Pedagogical Tool for Usability Science

Final Project Report

By

Dan Mendelsohn

>k %k sk 5k 5k 3k >k sk sk ok ok ok 3k sk sk ok ok ok 3k sk sk ok ok 3k >k sk sk ok ok %k ok >k sk ok %k k

Submitted in partial fulfillment of requirements for
honors in the department of Computer Engineering

Union College

June, 2011

Pedagogical Tool for Usability Science

Mendelsohn

Table of Contents:
ADSEIACE ottt et e et et et e sttt s s e nes e eae e st sen s et et bes e snsenene sennenenesennene s Db
L INEFOAUCTION .. et st e et et et e s eb e bbb st e s et eb b e sheses st ebe sen s ensee s D
L. USADIITY ettt et et ettt et et et et et st bt st et ete st et sbesae et abesaesnaresnesD)
1.1 Why is Usability Important?........cccoee oottt e 6
1.2 MOEIVALIONviiii sttt e s e e s s sense e e sresens |
11 BACKGIOUNG....... ettt ettt ettt e e st e st stesee st steea sas st ate st et atesaseteatesasesasesasarsarsseresans e
1. Usability Testing in the Professional World..........ccccoo ettt 8
2. Pedagogical Tool for Usability Science: What Has Been Done.........ccccceeeevvreeeeveineieeennnnn9
T, GOAIS ettt et ettt et st s eb st et e b st et bt e s £t ehe et b sesbenen ses s enenes e erensbeeesenne L L
1. HardWare GO@lS....ccciiueirerererire ettt st ettt e ettt st et ses et ee s e e s e et sesenesssnesssessiesenes L1
2. SOFEWAIE ZOAIS ..ttt et et et ee et et ettt s et ea s e st stenn see e snens L2
3. COSE GOAIS ettt sttt ettt et e et et es e et s e e eb e ehe seet b s enens sen e eneneesiens LD
V. DESIgN SPECITICATION ... c.uiiitiet ettt s sttt et et steeteste st stestesteetestestesnetesaesnsessasesnsassasssesessnseesns Wb
V. FiNal IMPlementation... ...t ettt sttt sae e etestesaseseetesassssssesssesasssesesssssasssesessesensenss L
VL RESUIES ..ttt ettt sttt et ettt e eb b st et e st et e et e ehe et £t b sttt ebe ses et et s bt eae s et ebe senseness senbes 1O
VL FUBUIE WOTK ittt ettt sttt et ettt st et s et e st see s st ses s eaees e eae sessneare sensesenesessenenes LD
VL USEI GUILE vttt sttt et ettt e es s et e ehbes et et s et ee s e b st abe senene et ses betenssen e ene seneenesen 2 L
1. Programming in DANICKccceviiieieiietiet et et ettt et st st st e st st ste st stestesnnenesvesnnsnneens 2
1.1 Error DeSCriPLiONS... i iceeceieee ettt st seee et e se e et e e e sae s esne sresensensensnesneansansnns 20
2. Preparing the Widget Description File........cuiiieieeeceeeeesee et sttt sttt sre e . 25
3. Loading Programs ONto the TiNi.....ccccociieceie ettt eree e serevees s v nanese s 27
4. RUNNING @ PrOZIaM uuui e iceieieeieeeuetetteesesstessstensessesseassessass stesessesnsessssnsassnsssen ssessssassessnesnssssassnnssss /.
IX. DEVEIOPMENT GUILE... .ottt e ettt v ee et et st et ea et s r e ses s ses st stenne seeeees 2O

1. Creating @ NEW WIHAZET ...ttt sttt se et et s s ses b s aes s naner s s 28

Pedagogical Tool for Usability Science

Mendelsohn
1.1, Widget:HArdWare.......ccc oottt ettt et et et e st st se sn st ste st sreateanneee o 20
1.2, Widget:SOTTWAT.....ccceieeie ettt ettt et ettt st st se st et ste st stestesnnetesresnnsnnans 31
2.Interpreter DEVEIOPMENTottt ettt et et e et e e st e e sren sne e 3 2
3. Maintaining the Development SYStEM........cccceeiciieeiveee ettt et e eser v e e e s 3
4. A NOTE ON JAVA VEISIONS...oiuiviritiiecie sttt s s ettt s sttt st s en erene sre e seren e s 3D
T 0o 1141 o o] g =] o) -SSP SRUPRRPPRRRPTRPRRPRR: 1.1

KRBT I ENCES ..ttt ettt ettt et et et e st st st eaee sae sebe et ses st saneassesans sbeess sessenstestesassesnnssressesesees DO

Table of Figures:

Figure 1: A stove With bad USability.......ccccciiiee et s eee e e eee s b s aes e D
Figure 2: A stove With 800d USADIlity.......cccuiiiiiieeiece ettt et ss e aeeserese e aens O
Figure 3: Cardboard StOVE CONCEPT.....ccciiciiece ettt et ettt et et eaaes b s e teses s e bes s e sas stennessnenns]
Figure 4: Interaction and goals for MRUE...........ccooiiieie ettt ettt st st seete e s e seressneeeens D
Figure 5: Usability boar with two widgets attached..........c.cccoveieeieieicivicccee e s 10
FIgUre 6: COSt BrEaKUOWN.......cuuieiiietietceet ettt st ste st st st stesaeetestesusssetesassnsassasssssessesesessasssesssenssesanss] 3
Figure 7: A line of actual DaNick code split into different tokens..........ccccceveeeececveiccccee s eeennn . 15
Figure 8: An example of using BNF rules to identify a line of DaNick.........cceceeoeeve il 15
Figure 9: Block diagram representing the software before runtime........cccccoeveeveececcevececce e 16
Figure 10: Block diagram representing the software during runtime.........ccccoceeveeveecceccevecceeseseceeeennn. 17
Figure 11: Sample DANICK COU@......oummiiiiiniietieiet et ettt e st st st st ste st st steste et stesnssnnetesaesnssrsassesenssns 22
Figure 12: A sample widget description fil..........cucuieiecicee et s 20
Figure 13: A PCB design iN EAgIe.......ccoeeee e ce ettt ettt ettt et ettt et e e s e e st sre e snee2en 20
Figure 14: A fiNiShed PCBi.......c..coiieiieeietiet e ceiet et st ste st st et stesteetestesassreetesassssssesssesasssssessasssnssesassessesnsns 30
Figure 15: A cOMPIeted WIdGET.......ccoviiieeieeierietiee ettt ettt st st st st st steste st stestesanetestesnnansasnsnsensens 31,

Figure 16: Full BNF defining DANICK........cccccceieieriese e e ete ettt et ev et ees et et eaaes et et et en s see seennnne e 3

Pedagogical Tool for Usability Science
Mendelsohn

Abstract

MENDELSOHN DAN Pedagigical Tool for Usability Science: Designing and building a better

way to test usability. Department of Computer engineering June, 2011

Advisors: [James Hedrick, Chris Fernandes, Aaron Cass]

A Sophomore Research Seminar (SRS) at Union College teaches about usability science, the

study of designing interfaces that allow the user to accomplish a given task with less time and
frustration. In this context, an interface can be anything that allows interaction with a physical or

virtual device such as a web browser or the knobs on a stove.

In this SRS, students design interface mockups, called prototypes, out of inexpensive
material such as cardboard. Students use these prototypes to test their interfaces on real
people, who are asked to perform a task that would be performed on a real appliance. The
researcher physically interacts with the prototype to simulate the function of the appliance.
The purpose is to gather data, like the amount of time or attempts it takes the user to
accomplish their task. The problem with this method of usability testing is that the researcher’s

interaction can affect the validity of the data.

The goal of my project is to develop a system that allows the students to create
prototypes that do not require interaction during testing. This involves building devices called
widgets: physical devices such as LEDs or switches that represent components of household

appliances. I'm also developing a programming language that defines the interaction between

Pedagogical Tool for Usability Science

Mendelsohn

widgets. Using both parts students will be able to design working mockups of household

appliances.
l. Introduction

1. Usability

Productivity has always been one of the main goals in the engineering world. It is not smart to
work on a project that has little to no progress being made for any amount of work put in. One aspect of
today’s lifestyle that people believe would add to productivity is technological advances. By replacing
people with computers or by adding technological devices to the work force we may be able to
accomplish our goals faster. This however is not true. There has been evidence that simply adding
technology to the workforce does not actually result in better productivity (1). The reason for this is that
technology is not always designed effectively. This is where usability comes in. Usability is the science of
designing interfaces to increase performance. What this means is that any device that a user interacts
with is designed in such a way that the user can perform whatever task they need in the most efficient
way possible. This concept has been incorporated into a lot of different areas today. One example would
be the layout of a stove. If someone looked at the stove in figure 1, it would be difficult for him or her to

figure out which knob turns on which burner. In figure 2 however, it is very clear which knobs affect

OO
O

which burners.

VICHCHC,

Pedagogical Tool for Usability Science

O
2%

Figure 2: A stove with good usability (3)

Mendelsohn

Another example would be the standardization of car buttons. Every car has the blinker control on the
left of the steering wheel. Pushing the lever up turns the right signal on and pushing it down turns the
left signal on. This design has high usability as it becomes intuitive to drivers. If | have ever used a car,

then | can get into another and know exactly how to work the turn signals.

1.1 Why is Usability Important

Usability is important so that users can effectively use a piece of technology. It is important for
someone to be able to intuitively know how to use something if its use is not designed to be a thought
provoking activity. Productivity is increased when something is easy to use as there is less thought going
into how to operate, and more going into what is being accomplished. There are plenty of people in the
world today who would not have gotten by on a computer that is run by a terminal mechanism. There
are too many commands to remember and a lot of ways to mess them up. Today we have graphical user
interfaces or GUIs, which allow people to point and click. They can drag something from one folder to
another instead of remembering to type something like “cd home/work_folder”. This is extremely
important, as computers have become a part of everyday life in almost every workplace. Usability has

allowed people to advance with technology even if they are not technologically adept.

Pedagogical Tool for Usability Science
Mendelsohn

1.2 Motivation

The motivation behind working on a usability project comes from Professors Aaron Cass and Chris
Fernandes. These two professors are currently teaching a class on usability for sophomores at Union
College. Their course works with students to create objects such as alarm clocks or stoves that are very
usable (3). In order to study usability, students make mock-ups, or prototypes, out of inexpensive
material such as cardboard. These students then test their design by asking human subjects to perform
certain tasks. One example would be a researcher asking a participant to turn on the bottom-left burner
of a stove. The participant would then turn a knob that they believed corresponded to the given burner,

and the researcher would place a red circle over whichever burner the participant activated.

Figure 3. Cardboard Stove concept (3)

There are two problems with this method. First, the process of changing physical components can
distract the user and possibly confuse or stall them. Second, the amount of time it takes to turn the

burner on is dependent on how quickly the researcher moves. This is harmful to data collection if you

Pedagogical Tool for Usability Science
Mendelsohn

are testing how long it takes for the user to figure out which knob does what. In order to fix these
problems an electronic board was created to help students create prototypes, which require no human

interaction.

Il. Background

1. Usability Testing Methods in the Professional World

The primary accepted method of testing for good usability is called usability lab evaluation (4).
In this method, the subject and researcher stand in the same room separated by a one-way mirror or
curtain. The user and tester can converse before, during and after the test is being given. There are also
video cameras in the room documenting what the subject does when given specific commands. After

the experiment is completed, the video is analyzed and the product is changed accordingly.

Another method of usability testing is known as moderated remote usability evaluation or
mRUE(4). In mRUE, the subject and researcher operate over a network and can be separated by room,
state or even country. This allows the subject to be tested in a space that is comfortable to them, which
is more likely the place that they would be using the product they were testing. Testing through mRUE is
synchronous, which means that the researcher and subject are both logged on and participating in the

study at the same time.

A third method of usability testing is asynchronous remote usability evaluation, or aRUE (4). In
this method the test is done similar to mRUE except the researcher and subject are able to log on at
different times. The researcher can set up the test and upload it, and the subject can then be tested
whenever they have the time to do so. This method allows for better flexibility, but has been proven less

effective than mRUE (4).

Pedagogical Tool for Usability Science

Mendelsohn

Comamunicare
Accomplssh

Real nme Comamimicatyon
« Establish Common

Observe
Parncipants

Figure 4: Interaction and goals for mRUE (4)

2. Pedagogical Tool for Usability: What Has Been Done

The work did build on the work done by other students. Two students: Susan Beckhardt and
Nick Potvin have worked previously on creating this tool. Before my involvement, the tool consisted of
four general-purpose input ports as well as a few “widgets” which can be connected. Widgets can be
any device such as LEDs, 7 segment displays, potentiometers, buttons, etc. These widgets are used in

order to represent some component of a household appliance.

Pedagogical Tool for Usability Science

Mendelsohn

T-segment display
widget

o
Widget slot 1-Wire chips

Enob widget
Figure 5: Usability board with two widgets attached (3)

One example would be using two LEDs and two switches to represent a two-burner stove. The board is
designed so that these LEDs and Switches can be placed on any of the four slots and programmed to act
however the designer wishes. This makes it possible for the designer to choose where to put these
components and how they interact in order to create a device. In this case the LEDs could represent
burners on a stove and the switches could be knobs. The designers chose to create this board by
combining the TINI microcontroller with a one-wire bus system. This design allows a designer to write
code in java and run it through a single data wire to the usability board. Nick Potvin has also designed a
specialized programming language that allows the different widgets to interact and work together with

less complexity than java.

10

Pedagogical Tool for Usability Science

Mendelsohn

Ill. Goals:

In this section | will discuss the goals for both the hardware and software aspect of this
project. | will be explaining what specifications | planned on for each aspect and describe why
these specifications were chosen. | will also be addressing the goal of the overall cost of this

project.

1. Hardware Goals:

The purpose of this project is to create a way in which a student can create a prototype
of a household appliance that does not require human interaction to simulate functionality. In

order to do this it is important to specify how the hardware should look, feel, and function.

In order to make a realistic prototype creation tool for household appliances, we need
to make sure that the devices we use (Widgets) are realistic. By this | mean that they effectively
represent certain aspects of household appliances. This means that the widgets must be easy to
recognize and associate with a concrete aspect of a given appliance. One example of this would
be modeling a stove burner with an LED. Though this device does not generate heat like a stove
does, it does glow when turned on. This is effective because a stove burner will glow when
activated. Another example is representing a stove knob with a potentiometer, which is similar

to a knob that one would find on an actual stove.

The other aspect of the look is the layout of the electronic board itself. In order for this
board to allow for an effective modeling of an appliance it has to be very versatile. This means

that the board must allow for the widgets to be connected in many different ways in order to

11

Pedagogical Tool for Usability Science

Mendelsohn

allow the device to actually look somewhat like the final product. The board needs to have
enough connection points that multiple different layouts of the same household appliance is

achievable.

The feel and function of the project is important as well. In order to test how usable a
prototype is, it must feel like the actual thing. This means that we cannot use a button to
represent a knob. We need to use widgets that feel like the actual part of the appliance being
represented. We also need to avoid delay. In order to do this the hardware needs to act as an
actual appliance would when prompted to. This means that turning a knob to activate an LED

should be instantaneous and without delay.

Overall, it is important to make sure that the usability board looks, feels, and functions
just like the final product would. It needs to be realistic and effective if it is going to be a good

testing device.

2. Software Goals:

For the widgets to interact without human involvement, there needs to be some
programming that defines how they connect. In the past we have used java to make this
possible. There are a few problems with this method however. The goal of this project is to
create a device that can be used by students to create their own prototype of a household
appliance. In order to program interactions between the different components of their

prototype in java, the students would have to learn the nuances of java coding, as well as write

12

Pedagogical Tool for Usability Science

Mendelsohn

a very large amount of code. A simple action such as a button activating an LED can take over

300 lines of Java code.

In order to deal with this problem, my goal is to create a very simple programming
language, which can define the interaction between widgets. This program must be robust
enough that all different forms of widget interactions are definable. It must also be simple
enough for students to be able to write the program without spending too much time learning
how to use the language, or writing the program itself. The end result should work exactly the
same as if the program was written in java, without needing to use extensive coding for every

widget interaction.

3. Cost goals:

The cost goal of this project is outlined in the following list. This was submitted for an IEF grant

and received partial funding.

Total: $216

Breakdown:

. LED x 10: S1

. Potentiometer x 4: $2

o 7 segment display x 4: $4
. Buzzer x 4: $6

. Solder: $2

. colored wires: S5

. One-wire chips x 20: $50
. Pic Chips x 10: $30

. Solder paste: $36

. Package of ten Copper boards for printed circuit board fabrication: $70

Figure 6: Cost breakdown for the project

13

Pedagogical Tool for Usability Science
Mendelsohn

IV. Design Specification:

* All widgets must be built to conform to the one-wire protocol
* Widgets must all be of uniform size

* There must be at least 2.5” between widgets, and the space must be uniform across
the board

¢ Board must have at least 10 slots

* Interpreter must be written in Java (since this is the only supported language on the
TINI microcontroller)

* Delay between input widget change and output widget change must be less than .5s

* Input slots must be location independent

V. Final Implementation:

The main goal of this project was to be able to take our new code (DaNick) and turn it
into java code that could run on the TINI microcontroller. In order to do this | first needed to
research how to make an interpreter, which can understand DaNick and run java. The first
method | researched was LEX and YACC. LEX allows you to write a lexical analyzer, which
defines tokens to be recognized by the compiler. These tokens are things such as numbers,
operators, identifiers, keywords, etc. Once these Tokens were defined they were given to YACC,
which is a parser. The parser takes these tokens and compares them to a set of grammatical
rules that the creator defines. Using these grammatical rules the compiler can then decide what
to do with a given line of code. This system seemed to work very well, however there is a more
effective version of these two for java programming. This tool is called Javacc, or Java compiler
compiler. This is a program with both a lexical analyzer and a parser built into one. It is

14

Pedagogical Tool for Usability Science
Mendelsohn

designed for use with Java code and makes it easy to convert a new programming language into

Java.

The next step was to spend a lot of time working with Javacc in order to learn exactly
how to use it. | learned a lot about how the lexical analyzer works within a short period of time
and within a week was able to create my own. This tool was able to identify all Tokens that |

had specified for it and could print out what they were when they were discovered.

DaNick code: Knob controls Burner on statechange by linear
Keywords: controls on statechange by linear

Identifier: Knob, Burner
Figure 7: A line of actual DaNick code being split into different tokens
In order to make this useful, | worked with a Backus-Naur form or BNF. This allowed me
to specify parsing rules for the grammar related to DaNick. This comprised of breaking lines of
DaNick code into subsections and specifying names for each. Using a simple BNF format | was

able to come up with the following rules:

DaNick code: Knob controls Burner on statechange by linear

<control> ::= <objectID> <CONTROLS> <objectID> <ON> <command> <BY>
<change>

<command> ::= <HOLD> | <CLICK> | <STCH>

<change> ::= <LINEAR> | <INC> | <DEC> | <TOGGLE>
Figure 8: An example of using BNF rules to identify a line of DaNick

After finalizing the BNF, | started coding the rules in the interpreter. In order to make

sure that this all worked properly, | programmed the javacc to print out what kind of instruction

15

Pedagogical Tool for Usability Science
Mendelsohn

it encountered. | also added a skip statement, which caused the program to ignore comments

(which start with ~). | successfully had the new lexical analyzer/parser identifying

instructions and being able to split it into the individual parts of data that are needed to now

how to perform given tasks.

JavaCC ‘ Interpreter

Figure 9: Block diagram representing the software interaction before runtime

Eventually, | was able to add code to the interpreter to allow the interpreter to function
properly. This process involved three text files. The first was a file that contained all the
necessary information about each physical widget. This file is called a widget description file,
and contains information such as address, alias (specific name for the widget), and calibration
values for potentiometers. The second is a file called types.txt, which has a list of al of the
possible types of widgets that DaNick will represent. Using these files, we were able to read in a
DaNick text file and begin to interpret it. The interpreter start by creating objects based on an

interface called Widget. This allows the interpreter to initialize various variables within each

16

Pedagogical Tool for Usability Science

Mendelsohn

Widget. For each widget there is a java class that implements Widget and defines how it should
act under given conditions. The final result allows us to take a DaNick program, run it through

the interpreter, and result in a functioning program on the usability board.

DaNick

Cod
ode Widget

Descriptor

telnet

Interpreter

U controller

Figure 10: block diagram representing the software at runtime

17

Pedagogical Tool for Usability Science

Mendelsohn

VI. Results:

At the end of my time working on this project, there was a lot of progress made towards
the final goal of a usability prototype tester with no human interaction. As far as the hardware
is concerned, we currently have a board with location independence, which spaces the widgets
evenly. This allows for versatility on the usability board, which lets students design and build
multiple different layouts of the same appliance. The number of slots however does not quite

meet the original plan for 10 or more.

As for the widgets themselves, they are all built to conform to the one-wire protocol.
They maintain a uniform size, and are varied enough that we can represent many different
components of household appliances. There is no noticeable delay between any two connected
widgets, however building a packet sniffer to watch the protocol will show what the real delay

between the two is.

Finally, while looking at the software aspect of the project, a lot of progress has been
made. | went from only being able to program in java to building a java-based interpreter,
which allows the user to program in DaNick. We are now able to write simple code that defines
the interaction between widgets, which is analyzed and run through java. This allows the user
to deal with much less code and run a program, which is exactly the same as if they had written

the project in Java.

18

Pedagogical Tool for Usability Science
Mendelsohn

VII. Future Work:

Although this project has come a long way, there are still many ways that it can move
forward and become more advanced. The first way to improve the project is to augment the
interpreter. The interpreter can currently work for defining interactions between
potentiometers and 7-segment displays. The groundwork for adding new widgets to the
functionality has already been laid, and is described in detail in the users guide. In order for this
to become a full interpreter of DaNick there is still a good deal of functionality that can be built
in. By expanding it’s functionality, the interpreter should eventually be able to handle any

DaNick code that is written.

Another useful next step would be examining PIC chips for use within widgets. Currently
two things limit the amount of information on a widget. First, the use of the one-wire protocol
uses the same bus for both sending and receiving information to the TINI. This means that a
limited amount of information can be flowing across the bus in either direction at any given
time. The second is the use of the one-wire chips on the widgets. Currently, we use 4 chips for
something as simple as a 7-segment display. This means that we need to search for multiple
addresses and change multiple values in order to update it. By using a PIC chip, we should be
able to implement some code on the widget itself and avoid using the bus. For example we
could just tell a seven segment display to display a 5, then the PIC chip would know how to do
this. Currently we have a book titled: Serial Communications by Roger L. Stevens. This book
talks about using one-wire protocol on a PIC chip. It provides code and suggests the use of the

PIC16F84A, which is probably the best place to start.

19

Pedagogical Tool for Usability Science

Mendelsohn

In order for this project to become a useful tool in testing usability without human
interaction, we eventually need to build a logger, which will be able to track exactly when
changes are made. This should be able to keep track of all operations occurring on the board
with information such as timing and number of times something happens. This must be coupled
with a controller than can run the tests themselves. It should know what it is looking for and be
able to see timing between commands given to the participant, and when operation occurs. It
should also be able to tell if the participant failed in a given task, such as turning on a specific

burner.

A goal for the long term would be to convert DaNick, or the java version of the code into
a GUI or graphical language. The purpose of this would be to create a user-friendly graphical
representation of the board that allows people with no programming experience to define
interaction between widgets. The main benefit of a GUI would be that the user could physically

drag a line from one widget to another and define how they interact.

Quick Fixes:

There are a few thins that can be done to improve this project quickly. These are parts

of the project | would have worked on if | had a bit more time.

* Changing the name of Par.tini (for parser) to Int.tini(for interpreter)

* Use the widget description file information to eliminate the need for a types.txt file

20

Pedagogical Tool for Usability Science

Mendelsohn

* Keep the program running when a widget is removed so that you can rearrange the
design while the program is still running. This is done through catching an exception

thrown by oneWireContainer

* Add the other widgets that have been built to DaNick functionality

* Expand the board to at least 10 slots

VIII. User Guide:

In this section | will describe the steps needed in order to use the project components that are

complete.

* Writing a program in DaNick in order to define the interaction between widgets

* Preparing the widget description file with all of the necessary information for each

physical widget

* Loading programs onto the TINI microcontroller

* Running programs on the tini Microcontroller

1. Programming in DaNick:

Currently there is very limited functionality in DaNick programming. There are two widgets that
are programmed to work using our interpreter. These are the seven-segment display and
potentiometer. Here are the steps to writing a program using these two. One things to note is

“w.n

that every line of code, other than the final line “done” must end with a “;”.

21

Pedagogical Tool for Usability Science
Mendelsohn

~This "~" represents a comment

~Declare the seven-segment display "burner"

Line 1: seg7 burner;

Line 2: ~specify which physical widget "burner" refers to
Line 3: burner alias seg71;

Line 4: ~Specify the states and display type of the seven-segment display
Line 5: burner is seg7(0,10,numeric);

Line 6: ~Declare our potentiometer

Line 7: pot knob;

Line 8: ~Specify which physical widget "knob" refers to
Line 9:knob alias pot1;

Line 10: ~define how the two widgets interact

Line 11: knob controls burner on statechange by linear;

Line 12: done

Figure 11: Sample DaNick code defining a linear interaction between a potentiometer and 7-segment display

Declaring an object:

In order for the widgets to be recognized, you first need to declare them and give them
a type (lines 1 and 7). This is done by writing the line: type myname. The type is the
widget type that is being declared. Currently this can be either pot or seg7 for
potentiometer or 7-segment display respectively. In the future there will be other types
that can be used, such as button, LED and so on. myname is whatever name you choose
to give the widget you are declaring. For example | named my potentiometer “knob”

and my seven segment display “burner.”

22

Pedagogical Tool for Usability Science

Mendelsohn

Specifying a Physical Widget:

In order for the TINI to communicate with the physical widget, you next need to specify
the widget being used (lines 3 and 9). The name of the widget is found in the widget
description file (described later). In order to specify the widget you use the code:
myname alias widgetname. In this line, myname is the name of the widget that you
already declared in step i. Using widgetname looks in the widget description file and
checks if the widgetname exists. If it does, this allows the TINI to find out important

information about the physical widget such as address and calibration values.

Defining Widget Characteristics:

Once the widgets have been declared and specified, we can define the states in our
output widgets (line 5). This is done by writing the line: myname is type (num1, num1) or
in the case of the 7-segment display (which currently is the only functioning output
widget in DaNick): myname is type (#, #, displaytype). In this code, we use the type to
make sure the type we are using is consistent with the widget’s type. The first number is
the first state we want to use. This must be within the overall range of the widget’s
states (for the 7-seg currently has 0-9). The second number defines the number of
states. This must also be within the range available (7-seg has 10 states — the starting
state). The last value displaytype specifies how the seven-segment display with show
the information. Currently the only valid value is “numeric,” in the future there will be

alphabetic, hex, and many others.

23

iv.

Pedagogical Tool for Usability Science

Mendelsohn

Defining Interactions Between Widgets:

Finally, once everything has been initialized properly, you need to define the interaction
(line 11). This is done by using the line: myinput controls myoutput on statechange by
changetype. “myinput” is the input widget described, “myoutput” is the output widget
described, “changetype” defines how the interaction works. Currently the only working
“changetype” is linear, however future work will allow for toggle, increment and

decrement.

Finishing the DaNick Program:

In the end we need the word “done” to signify that the program is over (line 12). Save

this code in a txt file and load it onto the TINI.

1.1. Error Descriptions

There are many errors that you may run into during the process of running a DaNick
program. Here is a list of common errors you may run into and what they mean:

mywidget does not exist: This error shows that the widget mywidget is not defined

in the widget description file

mywidget is not connected: This error says one of three things. First, the widget may
not actually be connected to the board. If it is however, there is a hardware
problem. Either the widget itself has some problem with it (most likely the
connection with the one-wire chip), or the board itself has some problem with the

wiring.

24

Pedagogical Tool for Usability Science
Mendelsohn

iii. Mywidget is not declared: this means that the widget “mywidget” was not declared

earlier in DaNick code, which is necessary before any specification happen.

iv. Exception in reading the type file: this means that there is a problem connecting to

the types.txt file

V. Number format exception: This means that the format of your numbers does not

conform to the necessary regulations (the number must be an int).

vi. Exception in reading the widget file: there was a problem connecting to Widget.txt

vii. Failure to change latch state: this means that a widget was disconnected while the

program was running. You must restart the program when this occurs.

2. Preparing the widget description file:

In order for the program to work properly, the widgets need to be defined properly. This
is done through a few simple steps. Currently the widget description file is located on the

flash drive at /Dan Mendelsohn/code/make/Widget.txt.

i Naming the Widget:

Write the widget’s alias on the first line. This is the name the program will look for when

specifying the physical widget.

25

Pedagogical Tool for Usability Science
Mendelsohn

ii. Necessary Information:

On the second line put the address first, then any other information that is necessary.
For a seven-segment display, this information is the three other addresses that the
widget uses. Note: the order of these addresses matters. For the potentiometer, we
need to put calibration values that define the difference between states. These values
are 100* the voltage value that splits the states apart. This is necessary, as the
potentiometers are not necessarily linear. The values on this line also define the number

of states recognized on the potentiometer.

iii. Completing the Widget Description File:

Save this file as Widget.txt (this should have every possible widget in it, even if it is not

being used for a given program).

Here is an example of a widget description file:

potl

850000000F671520 3 7 100 215 270 322 350 372 388 400

seg71

18000000021D983A 740000002354A3A 98000000021C253A A50000000233F73A

Figure 12: A sample widget description file. This file specifies a potentiometer with 10
states, and a seven-segment display

26

Pedagogical Tool for Usability Science

Mendelsohn

3. Loading programs onto the TINI

In order to load the programs onto the TINI there are a few simple steps.

Establishing Connection:

First you need to connect to the TINI via FTP. You can do this by connecting the TINI to
the network via Ethernet. Once this is done, you can use a terminal to connect by typing
the command: ftp /IPaddress. The “IPaddress” is the IP address of the TINI itself. The one
that | have been using is 149.106.40.6.

Logging In:

Once connected, the program will ask you for a username. The username for our TINI is
“root”. Once this is in, the program will ask for a password. The password for our TINI is
“tini”. If the password is wrong the FTP will go into a dead state and you need to quit
and try again.

Commands:

Once you are connected to the TINI there are two commands that we can use. First we
can delete a file “filename” by using the command: del filename. Next we can put a file
onto the TINI. This is done by using the command: put /path/filenamel filename2. The
path is the full path starting at /home/...... that leads to the file that you are trying to
load onto the TINI. The “filenamel” line specifies the name of the file you are loading
onto the TINI. The second filename “filename2” is the name you wish it to have on the
TINI. This is usually the same as the first filename. Note: currently the four files you need
to load are: Par.tini, Widget.txt, types.txt, and your DaNick program. These files can be
found on the flash drive at /Dan Mendelsohn/code/make/filename.

Closing Connection:

When you are done type: quit to exit the FTP connection

Running a program:

In order to run a program on the TINI, there are a few simple steps that need to be
followed.

Checking connections:

Before you can do anything, you first need to make sure that the board and TINI are
connected to power supplies. The board will connect to a power supply supplying 5.0V.
This is done by connecting the red wire to Vcc+ and the black to Vcc-. The TINI connect
using a standard AC adapter.

27

V.

Pedagogical Tool for Usability Science

Mendelsohn

Establishing Connection:

Next you need to connect to the TINI using telnet. This is done by using the terminal and
typing the command: telnet IPaddress. “IPaddress” refers to the IP address of the TINI.
For our TINI it is 149.106.40.6.

Logging In:

Once the connection is established, you will be prompted for a userame. Our username
is “root”. Next you will be prompted for a password. Our password is “tini”. Unlike FTP,
if you do not enter the correct password, you will start this process over with the
username.

Commands:

Now that you are connected, there are a few commands that you can use. The first is
the “Is” command. Using “Is” will list al of the files that are present on the file. In order
to run the program we need to have Par.tini, Widget.txt, types.txt and whatever your
program is called. Next, we can run the actual program by typing “java Par.tini.” This will
run the Par.tini file, which is the interpreter. This program will ask you to enter a
filename. This should be the name of the file holding your DaNick code. Finally, each
program runs continuously until it is killed. In order to end the program you need to
open a separate telnet connection using steps i-iii. Then you can type “ps” to list the
running process. There will be a number before Par.tini if you are currently running it. In
order to end the program type “kill # where the # is the number before Par.tini.

Closing Connection:

Finally, when you are done type “logout” in order to close the connection with telnet.

IX. Development Guide

In this section | will describe how to develop the parts of this project that | created. This

includes Creating a new widget, interpreter development, Maintaining the development

system, and a note on Java versions.

1. Creating a new widget:

In order to create a new widget there are two processes. First you need to make the

widget hardware itself. Then you need to add the widgets functionality to the interpreter.

28

Pedagogical Tool for Usability Science

Mendelsohn

1.1. Widget: hardware:

i. Designing the Circuit:

When creating a widget we start with a simple circuit diagram. This diagram must

include connection to the 9-pin connector, and use of the one-wire chip(s).

iii. Designing the PCB:

Next you need to use a program called Eagle to create a PCB layout of the given circuit.

This allows you to design a PCB with two sides of connections.

Figure 13: A PCB design in eagle (this is the bottom of the seven-segment display)

29

Pedagogical Tool for Usability Science

Mendelsohn

iiii. Creating the PCB:

Once the PCB has been designed we can use Board Master and Union’s PCB fabrication
system. This allows you to create PCBs for each widget. There should be 2 PCBs per

widget.

Figure 14: A finished PCB (7-segment display)

iv. Surface Mounting the Chip:

Once you have the PCBs made it is time to surface-mount the one-wire chips. This is
done using solder paste. Using a solder paste guide found here: http:/
/www.seattlerobotics.org/encoder/200006/oven_art.htm you should be able to surface

mount a chip using solder paste, and a conventional toaster oven.

v. Connecting the Rest of the Components:

30

Pedagogical Tool for Usability Science
Mendelsohn

Once the chip has been mounted it is time to solder the rest of the components to the
board. This is done by hand. Note: when connecting the 9-pin connection we have a
specific way the pins need to be connected. If the numbering scheme is 1-5(across the 5
pin part), then 6-9 (across the 4pin part) from left to right, then we need to connect: 1

and 6 to Vcc, 2 and 7 to data, and 5 and 9 to GND.

vi. Finishing the Widget:

Finally, using the uniform spacers, we connect the entire thing together in order to

complete the widget.

Figure 15: A completed widget from three different angles

1.2. Widget: software:

In order to use the widget in software, we need to program functionality for the

widget. This is done with through a few steps:

i. Making the Type Recognizable:

31

Pedagogical Tool for Usability Science

Mendelsohn

First we need to add the type to the file types.txt. For example, if we were to make an

LCD screen we would add the word “lcd” to types.txt.

ii. Recognizing the Physical Widget:

Next we need to make sure the needed information is stored in the Widget.txt file. The
address can be found by running the addressGetter.tini program on the tini. Our LCD

widget might be called Icd1 and have the address 48000000021F253B.

iii. Writing the Java Class:

Finally, you must write a Java class, which implements the Widget interface. This will
define how the widget acts under given DaNick instructions. (See example LCD in the

provided flash drive under /Dan Mendelsohn/code/make/LCD.java)

Interpreter development:

The interpreter that we use is currently built and called Par.java or Par.tini. If however,
you want to modify this to add more functionality it is a matter of dealing with both Javacc
and Java. The Lexor and Parser are built in Javacc. This means that the program defines how

to Tokenize DaNick code, and defines (using a BNF) how the grammatical rules apply.

32

Pedagogical Tool for Usability Science
Mendelsohn

< program> ::= (<statement>)+ <DONE>

<statement> ::= (<control> | <modeChange> | <objectdec> | <objectinit> | <specify>)
<SEMICOLON> | <modedec> | <modedef>

<control> ::= <objectID> <CONTROLS> <objectID> <ON> <command> <BY> <change>
<modeChange> ::= <objectID> <CHTO> <modelD> <ON> <command> <BY> <change>
<command> ::= <HOLD> | <CLICK> | <STCH>

<state> ::= <NUM>

<change> ::= <LINEAR>| <INC> | <DEC> | <TOGGLE>

<objectdeclaration> ::= <objectID> <objectID>

<objectinit> ::= <object> <IS> <typelD> <OPAREN> [<ID> <COMMA> [<NUM> <COMMA> <NUM>
<CPAREN>

<modedec> ::= <MODE> <modelD> <SEMI>

<modedef> ::= <MODEDEF> <modelD> <OBRAC> (<statement>)* <CBRAC>
<specify> ::= <object|D> <ALIAS> <widgetID>

<objectID> ::= <ID>

<typelD> ::=<ID>

<typelD> ::=<ID>

<widgetID>::=<ID>

<modelD>::=<ID>

Reserved Words:

done, on, by, changes_to, controls, hold, click, statechange, state, linear, increment, decrement,
toggle, has, states, mode, modedef, alias, is, numeric, alpha

Figure 16: Full BNF defining DaNick

Once the lexor and parser are working, it is simply a matter of adding Java code within
the java brace section under each rules’ definition. This causes the interpreter to execute the
given code when that command is identified. Note: when parsing, javacc uses lookahead. This
means that if two or more rules start with the same token or tokens, it will deal with the first

33

Pedagogical Tool for Usability Science
Mendelsohn

unless otherwise specified. For example “control” and “modechange” both start with an

objected. This means that we need to lookahead by 2 to identify which of the two it is.

Once the interpreter has been created we can use a file called makescript. In order to do
this, you need to put makescript and the interpreter in the same directory. Using the terminal
you must first change directory to whatever holds the two. Then you can type “./makescript
interpreterName” note that there is no extension on the interpreterName. The makescript file

will compile the interpreter into a .class file, then convert this to a .tini format.

3. Maintaining the Development System:

In order for the makescript to work properly, there must be proper classpath definition.
Currently the classpath points exactly where it needs to, but if the directory locations change,
we need to make sure of three things. First the classpath must contain the path to the
makescript directory, which should contain the interpreter and any files that it relies on (Widget

interface and each widget’s class. This is currently stored in /home/mendelsd/Desktop

/SeniorProject/make). Next it must have a path to the java folder, which contains general java

libraries (currently this can be found at: /home/mendelsd/Desktop/theDamnJlava/

j2sdk1.4.2_19/jre/lib/rt.jar). Finally it needs to link to wherever you have the one-wire libraries
stored (these can be found at: /home/mendelsd/Desktop/SeniorProject/TINISDK/tini1.17/bin/
newAllTINI.jar, and /home/mendelsd/Desktop/SeniorProject/TINISDK/tini1.17/bin/tini.jar).

Note that if there are duplicates within these areas, the path may get stuck in one of the

34

Pedagogical Tool for Usability Science

Mendelsohn

sections and not look in the other directories. As long as all three of these are linked properly,

makescript should work.

4. A Note on java Versions:

Using the TINI causes a problem when it comes to java. Unfortunately the TINI can only
run up to java 1.4.2. There does not appear to be any effort to update this soon, so it can really
be a nuisance. In order to prepare for this | suggest writing code in eclipse, and telling it to run

using java 1.4.2.

5. Components:

The one-wire chips that we have been using are DS2450S+ and DS2413P+. These are developed
by Maxim-ic. You can find information on these at: http://www.maxim-
ic.com/datasheet/index.mvp/id/2921/t/al and http://www.maxim-
ic.com/datasheet/index.mvp/id/4588/t/al respectively. The solder paste we use can be found
by its product numbers: KE1512-ND (paste syringe), 10LL4-ND (plunger), and KDS22TN25-ND

(tips). This must be refrigerated. You can find all three parts of the solder paste, as well as the

one-wire chips at Digikey. Note: Currently we are not sure if the new solder paste we received

works.

35

Pedagogical Tool for Usability Science

Mendelsohn

X. References:
1. Adler, Winiograd, 1992, Usability: Turning technologies Into Tools, Oxford University
Press

2. Landauer, 1995, The trouble with Computers, MIT press

3. Potvin, Nicholas, “A Pedagogical Tool for Usability Science” March 19, 2009

4. R. Ramili, A. Jaafar, e-RUE : A Cheap Possible Solution for Usability Evaluation,
Universiti Kebangsaan Malaysia, IEEE International symposium on information
technology, 2008

5. Usability, <http://en.wikipedia.org/wiki/Usability#Defining usability>

6. Usability Professionals association, http://www.usabilityprofessionals.org/

36

