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ABSTRACT 
LOLIER, MELANIE Discerning Prey from Predator in Dragonflies. Department of 

Neuroscience, June 2011. 
 

ADVISOR: [Professor Robert Olberg] 

 

The dragonfly is a visual predator that feeds on small flying insects. Because of 

their high rate of hunting success, dragonflies must have the ability to efficiently discern 

prey and predator from natural surroundings. In this study, we investigated the extent to 

which visual flight-control neurons in dragonflies are able to differentiate stimuli that 

simulate prey items from those that simulate predators.  To do this, we presented fourteen 

sets of rectangular stimuli varying in height, width, speed, and moved in four directions 

while recording extracellular neuronal responses from the ventral nerve cord.  Each of the 

rectangular stimulus patterns was moved in two ways: (1) along its long axis (a “worm” 

stimulus) and (2) perpendicular to its long axis (an “antiworm” stimulus).   Our 

preliminary results show that dragonflies respond best to smaller stimuli, particularly the 

4° target, with speed having no significant effect on the neural responses. Further 

research is necessary and ongoing to determine trends related to changes in stimuli size 

and velocity.  
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Introduction 

 

The relationship between prey and predator is one of the oldest and most complex 

relationships in nature. The inability for one to protect itself from a predator has deadly 

consequences and the inability to effectively and efficiently hunt has similar results. 

Evolution of particular features such as paired appendages (Ruvinsky, Oates, Silver, & 

Ho, 2000), are selected for to help the hunted escape. Theories about what makes 

something a valuable prey item have been devised, referred to as predator-prey models, 

and have been offered to explain this seemingly random choice. One of the pioneers of 

the predator- prey model was Ivlev (Eggers, 1977). Ivlev, who worked with fishes, 

created a mathematical equation, shown below, to support his hypothesis that the rate of 

an animal’s consumption depends on how hungry it is.  

r = R [1- exp (-P)]      (1) 

In the equation (1), R is maximum amount of food that can be ingested by the predator, P 

is the prey density, r is the ingested ration and is a constant. For this equation, Ivlev 

was criticized (Rashevsky, 1959), for not taking into account factors such as physical and 

physiological properties of the predator, vision, and effects of hunger. Despite the 

shortcomings of Ivlev’s equation, his efforts helped others create models to better 

understand prey-predator interactions.  

In 1966, Holling (Eggers, 1977) developed another prey-predator model that 

included variable degrees of hunger as well as the time needed for the predator to hunt, 

kill and consume its prey before hunting again. Another researcher, Nakamura (1974), 

building off of both Ivlev and Holling’s work, confirmed that hunger was a basic 
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component of predation. The reasons for hunting a particular prey, as summarized by 

Pyke et al in 1977 (Armstrong & Stamp, 2003) are: 1) the quality of the prey in 

comparison with other prey 2) quantity of prey available and 3) if capturing the prey 

maximizes the predator’s energy gain.  

To be able to escape a predator, one must be able to identify the threat. The three 

primary ways in which an animal may detect information about its environment are 

mechanical, visual and chemical (Dicke & Grostal, 2001). In dragonfly larvae, chemical 

recognition is primarily used to identify its surroundings (Chivers, Wisenden, & Smith, 

1996). By adulthood, dragonflies are visual predators that intercept their prey mid-flight. 

Their prey capture flights are short, often less than 200ms from takeoff to prey 

interception (Olberg, Seaman, Coats, & Henry, 2007), and highly accurate, with success 

rates as high as 97% (Olberg, Worthington, & Venator, Prey pursuit and interception in 

dragonflies, 2000). 

Earlier research concerning dragonfly vision highlight the presence of select 

neurons, known as target-selective descending neurons (TSDNs), located in the ventral 

nerve cord that respond to stimuli with directional selectivity and size (Frye & Olberg, 

1995). These 8 bilateral pairs of neurons fall into one of two general size preferences. 

Most TSDNs respond to a wide range of sizes (MDT1, MDT2, MDT3, MDT5, DIT2, 

DIT3), while the two remaining neurons (DIT1, MDT4) respond best to smaller targets. 

All TSDNs show some directional selectivity while others, such as DIT1 and MDT4, are 

strongly selective. These feature detectors are believed to steer the dragonfly while it 

hunts for prey, keeping the image of the prey item in a fixed position on the retina.  
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Evidence for neurons that respond to targets with particular features are found 

throughout the animal kingdom. In some insects, such as the hoverfly, there is data that 

support object selectivity for targets smaller than 1°(Nordström & O'Carroll, 2006). 

Studies in cats show the presence of neurons with a preference for edges (Pettigrew & 

Freeman, 1973). Amphibians, particularly the common toad (Bufo bufo), have also been 

studied and are found to have neurons, called T5(2) cells, which are used in prey 

recognition (Ewert J. , 1980).  

Learning about the existence of T5(2) cells came as a result of recording neural 

responses of the toad to various predators, in the optic tectum region of the brain(Ewert J. 

, 1980). In 1979, Ewert and Traud tested the behavioral responses of Bufo bufo in the 

presence of known predators. They exposed the toads to predators such as a Buzzard 

(Buteo buteo), a leech (Hirudo medicinalis), giant ant (componotus herculeanus), 

hedgehog (Erinaceus europaeus) and a ringsnake (Natrix natrix). Certain features from 

the toad’s main predators, the hedgehog and ringsnake, were used to create artificial 

stimuli mimicking them to help determine what characteristics influenced behavior. The 

parameters of the stimuli included velocity and direction of motion, direction of stimulus, 

background contrast, stimulus size, and stimulus configuration (Ewert & Traud, 1979).  

Researchers determined that the best response was from small targets that moved 

in a worm-like manner(Ewert & Traud, 1979). This study then inspired further research 

with only 2-dimensional stimuli that moved in a worm-like manner (moving parallel to 

the direction of motion), and had a worm-like shape, such as a rectangle, compared with 

anti-worm stimuli, which was a rectangle moving perpendicular to the direction of 

motion. The purpose of the study was to determine how the shape of the stimulus and its 
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movement influenced the toad’s behavioral response, as measured by turns per minute as 

well as its neural response, measured in impulses. In nature, toads generally turn toward 

potential prey and turn away from a potential predator. Therefore it was expected in this 

study that the more turns per minute, the higher the likelihood that the toad would 

respond to the stimulus as it would a potential prey item. From these behavioral 

responses, researchers were able to match them with corresponding neural responses, 

particularly from T5(2) cells (Ewert J. , 1980). These cells are most responsive to 

rectangles between 8° and 16° in length, and moving parallel to their long axis. Ewert 

concluded that the relationship between shape and movement, particularly movement of 

stimuli in the direction of the long axis, was the most effective stimulus. Separately 

neither shape nor direction proved most effective, suggesting that effective prey 

recognition in toads form as a result of adding separate stimulus properties.  

The study mentioned above led us to question how dragonflies discern prey from 

predator. In a similar experiment, we exposed dragonflies to worm and anti-worm stimuli 

and measured their neural responses. We also manipulated the velocity of the stimuli to 

determine whether or not this added dimension affected dragonfly response.  

Methods and Materials 

Animals  
Adult male and female dragonflies (family Aeshnidae) captured from central New 

York were used in this study.  

Animal Preparation and Electrophysiology  
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The dragonfly preparation began with chilling the insect, after which the legs 

were removed. The leg-less insect was then waxed onto a rod with a beeswax/rosin 

mixture, ventral side up. The cuticle between the prothoracic and mesothoracic area was 

carefully dissected, exposing the 2 connectives of the ventral nerve cord. One of the two 

connectives was cut and then allowed to heal for 15minutes. The rod was then placed in a 

holder, at a 45°, with the dragonfly positioned ventral side up, facing a 600x600 pixel 

screen, about 16 centimeters away. A suction electrode was then applied to the 

descending end of the severed connective. The extracellular signal from a bundle of 

axons was taken up by the electrode that was amplified (AM Systems Model XXXX), 

digitized (PowerLab by AD Instruments) and recorded on a Macintosh computer for 

offline analysis. All data were collected at room temperature. The spike signals were 

sorted in a clustering program (Dataview, by William Heitler).  

Stimuli design  
 

On the computer screen one of 7 stimuli were displayed, shown in Figure 1. Each 

stimulus appeared on-screen, starting at the top and making 7 sweeps to the bottom of the 

screen, Figure 2. The stimuli then moved contralaterally (moving in the direction away 

from the severed nerve-connective), up, and ispilaterally(moving in the direction toward 

the severed nerve-connective), each making 7 sweeps. Each stimulus moved at a normal 

speed, 140°/second and then again at a faster speed, 280°/second.  
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Figure 1. Four types of stimuli presented to the dragonfly. The stimulus was determined to be 
either worm or anti-worm based on the direction it was moving. When the 8° rectangle on the left 
moves vertically, it is an anti-worm stimulus because the shape is perpendicular to the motion. 
When moving horizontally, the stimulus behaves as a worm because its shape is parallel to the 

direction of movement. 

The stimuli presented to the dragonfly were specifically designed to test how 

pattern expansion either in the direction of movement or perpendicular to the direction of 

movement affected neural responses.  The first stimulus created was a 4° square, used as 

our control. The worm stimuli we created were based on horizontal growth of their 

leading edge, that is, increasing the length of the horizontal rectangle (8°, 16° and 32°) 

while keeping the width (4°) the same. The logarithmic increase in length was meant to 

test how the neurons responded to both edges and size. In the same way, manipulating the 

height (8°, 16°, and 32°) of a vertical rectangle while keeping the width (4°) constant was 

how the anti-worm stimuli were created. Although this was how the stimuli were created 

and labeled assuming it was only moving horizontally, the worm and anti-worm label 

varied based on the shape of the stimulus in relation to its motion. An example of this is 

the stimulus on the left in Figure 1. The stimulus was created as a worm, which is that 

case if it is moved horizontally, but becomes an anti-worm if it moves vertically. Also, 

the stimuli were black and presented onto a white background.  
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Figure 2.  Movement of stimuli on screen. Each stimulus moved in 7 parallel sweeps, 1 
movement at a time, 10° apart. The stimuli moving at 140°/second (normal) moved down the 
screen in 500ms. The stimuli moving at 280°/secong (fast) moved down the screen in 250 ms. 
This particular example shows downward movement, however, stimuli in each of the other 

directions (up, ipsilateral, and contralateral) also moved 10° apart in 7 parallel sweeps.  

Receptive Field Analysis  
 

To determine receptive field, that is the area of the dragonfly’s visual field that 

issues the best response, we used a 4° circle that moved across screen, with 7 sweeps in 4 

directions (up, down, left, right) as depicted in Figure 2. This data was then analyzed 

using a MatLab program that plotted neural activity caused by each stimulus, and then 

sorted by direction. An example of this is shown in Figure 3, where this particular 
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neuron prefers ipsilateral (moving in the direction of the cut nerve connective) 

movement.  

 

 

Figure 3. Receptive fields were used to determine directional preference for each unit.  Receptive 
fields such as this was made for each unit to determine directional selectivity. In this particular 

example, the unit responds best to ipsilateral movement.  

 

Results 

 

We collected data from 18 Aeshnidae dragonflies, both male and female, and 

analyzed the data from 3 of the best trials. The recorded neural responses were classified 

as TSDNs based on strong responses to the size and direction of target movements. The 

data plotted below have length or height of stimulus, for worm or anti-worm respectively, 
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on the x-axis, showing progressive stimulus growth. On the y-axis is the spike count, 

which corresponds to the number of neural responses for that stimulus.  

Upward movement  
 

Putatively, we believe that the TSDN corresponds with the pattern of preference 

for upward movement is DIT3 (Frye & Olberg, 1995). From Frye and Olberg (1995), we 

know that DIT3 prefers upward movement and looming stimuli. Looming stimuli can be 

characterized as a target that appears to be approaching. Neurons that respond to looming 

targets have also been studied in locusts (Rind & Santer, 2004), with results that show the 

closer the approach of the stimulus, the more observable spike activity. Here, in response 

to normal speed (140°/second), no consistent trend for stimuli size emerges, with the best 

worm response to the 8° target moving at the normal speed and the best anti-worm 

response to the 32° target. Worm data, at both speeds, shows a preference for smaller 

targets whereas anti-worm data shows preference for increasingly large stimuli (normal 

speed). There is a noticeable trend for the faster speed (280°/second), in which there is a 

consistent number of responses to the 4°, 8°, and 32° targets and a response half the spike 

count for the 16° target for both worm and anti-worm data. 
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Figure 4. Upward unit response to Worm stimuli. This data suggests a preference for smaller 

stimuli when they are moving along the long axis.  

 

Figure 5. Upward unit response to Anti-Worm stimuli. This data suggests that at normal speeds 
(140°/second) there is a preference for increasing large targets whereas at the faster speed 

(280°/second) show no such trend. 
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Contralateral Movement  
The unit that responds best to contralateral movement, defined as moving in the 

direction opposite of the connective cut, and smaller stimuli we hypothesize to be DIT1 

(Frye & Olberg, 1995). DIT1 responds strongly to smaller targets along the midline and 

contralateral motion. At normal speeds (140°/second) for both worm and anti-worm data 

we see a fall off response as the target gets larger. More specifically, for the worm 

stimuli, there are stronger responses to both the 4° and 8° targets whereas in the anti-

worm stimuli, there is a dramatic decrease from the activity in the 4° target to the 8° 

target. As in the upward selective unit, the faster speed (240°/second) had a consistent 

response in both the worm and anti-worm data; there was a parabolic response to the 

increasing stimuli. For this unit, neural activity favors the worm stimuli.  

 

Figure 6. Contralateral unit response to worm stimuli. At the normal speed (140°/second) there is 
a stronger response than at the faster speed (280°/second). At both speeds there is a decrease in 

neural activity as the size of the stimulus increases.  

0

5

10

15

20

25

30

35

40

4° 8° 16° 32°

S
p

ik
e
 C

o
u

n
t

Length of Stimulus (in degrees)

Neural Response to Worm Movement(Unit 1-C)

Normal

Fast



 12 

 

Figure 7. Contralateral unit response to anti-worm stimuli. The contralateral unit, believed to be 

DIT1, has a decrease in spike count, in both speeds as the height of the stimulus increases.  

Ipsilateral Movement  
 

The data from the ipsilateral movement is not clear enough to suggest only one 

possible TSDN responding, rather, the unit responding may either be MDT2 or DIT2 or 

some combination of the two. MDT2 responds better to smaller targets, whereas DIT2 

responds to a wider range of stimuli size(Frye & Olberg, 1995). However both prefer 

movements away from the midline and have large lateral receptive fields. At the normal 

speed (140°/second) for both worm and anti-worm data, there is a decrease in response as 

the stimulus gets larger. Similar to the contralateral unit, there is a larger decrease from 

the 4° target response to the 8° target response in the anti-worm data as compared with 

the worm data. Similarly, for the faster speed (280°/second) there is a decrease in 

response to increasing target size. The trend for both normal and fast speed in the worm 
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data show a continued decrease to increasing worm size. For the anti-worm data, there is 

a peak response to the 8° stimulus at the faster speed whereas the normal speed shows a 

general decline to growing anti-worm stimuli. MDT2 appears to be responding to the 

worm movement because of the strong selectivity for the smaller targets. However, in the 

anti-worm movement, it is unclear whether MDT2 is responding on its own, or if there is 

input from DIT2.  

 

Figure 8. Ispilateral response to worm stimuli. Both speeds have a decline in response to 

increasing worm size.  
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Figure 9. Ispilateral unit response to anti-worm stimuli. The normal speed response immediately 
declines as the target size increases. In the faster speed, there is first a peak response to the 8° 

target before there is a decline.  

Downward Movement 
 

Based on the unit’s preference for downward motion and smaller targets, we 

hypothesize that MDT4 may be responding (Frye & Olberg, 1995). The normal speed 

(140°/second) of the stimuli for both worm and anti-worm data show a very similar and 

almost identical decrease in response to an increasing target size. In both instances, there 

is about a 25 spike count difference between the 4° stimulus and the 8°. Similarly, the 

fast speed (280°/second) also has a fall off in response for both worm and anti-worm 

data, however the decline is not as steep. Overall, for both worm and anti-worm data, 

there is a consistent decline, and therefore neither stimulus appears to be preferred.  
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Figure 10. Downward unit response to worm stimuli. At both speeds, the smallest stimulus is 
preferred. Based on this selectivity of direction and stimuli size, we believe that MDT4 is 
responding. 

 

Figure 11. Downward unit response to anti-worm stimuli. As also seen in the worm data for the 
downward unit, there is a strong preference for the 4° target, regardless of speed, and a fall off 

response for larger stimuli.  
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Discussion 

 

For most, but not all of the TSDNs analyzed, we saw a decreased response with 

expansion in either the direction of movement. Unlike the T5(2) cells in the Bufo bufo, 

dragonfly TSDNs respond best to smaller stimuli. The stimuli more closely resemble 

prey items for a toad rather than dragonfly prey, and that may be the cause for th is 

variation in response. Dragonflies often eat insects smaller than themselves, including 

mosquitoes, gnats, flies, and moths (R.Bell & Whitcomb, 1961).  

A study in screech owls (Marti & Hogue, 1979) explains why predators in general 

prefer smaller prey to larger ones, a notion that may provide insight into the neural 

responses we saw for worm and anti-worm stimuli. A brief summary for a smaller prey 

preference include: 1) prey species that are smaller tend to be younger and less 

experienced 2) energy used to capture and kill large prey may not be worth the effort, 

especially since these prey may have more experience or are stronger 3) there could be a 

greater risk for injury from a larger item of prey. Dragonflies have two methods of 

foraging, either by being a hawker or percher; hawkers actively seek prey while perchers 

sit and wait for prey to come within their vicinity. In a foraging study (Baird & May, 

1997) with perching dragonflies, Pachydiplax longipennis, there is data that supports the 

notion that prey of a certain size are preferred. Prey that are too small or large are not 

sought after because of expenditure of energy required to capture them. Although the 

dragonflies used in our electrophysiogical  experiments are hawkers, there may be a 

similar behavioral response when preys of various sizes are presented. The dragonfly’s 

TSDNs are hypothesized to steer the dragonfly during prey tracking (Frye & Olberg, 

1995), therefore there is a possibility that the stimuli presented here were determined not 
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to be worth taking, since there is less response to both worm and anti-worm rectangles 

versus that of the 4°square.  

In some insects, such as the fly, butterfly and locust, there is data that support the 

presence of neurons that are either ‘fast’ or ‘slow’ (Horridge & Marcelja, 1992) in 

response to certain frequencies, a factor indirectly studied in this experiment. In our 

experiment we manipulated the speed of our stimuli, either at normal speed 

(140°/second) or faster speed (280°/second). The stimuli moving at the faster speed 

appeared onscreen for a half the amount of time as the normal speed, 250ms for faster 

and 500 ms for slower. To fairly compare the obtained results at the different speeds, we 

doubled the spike count for the fast data so that the onscreen time would be the same. As 

a result, there was a greater response to both worm and anti-worm stimuli for faster 

speeds than normal speeds, however, the response to 4° targets were still the strongest.  

From a study by Horridge and Marcelja (1992), we learn that fast neurons respond to a 

peak frequency at 15-29 Hz while responses of slow neurons peak at 1-10 Hz. With this 

specialization of cells, we can hypothesize that speed, much like size and direction, is 

another important factor in an animal’s evaluation of prey pursuit.  

The ability to differentiate prey from predator is a basic survival skill. Although 

thousands of years of evolution appears to have selected for animals that can efficiently 

and effectively use their senses to help them escape from danger, the process by which 

this occurs remains a mystery. There are several theories to explain how we can identify 

our environment, and objects in it that may or may not be harmful. These theories include 

objection recognition, recognition neurons, and spatiotemporal pattern recognizers. The 

object recognition theory has its basis in the belief that the brain contains a list of feature 
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detecting neurons that recognizes a whole object, even at different angles, instead of a 

combination of its parts. The theory of recognition neurons (Haber & Hershenson, 1980) 

involves the brain recognizing certain features and associating them with particular 

objects to help identify it. The final and most probable hypothesis is that of 

spatiotemporal pattern recognizer in which a limited group of neurons would all be 

activated by all perceived objects, but in a different temporal pattern. Such may be the 

case when Bufo bufo and dragonflies perceive stimuli.  

Future research on discerning prey from predator may be able to better address 

some of the shortcomings of this experiment. Perhaps behavior studies can be carried out 

to get a better understanding of how the dragonfly will respond or interact with such 

objects instead of only collecting data from its neurons. This behavioral study may be 

achieved by allowing the animal to move freely. Additionally, studies that manipulate 

stimuli size, perhaps decreasing stimuli size instead of increasing it are worth 

considering. Finally, considering how recently the dragonfly has been fed may be another 

factor worth considering; if the dragonfly has not recently eaten, it may be more apt to 

respond to a wide range of stimuli sizes.   
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