

Scalable Co-Evolution of Soft Robot Properties and Gaits

By

Davis K. Knox

Submitted in partial fulfillment

of the requirements for

Honors in the Department of Computer Science

UNION COLLEGE

June, 2011

Scalable Co-Evolution of Soft Robot Properties and Gaits

John Rieffel
Computer Science Department

Union College
Schenectady, New York 12308

rieffelj@union.edu

Davis Knox
Reamer Campus Center Box 1114

Union College
Schenectady, New York 12308

knoxd@union.edu

ABSTRACT
The field of soft robotics is very promising; applications in-
clude urban search and rescue and covert surveillance, but
these projects are not yet realized, partly because of the
difficulties in soft robot shape and locomotion design. Be-
cause of this, traditional design methods do not prove to
be effective. This project attempts to come up with solu-
tions to this soft robot design problem; utilizing a genetic
algorithm, a computer simulation of Darwin’s “Survival of
the Fittest,” this project attempts to make soft bodies move.
This genetic algorithm evaluates each solution in simulation,
and assigns each one a fitness based on distance travelled.
Furthermore, this project implements a technique called co-
evolution, which evolves two different things in lockstep, uti-
lizing new found advancements in one to help bolster the
other. This project evolves soft bodies’ physical properties,
values that affect how they move, alongside locomotion tech-
niques, the gaits defining their movement. Optimizations to
this process are realized in the use of scalable soft meshes;
this system starts on a simple mesh, and slowly increases its
density, reducing the overall computation time.

1. INTRODUCTION
The field of Soft Robotics hopes to go places that conven-
tional rigid robotics has not gone. Imagine a robot able to
traverse rubble, squeeze through small cracks and crevices,
and expand and contract. Unfortunately, soft robotics is
still in its infancy; almost all projects are not yet realized,
partly because of the complexities associated with having all
soft parts. Because of these complexities, traditional design
methods for both morphology and locomotion design for soft
robots does not prove to be effective [8]. In order to tackle
this hard design problem, it would be beneficial to turn to
unorthodox methods of design.

Previous work has shown that genetic algorithms are able
to approach hard design problems; in 2001, Pollack utilized
a co-evolutionary algorithm to design robots and their con-
trollers [5]. Also in 2001, an L-system driven genetic algo-

rithm was used to produce virtual creatures [3], and a gener-
ative genetic algorithm was used to produce table like struc-
tures [2]. More recently, genetic algorithms were applied
to the design of modular robots [4], and complex tensegrity
structures [8].

All of these projects show genetic algorithms’ ability to ap-
proach hard design problems, but they all employed genetic
algorithms in the physical design of these structures. This
work hopes that the genetic algorithm’s ability to approach
hard problems can be applied in an equally difficult design
realm in soft robotics: locomotion.

While physically building soft robots and testing locomotion
techniques in the real world would be the ultimate goal of
this research, we instead turn to computer simulation in or-
der to evaluate many possible solutions quickly and easily.
Until recently, computer simulation of soft bodies was not
supported by physics engines, but now, the newly released
version of NVidia’s PhysX video game physics engine adds
the functionality to simulate soft shapes. Previous work has
shown that PhysX is indeed capable of being harnessed by
a genetic system [7]. Our process utilizes PhysX in the sim-
ulation of possible locomotion techniques for our soft robot.

As we show, the system is able to produce novel solutions to
the soft robot locomotion problem. These solutions produce
what conventional thought could not, to make a soft robot
move.

2. THE PROJECT
This project employs the use of a co-evolutionary genetic
algorithm to evolve soft robot physical properties alongside
gaits on a static morphology in order to try to find locomo-
tion strategies. The gaits are defined by a set of muscles
and their firing patterns. Muscle placement is set by the ex-
perimenter before evolution, but may be changed between
runs in order to try out different placements. The firing
patterns for the muscles are evolved by the system. The
physics engine PhysX is utilized to simulate the soft bodies’
locomotion techniques. Inside of PhysX, the soft body is
represented by a soft mesh; this is a tetrahedron mesh con-
structed to represent the passed model file. The simulation
is bottlenecked by the density of the soft mesh; when the
mesh has few vertices, the simulation runs quickly, but if
the soft mesh has many vertices, the simulation runs much
more slowly. To speed up computation, the system starts
evolution on a low density mesh, and increases its density

Figure 1: This is an example of a complex soft mesh, or one with very high vertex density.

over time.

2.1 Co-Evolutionary Genetic Algorithms
To understand what a co-evolutionary genetic algorithm is,
it is necessary to first understand a genetic algorithm. A ge-
netic algorithm can be described as a computer simulation
of Darwin’s “Survival of the Fittest”. The algorithm starts
out with a randomly produced starting population of a size
set by the experimenter. Then, all members of the popu-
lation are evaluated by some fitness function. After every
member of the population has a fitness, it is sorted and the
weaker members of the population are culled. To refill the
population, the algorithm utilizes mutation, changing one
aspect of a solution, and crossover, taking parts of two par-
ents and combining them into one solution, on the remain-
ing fit members of the population. The process then starts
again, with another cycle of evaluation, sorting, culling, and
repopulation. Over many iterations of this cycle, the solu-
tions produce better and better results. The process ends
when a plateau in fitness is reached or when stopped by the
experimenter [1].

A co-evolutionary genetic algorithm follows much of the
same structure as a genetic algorithm, but instead of only
evolving one thing it evolves two. Co-evolutionary genetic
algorithms are employed when there are multiple things defin-
ing the end result of evaluation. Because evolving both
things at the same time would introduce too many vari-
ables into the system, it instead evolves one at a time. A
co-evolutionary algorithm can then be thought of residing in
two phases. The first is evolving one of its qualities for a set
number of generations while the other remains static. Then,
it takes its best solution at that point, and plugs it into the
evolution of the other defining quality. Using this method,
a co-evolutionary genetic algorithm produces results where
each defining quality is shaped by the other, and therefore
overall fitness is hopefully higher than if they were evolved
separately.

2.2 Scalable Soft Meshes
As previously stated, this project uses NVidia’s PhysX physics
engine in order to evaluate the locomotion techniques of the
soft bodies in simulation. PhysX sees the soft bodies as

tetrahedron meshes. These meshes are made up of some
number of vertices and can be simple or complex in their
vertex density. In the real world, a soft body would have in-
finite “vertices”, but in simulation this is not the case. The
fewer vertices a mesh has, the faster it will run in simula-
tion. The downside of this is that because of the low vertex
count, the mesh is not a very realistic representation of our
soft body. Therefore, if a mesh is dense in vertices, while it is
much closer to a realistic representation of our soft body, the
simulation runs much slower. This system allows the density
of the mesh to be changed over the course of an experiment,
starting on a simple mesh and increasing its density over
time, decreasing the overall computation time.

Figure 2: This is an example of a simple soft mesh,
or one with a low vertex density.

2.3 Morphologies and Setting Muscles
The morphology of the soft body as well as the muscle place-
ments on the morphology are static during evolution. So
where do these things come from? The soft body shape
that this system uses was engineered by hand, and the mus-
cle placement is set by the experimenter.

To do this, the experimenter brings the hand engineered
model into a modified version of PhysX viewer. This appli-
cation allows the experimenter to set the mesh to the desired
vertex density and add muscles where desired. At any time,
this application can export an .obj and .tet file which can be
imported into our system where the evolution takes place.

The experimenter is able to add a muscle between any two
vertices in the soft mesh, as seen in figure 3. Since vertex

Figure 3: This is an example of a soft mesh in our modified PhysX viewer application. The yellow lines
between vertices represent muscles that the experimenter has added to the soft mesh. They have also been
manually bolded to make them easier to see. When exported, an .obj and .tet file are created with the soft
mesh, along with a .txt file that keeps track of muscle placement.

position on the mesh varies between mesh densities, when
a muscle is added to the soft mesh, the positions of the
two end point vertices are stored. Then, when the experi-
menter makes the mesh more dense, the muscle is updated
by searching through all vertices, selecting the ones closest
to the previous end point positions.

This application also allows for easy addition of symmetri-
cal muscles to the soft mesh. The experimenter first adds
muscles to one side of the soft mesh. Then, with the simple
press of a button, the program adds symmetrical muscles to
the other side of the soft mesh. This process involves taking
the positions of the two muscle vertices, translating to the
opposite side of the soft mesh, and ray casting back into the
soft mesh to find opposite positions on the soft mesh. Then,
a simple search is performed to find the closest vertices to
these positions, creating a symmetrical muscle. This process
is then repeated for all muscles, finding symmetrical vertices
for them all.

2.4 The System
The problem of locomotion in soft robotics is a chicken and
egg problem. In order to design gaits for the soft robot,
the physical properties of the soft robot material must be
known so that the gaits can be tailored to how the soft body
behaves in the world. On the other hand, in order to choose
the physical properties of the soft body material, the types
of gaits must be known so that properties can be chosen to
maximize the potential of the gaits.

The system that performs the work of coming up with lo-
comotion techniques utilizes a co-evolutionary genetic algo-
rithm that evolves physical properties along side gaits. In
order to approach this problem, the system starts with giv-
ing a “best guess” for the physical properties, and sets the
firing pattern of each muscle to random. Then, through
the evolution of these qualities, both physical properties and
gaits can be refined to get more and more distance travelled.

To evaluate how fit each solution actually is, it is dropped
into simulation with the given physical properties and mus-

Figure 4: This is a diagram of the co-evolutionary
system; gaits are evolved using static physical prop-
erties. Then the best gait is made static, and the
system evolves physical properties. This cycle con-
tinues until stopped by the experimenter.

cle firing patterns and left to simulate for eight thousand
time steps. After these eight thousand time steps, the total
distance that the soft body moved is recorded and assigned
as that solution’s fitness. This process is repeated for each
solution in the population, which there are forty. Every
ten generations, the system switches from evolving gaits to
evolving physical properties or from evolving physical prop-
erties to evolving gaits. Upon switching phases, the system
takes the current best solution of that phase and sets it as
static in the evolution of the other phase.

The point at which the mesh becomes more dense is set by
the experimenter. During the experiment, the mesh can be
made more dense as often as the experimenter desires, as
long as they have exported the corresponding meshes from
the modified PhysX viewer application as discussed in the
previous section.

2.4.1 Defining Gaits
In the system, a gait represents a set of firing patterns for the
muscles on the soft body. A firing pattern is defined by three
separate variables: duty cycle, phase, and period. Duty

Figure 5: This is an example of a soft mesh that has “limp” physical properties. More specifically, this soft
mesh would have low stretching stiffness, because it is not holding its shape very well. Also, it would still
have relatively high volume stiffness, because is still retains much of its original volume.

cycle represents the percent of time that a muscle is being
pulled during its period. The period of the firing pattern
represents the time between rising edges in the muscle’s duty
cycle. Finally, the phase of the firing pattern represents the
delay between from when the simulation’s period starts and
the muscle starts its own period cycle.

Figure 6: These two firing patterns define when
their respective muscles are being pulled. When the
line rises, the muscle contracts, and when the line
falls, the muscle is released. A gait is made up of
many firing patterns, one for each muscle.

2.4.2 Physical Properties
The physical properties that this system is able to manip-
ulate is limited by what PhysX allows the experimenter to
set. Of the set of possible properties, this system manip-
ulates four: stretching stiffness, volume stiffness, damping
coefficient, and friction.

• Stretching stiffness dictates how much a soft body
attempts to hold its starting shape. Therefore, a soft
body with very high stretching stiffness will try its
hardest to maintain its shape, while a soft body with
very low stretching stiffness will flop into a pool on the
ground.

• Volume stiffness dictates how much a soft body at-
tempts to hold its starting volume. While this does not
have as drastic an effect as stretching stiffness on the
soft body’s behavior in simulation, it does still change
how the soft body interacts with the world. For in-
stance, a soft body with very low stretching stiffness
will pool onto the ground, but if the volume stiffness

remains high, the soft body will still be three dimen-
sional. If volume stiffness is very low alongside very
low stretching stiffness, the soft body will become a
two dimensional pool on the ground, like a liquid.

Figure 7: This soft mesh has “stiff” physical prop-
erties. More specifically, this soft mesh has high
stretching and volume stiffness, because it maintains
its volume and shape.

• The damping coefficient of a soft body changes how
fast it returns to equilibrium after moving in the world.
With a very high damping coefficient, if a soft body
is pulled it will oscillate very little before returning
to equilibrium. With a very low damping coefficient,
if a soft body is pulled it will oscillate at its natural
frequency defined by stretching and volume stiffness
before returning to equilibrium.

• The friction of the soft body dictates the amount
of friction that the soft body has with the ground in
simulation. If friction is zero, if the soft body can get
moving it will not stop, while if the friction is maxi-
mum, the soft body will be affected by full friction if
it starts to move.

Some bounds were put on all of these properties in the sys-
tem. If stretching stiffness is let to be all possible values,
half of the time the soft body is a pool on the ground inca-
pable of utilizing the evolving gaits. Likewise, if friction is

Figure 8: Graphed data from two runs, one static and one scalable. The blue line shows the fitness over time
of a scalable run from the low mesh to the medium low mesh. The large dip in fitness around the ten hour
mark occurs when the mesh switches from low to medium low.

allowed to be too low, the walking patterns of the soft body
have no affect because it cannot push off of the ground in
simulation.

2.5 Results
The system was able to produce novel solutions to the soft
robot locomotion problem. In some cases, the scalable mesh
run performed much better than the corresponding static
mesh run. However, in other cases, the scalable mesh run
did not perform significantly better than the corresponding
static mesh run, and in some cases, the static run actually
performed slightly better than the scalable run.

Table 1: Experimental Results
Fitness Hours End Mesh Mesh Switches
40.16 34 Low 0
46.94 42 Low 0
24.61 72 Max 0
14.86 25 MedLow 0
21.47 25 MedLow 1
11.97 24 Med 0
12.86 24 Med 1
15.99 48 Med 0
16.65 48 Med 1
15.91 48 Med 2
6.18 46 Max 4

In the experiments run during this work, there were five
meshes available to the experimenter: low, medium low,
med, high, and maximum. All of the runs listed above ex-
cept for the static runs that did not start on the low mesh,

started on the low mesh. Therefore, runs that are listed
with a mesh switch count of one, changed from the low
mesh to their end mesh. Runs listed with a mesh switch
counter greater than one ran on an intermediate mesh(s)
before reaching their end mesh.

The limitation of the scalable mesh system is seen in the
large loss of fitness between the different meshes, as observed
in figures 8 and 9. This is because when the soft meshes
are augmented to contain more vertices, it fundamentally
changes how they act in simulation. Furthermore, the phys-
ical properties and gaits specifically tailored to those meshes
do not transfer as well as hoped when switching from mesh
to mesh. Still, it is important to realize that while the bene-
fits of using scalable meshes in the evolution process is not as
significant as hoped, there is still enough transfer of fitness
so that the scalable system still does well and out performs
static evolution most of the time.

One outlier from the rest of the data is the last entry in
the table; the scalable run that went through all of the
meshes from low to max. After forty six hours of evolu-
tion, the end result only had a fitness of 6.18 units travelled
in the PhysX simulation. This can be explained by the fact
that the run changed meshes four times. Because of all of
these mesh switches, and the fact that each time the mesh
is switched there is a large dip in fitness, the scalable mesh
feature turned from a benefit to a detriment.

We can see this trend continue in the data visualized in
figure 9. After the end of all the runs, the scalable run with
one mesh switch performed the best, with a fitness of 16.65

Figure 9: Graphed data from three runs. The blue line shows a static medium mesh run. The red line shows
a scalable run with two mesh switches, one around the ten hour mark, and one around the twenty two hour
mark. The green line shows a scalable run with one mesh switch around the ten hour mark. At the end of
the runs, all of them have a similar fitness, but the one switch scalable run is the highest, followed by the
static run, and lastly the two switch scalable run.

units travelled. In second place was the static run, with a
fitness of 15.99, and lastly was the scalable run with two
mesh switches, which had a fitness of 15.91 units travelled.

It is also important to point out that a genetic algorithm
is still a form of random search. During each evolution, the
possibility of finding a much better solution is mostly chance
based; in figure 9, the static run had a very large increase
in fitness at around the six hour mark. Before and after
this large fitness increase, the static run increased its fitness
very slowly. If this breakthrough had not happened during
the six hour mark, the end result of the run might show
both scalable runs largely outperforming the static run; at
the end of the day, this system is still playing the evolution
lottery.

2.6 Difficulties
PhysX is a complex system with little documentation avail-
able. Additionally, the soft body features of PhysX are ex-
tremely difficult to find documentation on because they are
technically still in BETA. This being said, modifying PhysX
viewer was a hard task to accomplish. It was essentially
written as a closed product, and modifying the code to do
the required tasks meant jumping through seemingly endless
hoops and constantly tracing calls line by line with debug-
ger software. Eventually, after the modifications to PhysX
viewer were complete, the largest problem with this project
reared its ugly head.

Since the soft body features of PhysX are still in beta, all

functionality is not completely bug free. A problem arose
with one of the most essential parts of the system’s code,
pulling a muscle. The code to pull a muscle entails apply-
ing equal and opposite forces between the two vertices of a
muscle, but in addition to simulating a muscle pull, this also
causes the soft body to spin around like a top. NVidia was
contacted about the bug and they confirmed that they could
reproduce it, but unfortunately a fix is not available at this
time. Hopefully when the soft body features of PhysX leave
BETA stage, this bug will no longer exist.

In order to still be able to run our system with this bug
affecting simulation, a work around was implemented. An
equal and opposite force was applied to a vertex on each end
of the soft body along an axis in simulation every time step.
This constant force locked the soft body to stay aligned with
the axis. While this work around let the system evolve gaits
that moved the soft body in a straight line, it also limits
the genetic algorithm’s search space, which is a bad thing.
One of the best qualities of genetic algorithms is their ability
to produce unexpected working results. It could be that a
effective gait for our soft body would be to walk in circles,
spinning in a line, but this work around inhibits these non
linear gaits from being discovered.

Another problem with the system was the affect that scal-
able meshes had on the pulling of muscles. If an equal force
is applied to pulling a muscle on different mesh densities, the
mesh with the higher vertex density will qualitatively pull
much harder than the lower density mesh. No documen-

tation exists on this occurrence, and so to get muscles on
different meshes to pull with the same strength, the exper-
imenter was required to go into simulation and slowly walk
through the meshes, slighting tweaking and re-tweaking the
pull strengths of the muscles until they were are qualitatively
equal across the meshes.

2.7 Discussion
The genetic algorithm was very good at finding weaknesses
with the system. Although the initial hope of utilizing scal-
able meshes as a way to greatly reduce computation time
allowed the scalable system to outperform a static system
in some experiments, it is clear that full utilization of this
concept is limited. The types of gaits that the system pro-
duced varied depending on what mesh the evolution started
on. For instance, all evolutions that started on the “low”
mesh produced bi-pedal gaits because bi-pedal gaits were
very effective on the low mesh. Conversely, gaits produced
from the “maximum” mesh produced wave like gaits that
initiated a wave movement on one end of the soft mesh and
propagated it though the soft mesh in order to propel it for-
ward. While wave-like gaits worked well on the “maximum”
mesh, the bi-pedal gaits produced on the lower meshes did
not translate well to the “maximum” mesh. Therefore, the
starting mesh for an experiment must be chosen in relation
to which mesh the experiment will end on. This limits the
differences in meshes available to the experimenter, and also
the large computation speed differences that go along with
them.

In addition, the number of mesh switches is limited by this
loss in fitness between different densities. Compared to
static evolution, the scalable system seemed to do better
when there were as few switches as possible, namely one.
In these cases, the scalable mesh system acted as a “spring
board” to higher fitness, as the majority of the computation
time still took place on the final mesh.

Because of these points, it is unclear if this method will ever
be completely viable for real world applications. If the soft
bodies’ locomotion fitness drops so substantially between an
increase of only a few thousand vertices, the drop in fitness
could be even higher between an extremely high resolution
mesh and the real world, where the soft body would essen-
tially have infinite “vertices”.

On the other hand, it could be that some features of the
current system are not working as expected, and are causing
this large decrease in fitness between mesh densities. Further
exploration of the current system and its enclosed variables
are necessary in order to pin the blame for these large fitness
drops solely on the use of scalable meshes.

Along the same lines, because there is no mathematical rela-
tionship between muscle pull strengths, and also because of
the fact that they were balanced by hand, there could be dif-
ferences in the pull strengths between the different meshes.
These pull differences could be a factor in the fitness loss
between different density meshes.

3. CONCLUSIONS
The scalable co-evolutionary system was able to produce
novel solutions for the soft robot locomotion problem. The

system evolved soft body physical properties alongside gaits
on a static morphology to reach these fit locomotion tech-
niques. Some optimizations to this process were realized in
the use of scalable soft body meshes, but their use was lim-
ited by the fact that a loss of fitness was seen when a switch
of mesh occurred.

4. FUTURE WORK
It is worth noting that this scalable mesh process is not a
refined one. It is very possible that by the tweaking some
of the variables in the current system like when to switch
from mesh to mesh, how long to run experiments, which
meshes to start and end on, and how different the meshes
are, results could be produced which dwarf the ones shown
in this paper.

Eventually, after this work is complete, the next step would
be to use genetic algorithms to not only design the loco-
motion techniques for soft robots, but also to design their
morphologies as well. A generative grammar like the one
proposed by Rieffel and Smith could power a genetic algo-
rithm to create new soft tetrahedral meshes for soft robot
morphologies [6].

5. REFERENCES
[1] J. H. Holland. Genetic algorithms. Scientific American,

1992.

[2] G. S. Hornby and J. B. Pollack. The advantages of
generative grammatical encodings for physical design.
In Congress on Evolutionary Computation, pages
600–607, 2001.

[3] G. S. Hornby and J. B. Pollack. Evolving l-system to
generate virtual creatures. Computers and Graphics,
25(6):1041–1048, 2001.

[4] G. S. Hornby and J. B. Pollack. Generative
representations for the automated design of modular
physical robots. Robotics and Automation, IEEE
Transactions on, 19(4):703–719, August 2003.

[5] J. B. Pollack. Three generations of automatically
designed robots. Artificial Life, 7(3):215–223, 2001.

[6] J. Rieffel and S. Smith. A face-encoding grammar for
the generation of tetrahedral-mesh soft bodies. pages
414–420, 2010.

[7] S.-F. N. S. Z. H. H. S. R. J. Rieffel, J. and B. Trimmer.
Evovling soft robotic locomotion in physx. 2009.

[8] V.-C. F. Rieffel, J. and H. Lipson. Automated discovery
and optimization of large irregular tensegrity structures.
Computers and Structures, 87(5-6):368–379, 2009.

	2011_KnoxD2.doc
	2011_KnoxD.pdf

