natural frequencies will need to be determined experimentally, it is small and 

consistent enough to conclude that the overarching sine wave present in the model results 

represents the system’s natural frequency. The FFT also revealed a second sine wave with a 

smaller amplitude than that of the overarching sine wave and a frequency of 200 Hz. This 

frequency matched the driving frequency of the vibration motor and stayed within a ±0.005% 

margin of error when tested at different motor speed inputs. From this correlation, it can be 

concluded that the underlying sine wave present in the model results represents the driving 

frequency of the strut. The identification of both the sine waves that comprise the vibration 

response in context to the physical system theoretically confirms the validity of the linear model 
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in describing the strut dynamics. This in turn validates the use of the small angle displacement 

assumption in Keat’s natural frequency algorithm. 

A parameter analysis was conducted on the linear model to determine the limit and 

magnitude of impact each independent parameter of the natural frequency equation (6). The 

ranges of values analyzed for each parameter were estimated based on their reasonable upper 

and/or lower limits for the current general tensegrity design. 

 
Fig.11 – Natural frequency vs. strut mass, spring rate, spring angle at y = 0, and stretched spring length at y = 0 

 
As seen in figure 11, the mass of the strut and the spring rate have the greatest impact on natural 

frequency, although that impact diminishes logarithmically as their values increase. Spring rate 

was shown to have the most consistent (although actually a root function) relationship with 

natural frequency for the given range. The spring angle and stretched length at y = 0 were both 

relatively inconsequential to the natural frequency. 

2.4 Conclusions 

 The small-angle displacement assumption used in Keat’s predictive natural frequency 
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algorithm was successfully validated by developing and comparing linear and nonlinear models 

of single strut vibration. Both models represent underlying frequencies of isolated strut motion 

that aligned with the experimental setup as well. The mass of the strut and spring rate were also 

determined to have a significant impact on the natural frequency of the system through a 

parameter analysis, while the spring angle and stretched spring length were observed to be nearly 

arbitrary. 
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3. Implementation of Inertial Measurement Unit on Tensegrity Strut 

 In order to empirically validate the theoretical models and observe phenomena such as 

resonance, the dynamics of the tensegrity must be experimentally captured. Previous work using 

the tensegrity for evolutionary algorithm testing only tracked the overall movement of the 

tensegrity’s center of mass across a horizontal plane, which severely limited the understanding of 

the mechanics behind what caused optimal locomotion. Therefore, the motion of each individual 

strut must be captured in order to accurately observe its dynamic behavior. Given the constraints 

of the tensegrity design and application, this must also be achieved while maintaining its wireless 

control and small size. 

3.1 Data Collection and Analysis 

 The necessary motion capture was achieved by implementing a 6-axis inertial 

measurement unit (IMU) onto the strut. This method was chosen for its relatively high accuracy 

and sampling rate, small size, and low cost. Other methods explored included visual tracking 

using a high speed camera and spring tension measurement using load cells. Camera tracking is 

ideal for the tensegrity design since it does not require any modification to the circuitry of the 

strut. This method had previously been explored by Union College computer science students, 

who tracked the position of a node (connection point between strut and springs) of the tensegrity 

over time relative to the frame of the camera. However, this method was ruled out due to the 

complexity needed to accurately track a tensegrity. Multiple cameras would be needed to track at 

least six individual struts in three dimensions at a high enough resolution to accurately measure 

position and a high enough frequency to accurately capture high frequencies (sampling rate must 

be at least twice the highest frequency being observed). Camera tracking systems are sold 

commercially explicitly for this purpose, but also cost hundreds of thousands of dollars. 
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Therefore, due to the complexity of tensegrity dynamics and the lack of equipment, camera 

tracking was deemed an infeasible approach for this project. 

The other method, using spring tension load cells, was also deemed infeasible due to the 

lack of lightweight load cells available on the market. Since each spring would need at least one 

load cell equipped to properly instrument the entire tensegrity, a 6-bar tensegrity would need 

four load cells per strut (24 springs distributed between 6 struts), which would increase the total 

weight by a very significant amount (lightest load cell found was 3.2 g, meaning 12.8g would be 

added to the strut which weighs 60 g). The space taken up at the end of the struts would also 

interfere with collisions with the ground during vibration, and the additional amp needed to 

operate the cells would occupy even more space in the circuitry. An alternative exists in using 

conductive rubber cord that changes its resistance as it stretches, allowing for its length to be 

measured based on the current passing through it given a constant voltage. However, the 

accuracy of this device does not meet the requirements of the project in that its specifications 

provide a range of resistance per unit of length, and therefore was also ruled out as the best 

potential motion capture method. 

 An IMU was integrated into the strut circuit to allow for onboard motion tracking. The 

gyro/accelerometer used was a MPU-6050 module that can sense up to ±16 g at a resolution of 

±2048 samples/g with six degrees of freedom: three-axis translation and three-axis rotation. The 

MPU-6050 weighs ~1 g and has a maximum sampling rate of 1000Hz for translational 

acceleration and 8000 Hz for rotational acceleration. Since oscillating motion must be recorded 

at a sampling rate at least twice its frequency, the highest translational frequency that can be 

captured is 500 Hz and the highest rotational acceleration that can be captured is 4000 Hz.  

 While the IMU is able to sample at 1000 Hz, Bluetooth connection to the strut was 
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unable to send samples to the user’s computer at the same rate. The maximum sampling rate 

achievable by sending a live feed of samples over Bluetooth was approximately 7 Hz. Attempts 

were made to increase the rate, such as minimizing the data sent per sample and communicating 

between two Bluetooth modules instead of directly to the computer, but none could successfully 

achieve a rate over 60 Hz. The minimum sampling rate requirement is approximately 400 Hz in 

order to capture the higher frequencies obtainable by the vibration motor. The genetic algorithms 

test a wide range of frequency inputs, so maintaining this range is important to finding optimal 

locomotion in full tensegrity structures later in this project. 

 To increase the sampling rate to an adequate speed, onboard data storage was 

implemented onto the strut using a microSD card and microSD shield module. This removed the 

bottleneck of the slow Bluetooth communication and allowed the IMU to send data directly to 

the microSD card through the microprocessor. The microSD shield connects to the plug-in pins 

on the RFDuino, so the circuit was revised to avoid connecting other components to the pins 

occupied by the shield. With this modification, the strut is now able to sample at a rate of 425 

Hz, making proper data acquisition of high frequencies possible.  

 The program that runs the modular strut, written in Arduino (C/C++), also required 

substantial revisions to allow for high sampling rate capabilities. The original code, written by 

James Boggs and Riley Konsella, included a manual pulse width modulation (PWM) function 

that allowed for digital control of the brushless motor speed. This method of motor control 

needed to be replaced due to its use of a delay function in timing the output pulse, which stopped 

all processes in the code for the specified amount of time. Since the total pulse period was set to 

20 ms, the shortest possible amount of time elapsed between each sample was 20 ms, meaning 

the sampling rate possible was 50 Hz. This issue was eliminated by programming the motor 
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control and data sampling to run in parallel instead of in series, which was accomplished in part 

by the implementation of the updated brushed DC gearmotor (discussed further in section 4). 

Although the Arduino code runs the modular strut, an interactive external python code is used to 

control the strut by controlling the behavior of the Arduino code by restarting it and resetting its 

parameters based on user input. Therefore, because the motor speed does not need to change 

continuously over a gradient of values, the motor speed user input control was implemented in 

the python code so that the internal behavior of the Arduino code can assume constant motor 

speed throughout its runtime. This allowed the PWM function to be initialized and run until the 

program is terminated, thus removing it from the loop in which data sampling is iteratively run. 

3.2 Test Apparatus 

Capturing the dynamics of a single vibrating strut required a method of isolating strut 

vibration, so a test rig was designed and built to ground the external mounting points of the 

strut’s spring connections and hold the strut in a symmetrical configuration, as seen in figure 12. 

 
Fig.12 – Test rig with pattern channel structure 
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 The test rig was constructed using aluminum pattern channels and sheet metal. Pattern 

channels were chosen as the primary structural component of the rig due to their flexural strength 

and fastening adjustability. The test rig must accommodate single strut experiments in multiple 

configurations with varying mass and spring geometry parameters, so easy modification of the 

rig dimensions is important for reusability and efficient testing. The flexural strength of the 

channels also prevents vibrations in the structure due to the oscillating tension in the springs. 

Separate spring connection parts were made from sheet metal to allow for different mounting 

heights on the channels. A problem commonly faced when previously using struts was that 

fastening springs required its ends to bend open to hook onto the mounting point. Therefore, the 

spring connection parts made for the test rig were designed with connections thin enough for the 

springs to attach to without plastically deforming them. 

A design manufactured entirely from sheet metal was considered as an alternative to the 

pattern channel design. The structure would be made from interlocking sheets of 0.09” thick 

aluminum and welded together. This design would be completely manufacturable at Union 

College’s machine shop, allowing for full control of features like spring mount placement and 

strut accessibility. However, the pattern channel design was ultimately chosen for its ease of 

assembly and modification. The sheet metal structure could have been designed with similar 

fastening features as the pattern channels, but would require additional mounting brackets to do 

so, which would significantly increase the total cost of the rig. The sheet metal could be bent and 

fastened to perpendicular surfaces as an alternative to using brackets, but this would add an 

additional manufacturing step that would take a significant amount of time. This would also 

decrease the precision of the structure due to the machine shop’s limited ability to precisely bend 

thicker sheets to specified radii. 
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3.4 Conclusions 

 Onboard motion tracking for individual struts was implemented into the modular strut 

design using a IMU, allowing for translational and rotational acceleration measurement sampling 

in three dimensions. Sampling data was collected onboard using microSD memory cards in order 

to create a direct communication channel capable of processing high-frequency sampling data. 

This system can consistently achieve a sampling rate of ~425 Hz, and its implementation did not 

require any significant modifications to the physical design of the modular tensegrity strut. This 

fast communication was developed alongside the new custom vibration motor, so experimental 

results of this system are outlined in the following section. 
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4. Design and Implementation of a Low-Frequency Vibration Motor 

 The vibrating motor of the modular tensegrity strut needed to be redesigned in order for it 

to drive the theoretical resonant frequencies of the 6-bar tensegrity as well as the current design 

of the single strut. Using Keat’s model, the natural frequencies of a 6-bar tensegrity composed of 

the modular tensegrity struts would have a number of resonant frequency combinations between 

its active struts, all of which fall between 2 Hz and 17.6 Hz. The operating range of the brushless 

motor from the previous design, 40 Hz to 230 Hz, does not encompass any of these frequencies. 

Therefore, a custom motor was designed, manufactured, and implemented onto the strut to 

achieve a lower frequency range that can actuate resonant frequencies, as well as increase overall 

amplitude. 

4.1 Vibration Motor Design 

 A gearmotor was chosen for the new motor design because the mechanical advantage of 

the gearbox accomplished the exact purpose of the design renewal: given the same power input, 

the gear motor increased the torque and decreased the rotational speed of the output shaft. The 

inclusion of a gearbox was necessary since nearly all the motors researched either had too high 

of a minimum driving frequency or too low of a stall torque. Achieving these results through 

mechanical advantage instead of an alternative electronic design was necessary because the 

power input could not increase without significantly increasing the weight of the strut and 

requiring a redesigned battery mounting system. 

 The Pololu 10:1 Micro Metal Gearmotor LP 6V was chosen for the vibration motor 

design for its operating frequency range of 0 Hz to 21.7 Hz. Although the maximum motor speed 

is rated at free-run, the load torque resistance was assumed to be negligible compared to the 

difference in the highest possible motor and resonant frequencies since the torque input is only 
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needed at high speeds to maintain the eccentric weight’s constant speed. Its rated voltage of 6V 

is still lower than the 7.4V supply provided by the modular strut’s two LiPo batteries, making it 

readily compatible with the current power configuration. The Pololu micro-gearmotor product 

line also includes motor fastening accessories, meaning the motor can now be attached and 

detached from the strut, unlike the previous friction-fit adhesive mount for the brushless motor. 

 Another crucial benefit of this specific motor was that it has a D-shaft output, meaning 

attachments can be easily fastened and unfastened to and from it. This is important because a 

custom eccentric mass was needed to reach the desired high vibrational amplitude at the low 

resonant frequencies. The final eccentric weight design aimed to concentrate its mass as far from 

the axis of rotation as possible, as seen in figure 13. 

 
Fig.13 – Pololu 10:1 Micro Metal Gearmotor LP 6V equipped with custom eccentric weight 

 
The weight was cut from a 5/16” thick 4140 hardened steel bar using a waterjet cutter and tapped 

for a 3M set screw. The weight was cut in the “cut-off semicircle” shape, as seen in figure 14, in 

order to maximize the eccentric radius while maintaining the same weight and thickness. This 

was done in order to maximize centripetal force while avoiding any increase in the overall 
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weight of the strut or outer radius of the weight. This shape was selected from a group of 

experimental shapes, as seen in Appendix B. 

 
Fig.14 – Eccentric weight cross-sectional shape and eccentric radius 

 
The eccentric weight is fastened to the motor using thread-locking set screws to allow for 

modularity if the weight parameters of the strut vibration need to be changed for different 

experiments. Due to the eccentric weight and the stall torque of the gearmotor, the minimum 

speed at which the motor could run at an input value of 17 (1.44 Hz nominal).   

4.2 Electronics Design 

 Since brushless vibration DC motor was replaced with a brushed DC gearmotor, the 

electronic component of the motor control system needed to be modified. The brushless 

electronic speed controller (ESC) was replaced with the Pololu DRV8838 Single Brushed DC 

Motor Driver Carrier in order to control the gearmotor using PWM. The motor driver acts as a 

power amplifier in that it receives an external PWM signal, amplifies it using a voltage source, 

and outputs the signal proportional to the voltage source to the DC motor. An additional 6V step-
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down voltage regulator was implemented to provide a constant 6V voltage supply to the motor 

driver in order to avoid scaling inconsistencies when sending motor speed PWM signals. The 

final circuit of the modular strut is shown in figure 15. 

 
Fig.15 – Hand-drawn schematic of modular strut circuit and protoboard layout. Lines connecting dots denote 

wire connections, and long rectangles with hatching marks denote copper tape. 
 

 With the electronic design updates and complete, the IMU motion capture system and 

custom brushed gearmotor were integrated with the physical strut to make the latest version of 

the fully instrumented, resonant tensegrity strut, as seen in figure 16. 

 
Fig.16 – Latest prototype of fully instrumented, resonant tensegrity strut. Vertical chip is 3.3V step-up/step-
down regulator used in previous design and is vertical due to lack of space on protoboard. Final prototype of 

strut will use smaller 3.3V step-down regulator that will fit flat on protoboard. Batteries will also be secured in 
place using clips, similar to that of previous design, instead of using duct tape as shown in the picture. 
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4.3 Experimental Excitation of Single Strut Resonant Frequency 

 A series of tests were performed in which the instrumented strut was run at every 

frequency input possible. These tests were run on a single strut using the pattern channel test rig. 

The strut’s onboard Arduino code is programmed to take all two-digit hexadecimal values, 

meaning it can take all numbers between 0 and 255. The tests were actually run starting at 15 and 

ending on 249, meaning a total of 235 tests were run. These values convert to PWM output in 

that a 0 input means the pulse is 100% off and the motor is stationary, and a 255 input means the 

pulse is 100% on and the motor is at its fastest speed. A python code was written to run the strut 

at a given speed for 30 seconds and then turn it off for another 30 seconds. This process would 

be repeated for every frequency input between the user-defined upper and lower limits, with each 

test increasing the input by one. The motion capture data from the IMU was appended to the 

microSD card data file after each test. 

 The first attempt at running these tests failed due to the unexpectedly high amplitude the 

strut vibrated at when excited at its resonant frequency. To accommodate for this, longer 

channels were bought and a higher test rig was constructed. The two 150 mAh batteries lasted 

throughout the entire testing session. The IMU collected a total of approximately 2.96 million 

samples, which accumulated into a 48.6 Mb ASCII file. This size was too large for either 

MATLAB or Excel to process without returning an error or crashing, so a script was written that 

reads and separates this data into individual files for each test (App.A.5). 

 Before discussing the results of the tests, it should be noted that the theoretical models 

were rendered partially inaccurate due to an invalid assumption. In their current state, the 

theoretical models fail to account for continuous changes in motor speed due to the acceleration 

it experiences from the vibration of the strut. This was determined to be significant as a result of 
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observing an unexpected phenomenon in the strut’s steady state vibration while testing, in that 

when actuated near the system’s natural frequency, the oscillations of the motor and strut would 

create a mode-locked loop and converge at the natural frequency. While this demonstrates an 

interesting phenomenon that will be explored in future work, it also shows that the voltage input 

from the user does not directly translate to the motor speed of the tensegrity strut. Since this 

phenomenon is most likely due to the force of the strut acting on the eccentric weight, which 

changes throughout its period, the motor speed cannot be assumed to be constant throughout its 

period as well. Therefore, the function of the motor must be modeled as well for the theoretical 

models to accurately characterize the entire system. 

 Despite this, the accuracy of the onboard motion capture system was confirmed and 

resonance was still observed in the tensegrity strut. The experimental frequency response for 

each test was observed and compared against high-speed video footage to confirm that the 

frequency and amplitude align. The IMU is mounted on the strut so that the x-axis of its local 

orientation is parallel to the rotational axis of the vibration motor, and the y-axis is parallel to the 

axis along the length of the strut. The experimental frequency response of the strut when run at 

an input value of 134 (nominal frequency ~11.4 Hz) is shown in figure 17. Frequency locking 

can be observed in this test through the change in frequency and amplitude. Between t=0s and 

t=10s, the vibration is observed to have an approximate frequency of ~12 Hz and an amplitude of 

±1 g, whereas once the vibration approaches steady state between t=27s and t=30s, the vibration 

was observed to have an approximate frequency of ~9 Hz and an amplitude of ±16 g. These 

results were compared against high-speed camera footage recorded at 240 FPS, as seen in figure 

18. 
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Fig.17 – Experimental acceleration data of single strut vibration with input value of 134 (~11.4 Hz nominal) 

 

           
 t=5s t=10s t=15s t=20s t=25s t=30s 

Fig.18 – Still frames from high-speed camera footage of vibrating tensegrity strut with input value of 134 
(~11.4 Hz nominal). Each still frame shows strut at peak amplitude along the y-axis during a period closest to a 

time interval of 5 seconds. 



 

 28 

While the high speed footage was used to validate the overall behavior of the frequency 

response, the precise acceleration measurement could not be confirmed due to a lack of scale in 

the video. However, the resonance could still be observed without exact measurements of 

acceleration, as the peaks in amplitude were observed on a scale relative to that of the other 

frequency inputs. The experimental frequency measurement was confirmed by counting the 

number of oscillations the strut experienced between a 5 second time interval when the strut 

vibration was in steady state. This was then compared to the number of oscillations observed in 

the measured data from the IMU. 

 The full frequency response of the strut vibration is visualized in figure 19. The 

amplitude was measured from the steady state vibration of each test (App.A.6). From this 

frequency response, the resonant frequency appears to lie between the input values 110 and 140. 

However, due to the Frequency locking phenomenon, the resonant frequency most likely does 

not lie 

 
Fig.19 – Experimental frequency response of single strut vibration. Frequency domain is plotted as input 
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values for motor speed control due to indirect relationship between motor frequency and motor input voltage. 
 

at the actual peak of this plot. The actual peak was observed to lie at input value 117 with an 

amplitude of 12.5 g and a nominal frequency of 9.94 Hz. This was determined by observing at 

what value the vibration began to experience frequency locking. As seen in figure 20, the highest 

input value used before frequency locking begins is 117. 

 Input Value: 116 

  

 Input Value: 117 

  

 Input Value: 118 

  

 Input Value: 119 

  

Fig.20 – Y-axis experimental acceleration data for input values 116, 117, 118, and 119. 
 

A FFT was performed on the y-axis experimental data for input value 117 to determine 
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the experimental underlying frequency of the steady state strut vibration, as seen in figure 21. 

The experimental resonant frequency was observed to be 9.67 Hz. When compared to the 

 
Fig.19 – Experimental frequency response of single strut vibration. Frequency domain is plotted as input 

values for motor speed control due to indirect relationship between motor frequency and motor input voltage. 

frequency observed using the linear model (10.93 Hz), the theoretically natural frequency has a 

calculated error of 13.03%. 
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5. Conclusions 

 The modular active wireless strut has been fully instrumented for onboard motion 

tracking data collection and modified to actuate its resonant frequencies. Onboard acceleration 

measurement with a sampling rate of 425 Hz was implemented using a 6-axis IMU. The 

acceleration data was stored onboard as well using a microSD card. A custom vibration motor 

was designed and manufactured using a brushed DC motor and a waterjet cut eccentric weight to 

actuate the natural frequencies of the strut. The custom vibration motor has an operating range of 

1.44 Hz to 21.7 Hz and can vibrate the strut at amplitudes of up to ±16 g. 

 Future work will focus on modifying the theoretical models to accommodate for 

frequency locking. This will primarily involve modeling the motor speed as a function of the 

strut acceleration as a feedback loop. Accounting for this will not only improve the accuracy of 

the models but will also allow for a better understanding of how the coupled dynamics between 

struts affect the vibration of struts individually. Further testing will also need to be conducted to 

characterize the error of the linear and nonlinear models and the experimental range of in which 

the IMU can properly capture amplitude and frequency. 
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Appendix A.1: Vibration Model MATLAB Code – Nonlinear 
 
StrutVibrationModelNonlinear.m 
 

% Single VVValtr Strut Vibration 
% Linear Model 
  
clear all 
  
global g Me Ms r omega k l0 lx F0 h0 
g = 9.81; % m/s^2 
Me = 0.005; % kg 
Ms = 0.056; % kg 
r = 4 * 0.0058 / (3 * pi()); % m 
omega = 2 * pi() * 5000 / 60; %rad/s 
k = 0.19 * 175.196945; % N/m 
l0 = 2.47 * 0.0254; % m 
lx = 3 * 0.0254; % m 
F0 = 0.4 * 4.45; % N 
h0 = 0.05; % m 
  
% Define time step and sampling range 
deltat = 0.001; % s 
startTime = 0; % s 
endTime = 100; % s 
t = [startTime:deltat:endTime]; 
  
% Calculate Ysag 
Ysag = findYsag(); 
  
% Initialize state vector 
yInit = [Ysag;0]; 
y = yInit; 
  
% Conduct state propogation using Runge Kutta method 
for i = 1:length(t)-1 
    ydot(:,i) = accelerationFunction(y(:,i),t(i)); 
    k1 = ydot(:,i); 
    k2 = accelerationFunction(y(:,i) + (deltat/2)*k1,t(i)); 
    k3 = accelerationFunction(y(:,i) + (deltat/2)*k2,t(i)); 
    k4 = accelerationFunction(y(:,i) + deltat*k3,t(i)); 
    y(:,i+1) = y(:,i) + (deltat/6)*(k1 + 2*k2 + 2*k3 + k4); 
end 
  
Yfft = fft(y(1,:)); 
Yfft_mag = abs(Yfft)/length(Yfft); 
  
% Calculate state derivative at last time sample 
ydot(:,length(t)) = accelerationFunction(y(:,length(t)-1),t(i)); 
  
% Plot displacement 
figure('name','Nonlinear Model - Displacement','units',... 
    'normalized','position',[0,0.5,0.5,0.5]) 
plot(t,y(1,:),'k','LineWidth', 1.5) 
set(gca, 'FontSize', 20) 
set(gca,'YTick',(-1:0.002:1)) 
xlabel('Time (s)','FontSize',22) 
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ylabel('Displacement (m)','FontSize',22) 
xlim([max(0,endTime-1),endTime]) 
ylim([-0.014,0.004]) 
grid on 
  
% Plot FFT results 
binDomain = 1:length(Yfft_mag); 
freqDomain = binDomain*(1/endTime); 
figure('name','Magnitude vs Frequency FFT results - Linear','units',... 
    'normalize','position',[0.5,0.5,0.5,0.5]) 
plot(freqDomain,Yfft_mag) 
xlabel('bins','FontSize',22) 
ylabel('Amplitude','FontSize',22) 
xlim([0,freqDomain(end)/2]) 
set(gca, 'FontSize', 20) 
  
% Plot velocity 
figure('name','Velocity of Cart Along Surface Over Time','units',... 
    'normalized','position',[0,0,1,1]) 
plot(t,y(2,:)) 
set(gca, 'FontSize', 14) 
xlabel('Time (s)','FontSize',16) 
ylabel('Velocity (m/s)','FontSize',16) 
grid on 
  
% Plot acceleration 
figure('name','Acceleration of Cart Along Surface Over Time','units',... 
    'normalized','position',[0,0,1,1]) 
plot(t,ydot(2,:)) 
set(gca, 'FontSize', 14) 
xlabel('Time (s)','FontSize',16) 
ylabel('Acceleration (m/s^2)','FontSize',16) 
grid on 
  
% Plot displacement, velocity, and acceleration together 
figure('name','Displacement, Velocity, and Acceleration Over Time',... 
    'units','normalized','position',[0,0,1,1]) 
subplot(3,1,1) 
plot(t,y(1,:)) 
set(gca, 'FontSize', 14) 
xlabel('Time (s)','FontSize',16) 
ylabel('Displacement (m)','FontSize',16) 
grid on 
subplot(3,1,2) 
plot(t,y(2,:)) 
set(gca, 'FontSize', 14) 
xlabel('Time (s)','FontSize',16) 
ylabel('Velocity (m/s)','FontSize',16) 
grid on 
subplot(3,1,3) 
plot(t,ydot(2,:)) 
set(gca, 'FontSize', 14) 
xlabel('Time (s)','FontSize',16) 
ylabel('Acceleration (m/s^2)','FontSize',16) 
grid on 
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accelerationFunction.m 
 

function ydot = accelerationFunction(y,t) 
  
global g Me Ms r omega k l0 lx F0 h0 
  
ydot1 = y(2); 
ydot2 = -(4/Ms)*(y(1)+h0)*(k-((k*l0-F0)/sqrt(lx^2+(y(1)+h0)^2)))... 
    -(4/Ms)*(y(1)-h0)*(k-((k*l0-F0)/sqrt(lx^2+(y(1)-h0)^2)))... 
    -g+(Me/Ms)*r*omega^2*sin(omega*t); 
  
ydot = [ydot1;ydot2]; 
  
end 

 
findYsag.m 
 

function ysag = findYsag() 
  
global g Ms k l0 lx F0 h0 
  
lmax = l0 + 3.200; 
ymax = sqrt(lmax^2 - lx^2) - h0; 
  
for y = -ymax:0.0000001:ymax 
    Fsum =  -4*(y+h0)*(k-((k*l0-F0)/sqrt(lx^2+(y+h0)^2)))-4*(y-h0)*... 
        (k-((k*l0-F0)/sqrt(lx^2+(y-h0)^2))); 
    sum = Fsum-Ms*g; 
    if sum <= 0.0001 && sum >= -0.0001  
        ysag = y; 
%         disp(sum); 
%         disp(y) 
    end 
end 
  
end 
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Appendix A.2: Vibration Model MATLAB Code – Linear 
 
StrutVibrationModelLinear.m 
 

% Single VVValtr Strut Vibration 
% Linear Model 
  
clear all 
  
global g Me Ms r omega k l0 lx F0 h0 ysag L T theta 
g = 9.81; % m/s^2 
Me = 0.005; % kg 
Ms = 0.056; % kg 
r = 4 * 0.0058 / (3 * pi()); % m 
omega = 2 * pi() * 12000 / 60; %rad/s 
k = 0.19 * 175.196945; % N/m 
l0 = 2.47 * 0.0254; % m 
lx = 3 * 0.0254; % m 
F0 = 0.4 * 4.45; % N 
h0 = 0.05; % m 
ysag = findYsag(); % m 
L=(lx^2+h0^2)^0.5; 
T=k*(L - l0) + F0; 
theta=atand(h0/lx); 
  
% Define time step and sampling range 
deltat = 0.001; % s 
startTime = 0; % s 
endTime = 100; % s 
t = [startTime:deltat:endTime]; 
  
% Initialize state vector 
y2Init = [0;0]; 
y2 = y2Init; 
  
% Conduct state propogation using Runge Kutta method 
for j = 1:length(t)-1 
    y2dot(:,j) = accelerationFunction_v5(y2(:,j),t(j)); 
    k1 = y2dot(:,j); 
    k2 = accelerationFunction_v5(y2(:,j) + (deltat/2)*k1,t(j)); 
    k3 = accelerationFunction_v5(y2(:,j) + (deltat/2)*k2,t(j)); 
    k4 = accelerationFunction_v5(y2(:,j) + deltat*k3,t(j)); 
    y2(:,j+1) = y2(:,j) + (deltat/6)*(k1 + 2*k2 + 2*k3 + k4); 
end 
  
% Calculate state derivative at last time sample 
y2dot(:,length(t)) = accelerationFunction_v5(y2(:,length(t)-1),t(j)); 
  
% Fast Fourier Transform 
Yfft = fft(y2(1,:)); 
Yfft_mag = abs(Yfft)/length(Yfft); 
   
% Plot displacement2 
figure('name','Linear Model - Displacement','units',... 
    'normalized','position',[0,0,0.5,0.5]) 
plot(t,y2(1,:),'k','LineWidth', 1.5) 
set(gca, 'FontSize', 20) 
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set(gca,'YTick',(-1:0.002:1)) 
xlabel('Time (s)','FontSize',22) 
ylabel('Displacement (m)','FontSize',22) 
xlim([max(0,endTime-1),endTime]) 
ylim([-0.014,0.004]) 
grid on 
  
% Plot FFT results 
binDomain = 1:length(Yfft_mag); 
freqDomain = binDomain*(1/endTime); 
figure('name','Magnitude vs Frequency FFT results - Linear','units',... 
    'normalize','position',[0.5,0,0.5,0.5]) 
plot(freqDomain,Yfft_mag) 
xlabel('bins','FontSize',22) % understand how to convert to Hz 
ylabel('Amplitude','FontSize',22) % find out units of amplitude 
xlim([0,freqDomain(end)/2]) 
set(gca, 'FontSize', 20) 

 
accelerationFunction_v5.m 
 

function ydot = accelerationFunction_v5(y,t) 
  
global g Me Ms r omega k L T theta 
  
fsum2=-8*(k*sind(theta)*y(1)*sind(theta)... 
    + T/L*cosd(theta)*y(1)*cosd(theta)); 
  
ydot1 = y(2); 
ydot2 = (1/Ms)*fsum2-g+(Me/Ms)*r*omega^2*sin(omega*t); 
  
ydot = [ydot1;ydot2]; 
  
end 
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Appendix A.3: Natural Frequency Parameter Analysis 
 
NatrualFrequencyParameterAnalysis.m 
 

% Single VVValtr Strut Vibration 
% Natural Frequency Parameter Analysis 
% Linear Model 
  
clear all 
close all 
  
% Motor Frequency 
omega = 2 * pi() * 12000 / 60; % rad/s 
drivingFreq = omega/(2 * pi()); % Hz 
  
% ------------------------------------------------------------------------ 
% DEFAULT CALCULATIONS 
  
% Input parameters 
Ms = 0.0572; % Kg 
k = 0.19 * 175.196945; % N/m 
l0 = 2.47 * 0.0254; % m 
lx = 3 * 0.0254; % m 
F0 = 0.4 * 4.45; % N  * NO INITIAL TENSION DATA FOR MCMASTER SPRINGS* 
h0 = 0.02; % m 
  
% Dependent parameters 
L=(lx^2+h0^2)^0.5; % m 
T=k*(L - l0) + F0; % N 
theta=atand(h0/lx); % deg 
  
% Natrual frequency calculation 
naturalFreq = sqrt(8*(k*sin(theta)^2+(T/L)*cos(theta)^2)/Ms)/(2*pi); 
  
% ------------------------------------------------------------------------ 
% VARIABLE MASS 
  
% Variable range 
MsRange = [0.05:0.001:0.5]; % Kg 
  
naturalFreqMs = []; 
for i = 1:length(MsRange) 
    MsVar = MsRange(i); 
    naturalFreqMs(i) = sqrt(8*(k*sind(theta)^2+... 
        (T/L)*cosd(theta)^2)/MsVar)/(2*pi); 
end 
  
figure('name','VARIABLE MASS','units',... 
    'normalized','position',[0,0,1,1]) 
subplot(2,2,1) 
plot(MsRange,naturalFreqMs,'k') 
set(gca, 'FontSize', 14) 
xlabel('Strut Mass (Kg)','FontSize',16) 
ylabel('Natural Frequency (Hz)','FontSize',16) 
% ylim([0,60]) 
grid on 
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% ------------------------------------------------------------------------ 
% VARIABLE SPRING RATE 
  
% Variable range 
kRange = [0:300]; % N/m 
  
naturalFreqK = []; 
for i = 1:length(kRange) 
    kVar = kRange(i); 
    TVar = kVar*(L - l0) + F0; 
    naturalFreqK(i) = sqrt(8*(kVar*sind(theta)^2+... 
        (TVar/L)*cosd(theta)^2)/Ms)/(2*pi); 
end 
  
% figure('name','VARIABLE SPRING RATE','units',... 
%     'normalized','position',[0,0,1,1]) 
subplot(2,2,2) 
plot(kRange,naturalFreqK,'k') 
set(gca, 'FontSize', 14) 
xlabel('Spring Rate (N/m)','FontSize',16) 
ylabel('Natural Frequency (Hz)','FontSize',16) 
% ylim([0,60]) 
grid on 
  
% ------------------------------------------------------------------------ 
% VARIABLE ANGLE 
  
% Variable range 
thetaRange = [0:0.1:90]; % deg 
  
naturalFreqTheta = []; 
for i = 1:length(thetaRange) 
    thetaVar = thetaRange(i); 
    naturalFreqTheta(i) = sqrt(8*(k*sind(thetaVar)^2+... 
        (T/L)*cosd(thetaVar)^2)/Ms)/(2*pi); 
end 
  
% figure('name','VARIABLE ANGLE','units',... 
%     'normalized','position',[0,0,1,1]) 
subplot(2,2,3) 
plot(thetaRange,naturalFreqTheta,'k') 
set(gca, 'FontSize', 14) 
xlabel('Spring Angle at y=0 (deg)','FontSize',16) 
ylabel('Natural Frequency (Hz)','FontSize',16) 
xlim([0,90]) 
% ylim([0,60]) 
grid on 
  
% ------------------------------------------------------------------------ 
% VARIABLE STRECHED LENGTH 
  
% Variable range 
LRange = [l0:0.001:0.25]; % m 
  
naturalFreqL = []; 
for i = 1:length(LRange) 
    LVar = LRange(i); 
    TVar = k*(LVar - l0) + F0; 



 

 40 

    naturalFreqL(i) = sqrt(8*(k*sind(theta)^2+... 
        (TVar/LVar)*cosd(theta)^2)/Ms)/(2*pi); 
end 
  
% figure('name','VARIABLE STRECHED LENGTH','units',... 
%     'normalized','position',[0,0,1,1]) 
subplot(2,2,4) 
plot(LRange,naturalFreqL,'k') 
set(gca, 'FontSize', 14) 
xlabel('Stretched Spring Length at y=0 (m)','FontSize',16) 
ylabel('Natural Frequency (Hz)','FontSize',16) 
xlim([l0,0.25]) 
% ylim([0,60]) 
grid on 
  
% ------------------------------------------------------------------------ 
% VARIABLE INITIAL TENSION 
  
% Variable range 
F0Range = [0:0.01:1]; % N 
  
naturalFreqF0 = []; 
for i = 1:length(F0Range) 
    F0Var = F0Range(i); 
    TVar = k*(L - l0) + F0Var; 
    naturalFreqF0(i) = sqrt(8*(k*sin(theta)^2+... 
        (TVar/L)*cos(theta)^2)/Ms)/(2*pi); 
end 
  
% figure('name','VARIABLE INITIAL TENSION','units',... 
%     'normalized','position',[0,0,1,1]) 
% subplot(3,2,5) 
% plot(F0Range,naturalFreqF0,'k') 
% set(gca, 'FontSize', 14) 
% xlabel('Spring Tension (N)','FontSize',16) 
% ylabel('Natural Frequency (Hz)','FontSize',16) 
% % ylim([0,60]) 
% grid on 
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Appendix A.4: Experimental Data Frequency Analysis MATLAB Code 
 
ExpFreqAnalysis.m 
 

% Experimental Vibration Frequency Analysis 
  
% NOTES: 
% - SMOOTH ALL DATA AT BEGINNING SINCE MOST ACCURATE AMP DATA CAN BE  
%   CALCULATED WITH IT, GIVEN PROPER ORDER AND WINDOW SIZE VALUES ARE  
%   USED,AND IT DOESN'T EFFECT CALCULATED FREQUENCY 
  
clc 
clear all 
close all 
  
% ------------------------------------------------------------------------ 
  
% PARAMETER SETTINGS 
runtime = 30.001; % s 
acclRange = 16; % +/-[2,4,8,16] g 
% gyroRange = 250; % +/-[250,500,1000,2000] dps 
ststStartTime = 16; % observed start time for st-st in s 
  
% ------------------------------------------------------------------------ 
  
% LOAD TEST DATA AS ARRAY 
data = load('test_d022618_t0248am_s130.txt'); % SINE WAVE BASED ON THIS 
% data = load('test_d022618_t0248am_s130.txt'); 
% sp40_t30 = csvread('sp40_t30.csv'); 
  
% ISOLATE DOF 
ax = data(:,1); 
ay = data(:,2); 
az = data(:,3); 
% gx = data(:,1); 
% gy = data(:,2); 
% gz = data(:,3); 
  
% CONVERT DOF VECTORS 
ax = ax .* (acclRange/32768); 
ay = ay .* (acclRange/32768); 
az = az .* (acclRange/32768); 
% gx = gx .* (gyroRange/32768); 
% gy = gy .* (gyroRange/32768); 
% gz = gz .* (gyroRange/32768); 
  
% ADJUST ZERO REFERENCE FOR CALIBRATION 
ax = ax - ax(1); 
ay = ay - ay(1); 
az = az - az(1); 
% gx = gx - gx(1); 
% gy = gy - gy(1); 
% gz = gz - gz(1); 
  
% ------------------------------------------------------------------------ 
  
% DEPENDENT PARAMETERS 
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samples = length(ax(:,1)); 
deltat = runtime/samples; 
t = 0:deltat:runtime-deltat; 
rate = samples/runtime; 
ststStartSample = ceil(ststStartTime*rate); % start sample for st-st in s 
  
% ------------------------------------------------------------------------ 
  
% FFT 
ayFFT = fft(ay(ststStartSample:end)); % FFT of steady state region 
ayFFT = abs(ayFFT); % convert FFT to magnitude spectrum 
ayFFT = 2 .* ayFFT ./ length(ayFFT); % scale FFT to amplitude units 
freqDomain = (0:length(ayFFT)-1) .* rate ./ length(ayFFT); 
  
% plot(ay(ststStartSample:end)); 
% plot(ayFFT); 
  
% DOMINANT SINE WAVE 
[ayDomAmp,ayDomBin] = max(ayFFT); 
ayDomFreq = freqDomain(ayDomBin); 
disp(freqDomain(ayDomBin)); 
% ayDomWave = ayDomAmp * sin(2 * pi() * ayDomFreq .* t); 
ayDomWave = max(ay) * sin(2 * pi() * ayDomFreq .* t); 
  
% ------------------------------------------------------------------------ 
  
% SMOOTHED WAVE DATA 
% **larger window will cause more smoothing but greater amplitude decrease 
axSmth = sgolayfilt(ax,3,7); 
aySmth = sgolayfilt(ay,3,7); 
azSmth = sgolayfilt(az,3,7); 
  
% AVE SMOOTHED AMPLITUDE & FREQUENCY 
peaks = findpeaks(aySmth((ststStartSample:end))); 
peaks = peaks(peaks > 0); 
aySmthAmp = mean(peaks); 
aySmthFreq = length(peaks) / (runtime - deltat - ststStartTime); 
disp(aySmthFreq); 
  
% temp testing of fft on smoothed data to find freq 
aySmthFFT = fft(aySmth(ststStartSample:end)); 
aySmthFFT = abs(aySmthFFT); 
aySmthFFT = 2 .* aySmthFFT ./ length(aySmthFFT); 
freqDomainSmth = (0:length(aySmthFFT)-1) .* rate ./ length(aySmthFFT); 
[aySmthDomAmp,aySmthDomBin] = max(aySmthFFT); 
aySmthDomFreq = freqDomainSmth(aySmthDomBin); 
disp(freqDomainSmth(aySmthDomBin)); 
  
% ------------------------------------------------------------------------ 
  
% PLOT FFT 
figure('name','FFT Acceleration: y-axis','units','normalized',... 
    'position',[0,0,1,1]) 
plot(freqDomain,ayFFT) 
xlim([0,rate/2]) 
 
% PLOT ACCL GRAPHS 
figure('name','Acceleration Experimental Data','units','normalized',... 
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    'position',[0,0,1,1]) 
  
subplot(3,1,1) 
plot(t,ax,'k'); 
hold on 
% plot(t,axSmth,'k'); 
xlim([0,30.5]) 
ylim([-20,20]) 
xlabel('Time (s)','FontSize',16) 
ylabel('Amplitude: x-axis (g)','FontSize',18) 
set(gca, 'FontSize', 16) 
grid on 
  
subplot(3,1,2) 
plot(t,ay,'k'); 
hold on 
% plot(t,aySmth,'k'); 
% plot(t(ststStartSample:end),ayDomWave(ststStartSample:end),'--'); 
xlim([0,30.5]) 
ylim([-20,20]) 
xlabel('Time (s)','FontSize',16) 
ylabel('Amplitude: y-axis (g)','FontSize',18) 
set(gca, 'FontSize', 16) 
grid on 
  
subplot(3,1,3) 
plot(t,az,'k'); 
hold on 
% plot(t,azSmth,'k'); 
xlim([0,30.5]) 
ylim([-20,20]) 
xlabel('Time (s)','FontSize',16) 
ylabel('Amplitude: z-axis (g)','FontSize',18) 
set(gca, 'FontSize', 16) 
grid on 
  
figure('name','Y-axis Close Up Acceleration','units','normalized',... 
    'position',[0,0,0.6,0.6]) 
plot(t,ay,'k'); 
xlim([20,21]) 
ylim([-20,20]) 
xlabel('Time (s)','FontSize',16) 
ylabel('Amplitude: y-axis (g)','FontSize',18) 
set(gca, 'FontSize', 16) 
grid on 

 
get_freq_exp.m 
 

function freq_exp = get_freq_exp(data, runTime) 
% This function determines the frequency of experimental sine wave data.  
% Only works for simple waves. 
% NOTE: Only enter range of data after oscillation starts and before 
% amplitude becomes effected by noise. 
% NOTE: Data must have at least five oscillations. 
%  
% file_var: name of variable loaded from ASCII file 
% time_col: column in file_var containing time data 
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% data_col: column in file_var containing desired position data 
% start_time: start time for peak count 
% end_time: end time for peak count 
  
first_peak = 1; 
while data(first_peak + 1) <= data(first_peak) 
    first_peak = first_peak + 1; 
end 
while data(first_peak + 1) >= data(first_peak) 
    first_peak = first_peak + 1; 
end 
  
last_peak = length(data); 
while data(last_peak - 1) <= data(last_peak) 
    last_peak = last_peak - 1; 
end 
while data(last_peak - 1) >= data(last_peak) 
    last_peak = last_peak - 1; 
end 
  
peak_count = 0; % number of peaks observed initialized to 0 
increasing = 0; % initialize increasing as false 
  
% Last peak is counted, first peak is not 
for i = first_peak:last_peak + 1 
    % check if function is increasing 
    if increasing == 1 
        % check if sample position value decreased 
        if data(i) < data(i-1) 
            % add to peak count 
            peak_count = peak_count + 1; 
            increasing = 0; % set increasing as false 
        end 
    elseif increasing == 0 
        % check if sample position value increased 
        if data(i) > data(i-1) 
            increasing = 1; % set increasing as true 
        end 
    end 
end 
  
sRate = length(data)/runtime; 
  
%calculate average frequency 
freq_exp = (peak_count / (last_peak - first_peak)) * sRate; 
end 
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Appendix A.5: Experimental Data File Separator 
 
expDataSplitter.m 
 

% Data File Splitter 
% Only works with .txt files 
  
clear all 
  
delimiter = 999999999; 
startTimeCol = 1; 
endTimeCol = 2; 
speedValueCol = 3; 
  
dataAllFileName = 'test_d022618_t0248am_s121_s249.txt'; 
dataAll = load(dataAllFileName); 
  
[path,dataAllFileName,extension] = 
fileparts(dataAllFileName); %#ok<ASGLU> 
clear path extension 
  
if exist(dataAllFileName) ~= 7 
    mkdir(dataAllFileName) 
end 
  
c = 1; 
nameChanged = false; 
while nameChanged == false 
    c = c + 1; 
    if dataAllFileName(c:c+1) == '_s' 
        fileName = dataAllFileName(1:c+1); 
        nameChanged = true; 
    end 
end 
  
prevTestDlmRow = 1; 
for i = 1:length(dataAll) 
    if dataAll(i,:) == [delimiter,delimiter,delimiter] 
        testSpeed = dataAll(i-1,3); 
        fileNameS = char(fileName+string(testSpeed)); 
        dlmwrite(fileNameS,dataAll(prevTestDlmRow:i-1,:)) 
        movefile(fileNameS,dataAllFileName) 
        prevTestDlmRow = i+1; 
    end 
end 
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Appendix A.6: Experimental Frequency Response Plot Script 
 
frequencyResponce.m 
 

% Frequency Responce Plot 
  
clear all 
close all 
  
maxMotorSpeed = 1300; % RPM 
  
massFileFolder1 = 'test_d022518_t1223am_s15_s121'; 
minExpFreq1 = 15; % Hz 
maxExpFreq1 = 121; % Hz 
  
c = 1; 
nameChanged = false; 
while nameChanged == false 
    c = c + 1; 
    if massFileFolder1(c:c+1) == '_s' 
        folderName1 = massFileFolder1(1:c+1); 
        nameChanged = true; 
    end 
end 
  
massFileFolder2 = 'test_d022618_t0248am_s121_s249'; 
minExpFreq2 = 122; % Hz 
maxExpFreq2 = 249; % Hz 
  
c = 1; 
nameChanged = false; 
while nameChanged == false 
    c = c + 1; 
    if massFileFolder2(c:c+1) == '_s' 
        folderName2 = massFileFolder2(1:c+1); 
        nameChanged = true; 
    end 
end 
  
freqResp = zeros(maxExpFreq2-minExpFreq1+1,4); 
i = 1; 
  
for s = minExpFreq1:maxExpFreq1 
    fileName = string('/'+string(massFileFolder1)+'/'+... 
        string(folderName1)+string(s)); 
    [axAmp,axFreq,ayAmp,ayFreq,azAmp,azFreq] ... 
        = getAmpStSt(fileName,30.001,16,28); 
%     freqResp(i,1) = (maxMotorSpeed/60) * (s/255); 
    freqResp(i,1) = s; 
    freqResp(i,2:7) = [axAmp,axFreq,ayAmp,ayFreq,azAmp,azFreq]; 
    i = i + 1; 
end 
  
for s = minExpFreq2:maxExpFreq2 
    fileName = string('/'+string(massFileFolder2)+'/'+... 
        string(folderName2)+string(s)); 
    [axAmp,axFreq,ayAmp,ayFreq,azAmp,azFreq] ... 
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        = getAmpStSt(fileName,30.001,16,28); 
%     freqResp(i,1) = (maxMotorSpeed/60) * (s/255); 
    freqResp(i,1) = s; 
    freqResp(i,2:7) = [axAmp,axFreq,ayAmp,ayFreq,azAmp,azFreq]; 
    i = i + 1; 
end 
  
figure('name','Y-axis Frequency REsponce','units','normalized',... 
    'position',[0,0,1,1]) 
subplot(3,1,1) 
plot(freqResp(:,1),freqResp(:,2),'k'); 
% hold on 
% plot(freqResp(:,1),freqResp(:,5),'--k'); 
xlabel('Frequency (numerical input value)','FontSize',18) 
ylabel('Amplitude: x-axis (g)','FontSize',18) 
ylim([0,20]) 
set(gca, 'FontSize', 16) 
grid on 
subplot(3,1,2) 
plot(freqResp(:,1),freqResp(:,4),'k'); 
% hold on 
% plot(freqResp(:,1),freqResp(:,5),'--k'); 
xlabel('Frequency (numerical input value)','FontSize',18) 
ylabel('Amplitude: y-axis (g)','FontSize',18) 
ylim([0,20]) 
set(gca, 'FontSize', 16) 
grid on 
subplot(3,1,3) 
plot(freqResp(:,1),freqResp(:,6),'k'); 
% hold on 
% plot(freqResp(:,1),freqResp(:,5),'--k'); 
xlabel('Frequency (numerical input value)','FontSize',18) 
ylabel('Amplitude: z-axis (g)','FontSize',18) 
ylim([0,20]) 
set(gca, 'FontSize', 16) 
grid on 
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Appendix B: Eccentric weight design alternatives 
 

 

 


