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Abstract 

DANISE, MICHAEL      The tradeoff between polyuronic acid content and   

photosynthesis rates in Sphagnum. Department of Biological Sciences, 

June, 2011. 

 

ADVISOR: Prof. Steven K. Rice 

Sphagnum mosses often dominate peatland ecosystems.  Because of the low 

availability of nutrients in these environments, Sphagnum mosses have developed a 

cation exchange system within their cell walls to take up nutrients using polyuronic acids 

(PUA).  Increasing amounts of PUA may come at a physiological tradeoff and cause 

decreasing photosynthetic rates. The objectives of this study were 1) to assess variation in 

polyuronic acid content and structure by analyzing component monomers from three 

different Sphagnum species representative of different microhabitats, 2) to investigate 

how this variation affects the cation exchange capacity of the peat moss species, and   3) 

to evaluate whether uronic acid concentrations show a negative association with 

maximum photosynthetic rates.   Maximum photosynthetic rates were lowest among 

species that grew in nutrient poor environments. Cation exchange capacity was measured, 

with the species that grew in less nutrient poor having the lowest capacity.  Cell walls 

were isolated, hydrolyzed, and an evaluation of monomer concentrations was done. The 

data from this experiment was inconclusive.  While the protocol was shown to be an 

effective method to quantify the uronic acid content of the species, the analytical 

techniques may have been too simplistic causing the results to be skewed.   

 

 

 



iii 
 

Table of Contents 

 

Contents 

Abstract ............................................................................................................................................ ii 

Table of Contents ............................................................................................................................ iii 

Introduction ..................................................................................................................................... 1 

Methods ........................................................................................................................................... 6 

Maximum Photosynthetic Rate ................................................................................................... 6 

Cell Wall Extraction ...................................................................................................................... 7 

Cation Exchange Capacity ............................................................................................................ 7 

Polyuronic Acid Content .............................................................................................................. 8 

Results .............................................................................................................................................. 9 

Maximum Photosynthetic Rate ................................................................................................... 9 

Cell Wall Analysis ....................................................................................................................... 11 

Cation Exchange Capacity .......................................................................................................... 12 

Polyuronic Acid Content ............................................................................................................ 13 

Discussion ...................................................................................................................................... 15 

Acknowledgements........................................................................................................................ 24 

Literature Cited .............................................................................................................................. 25 

 

 



1 
 

Introduction 

 Boreal ecosystems are integral to the world’s carbon cycle, as they store 180 to 

455 petagrams, or about one-third of the world’s soil carbon pool (Smith et. al., 2004), 

much of which is stored in peatlands. These peatland systems are primarily located in the 

northern hemisphere in the USSR, USA, Canada and Fenno-scandian countries (Gorham, 

1991), and have a potential major impact on global climate change (Bridgham, 1995).  

Peatlands are characterized by having severely limited or no nutrient input from runoff.  

Instead they must obtain their nutrient supply from wet deposition from dissolved 

nutrients in rainwater or dry deposition from the atmosphere.  A second defining 

characteristic is that the peatlands are usually acidic.  This serves to preserve plant matter 

by limiting the growth of microbes, which leads to the buildup of the peat deposits, and 

also limits the species of plants that can survive in the habitat. 

 Sphagnum mosses are a fundamental species of peatland ecosystems and they 

play an important ecological role, as they thrive in the nutrient poor conditions and 

influence the succession (Soudzilvskaia, 2010) and patterning of peatlands (Eppinga, 

2009).  Species of Sphagnum have several physiological traits that allow them to survive.  

Sphagnum mosses, unlike vascular plants, do not have roots to scavenge for water.  

Instead their leaves are made up of two different types of cells: large hyaline cells 

surrounded by chlorophyllose cells that are photosynthetically active.  Hyaline cells 

function to store water for the plant. They are dead and have pores to allow for water 

movement into and out of the cell. To salvage enough resources in the nutrient poor 

environment, Sphagnum mosses have also developed a cation exchange system within 

their cell walls to take up nutrients using polyuronic acids (PUA).  These compounds, 
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made up of monomers such as galacturonic acid and glucuronic acid, are found in the 

plants’ cell walls and are able to give off a proton and in exchange take up a cation from 

the environment that the plant can use, such as NH4
+
, Mg

2+
, Ca

2+
, and K

+ 
(Spearing, 

1972; van Breeman, 1995).   

These PUAs are important keystone compounds in the bog ecosystem.  They 

allow for nutrient uptake, account for as much as 25% of the dry weight of Sphagnum 

(Clymo, 1964), and acidify the bog as they release more H
+
 ions into the environment.  

PUA have been shown to exhibit an ability to preserve tissue, a common characteristic of 

bogs. Their ability to bind nitrogen slows the growth of microbes that would otherwise 

decompose tissue and allows the peat mosses to thrive (Borsheim, Christensen, & 

Painter, 2001).  The PUA compounds may be used in the transport of nutrients around the 

Sphagnum moss (Rydin, & Clymo, 1989) and are a factor in the characteristic patterning 

of peatlands (Eppinga, et. al., 2009).  The acidification of the environment by Sphagnum 

results in an environment that is difficult for many vascular plants, which cannot take up 

the necessary nutrients for growth in such an environment.  The PUA and acidifying 

properties of Sphagnum are important in shaping the environment for other plants 

(Eppinga, et. al., 2009).  

Within the bog itself there are several different microhabitats.  The “hollow” 

habitat consists of the low levels that are closer to the water table.  They have relatively 

more nutrient content when compared to other areas of the bog and are inhabited by 

species such as S. fallax. The “hummock” areas of the bog are raised areas, or mounds in 

the bog.  Because they are higher above the water table they more nutrient poor as they 

receive less nutrients from decay, and rely solely on atmospheric deposition.   Only 
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Sphagnum species that are able to survive in really low nutrient availability, such as S. 

fuscum, are found in these areas. Species of Sphagnum have developed different 

adaptations and physiology to thrive in the microhabitat they are found in.  One example 

is water holding capacity.  Titus and Wagner (1984) looked at two species, S. fallax and 

S. nemoreum, and their water holding capacity.  S. nemoreum, a hummock species has 

developed physiological adaptations to hold a higher capacity of water and lose it more 

slowly, allowing it to dominant hummock areas, were water availability was low.  S 

fallax, which dominates hollow microhabitats did not have the same physiological traits 

and was not able to move into low water environments (Titus and Wagner, 1984).  The 

hyaline cells that are used by Sphagnum to store water vary in their size among different 

species. Characteristics such as pore size and number also vary by species.  Another 

example of Sphagnum physiological adaptation is that as distance above the water table 

increases (i.e. hollow microhabitat to a hummock microhabitat) the amount of 

galacturonic acid contained in the organism and its CEC also tend to increase (Spearing, 

1972).  As the level above the water table increases, conditions become more nutrient 

poor, therefore species that have adapted and have a physiology that will thrive in the 

environment (high CEC to bind free nutrients), are dominant. 

These differences in physiology can be used to show important trade-offs in 

Sphagnum.  Species that have the highest photosynthetic rates do not dominate 

universally.  They tend to dominate in areas closer to the water table where other factors 

such as nutrients and water availability are not limiting.  Similarly, species that have high 

CEC do not dominate universally either.  They tend to dominate areas where nutrients are 

limiting.  In these areas species with high photosynthetic rates are not able to outcompete 
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them.  The differences in the species present in these hollow and hummock areas clearly 

demonstrate these important functional trade-offs in these mosses.  For example there is 

an inverse relationship between the water holding capacity of the mosses and their 

maximum rate of photosynthesis (Rice et. al., 2008).  Species such as S.fallax, which 

have relatively small hyaline cells, can allocate a greater percentage of their leaves 

towards photosynthetic cells, but by doing so, sacrifice water storage ability. Species 

such as S. fuscum, which have large hyaline cells, devote a greater percentage of their leaf 

volume towards water storage, but sacrifice photosynthetic ability.  Therefore in 

environments like hollows, where water is less limiting, smaller hyaline celled species are 

able to dominant other species by outcompeting them photosynthetically.  In 

environments such as hummocks, where water is more limiting, species that have larger 

hyaline cells are able to dominate, even though they have a lower maximum 

photosynthetic rate, because they can hold more water and resist desiccation during 

drought. 

Other studies have looked at the physiological differences among species as the 

water table level increases.  Differences in galacturonic acid content (Spearing, 1972), 

cation exchange capacity, (Spearing, 1972), and photosynthesis rates (Titus, 1982) have 

been shown to vary with level above the water table.  However no studies have 

demonstrated a link between an increase in the peat moss’ CEC, PUA content, and a 

decrease in photosynthetic rates.  By looking at only one physiological trait, studies have 

shown adaptations of species to their environment but they have not shown trade-offs 

between the traits, or more fundamentally the cost of investing heavily in one trait.  

Studies such as Spearing (1972) only show the benefit to having high galacturonic acid 



5 
 

(GalA) content.  She fails to investigate the cost to synthesizing galacturonic acid.  

Because high galacturonic acid containing species only dominate high above the water 

table and not everywhere, there must be a cost to synthesizing GalA that allows other low 

GalA species to outcompete them closer to the water table.  Our study seeks to further 

explore the costs of having higher CEC and PUA content, in terms of a trade-off with 

maximum photosynthetic rates.      

 We hypothesize that a similar relationship is true between PUA content and 

maximum photosynthetic rates of Sphagnum.  In our overall study we will measure the 

concentration of different PUA monomers in species of Sphagnum, the cation exchange 

capacity (CEC), and the maximum photosynthetic rate of three mosses species that 

occupy different microhabitat.  We hypothesize that mosses found in low nutrient 

environments will have higher CEC and PUA content than high nutrient species because 

they will need to scavenge the environment for more resources.  There are two main ways 

that species could achieve this higher level of PUA.  The first way would be for the 

Sphagnum moss to keep the concentration of PUA in the cell wall the same, but just have 

more cell walls.  The second would be to have the same amount of cell walls but have a 

higher percentage of the cell walls devoted to PUA.  Some combination of these two 

methods would have to account for higher PUA.  As a trade-off, low nutrient 

environment mosses will have lower maximum rates of photosynthesis, as they will have 

devoted more resources to building PUA and less towards building chloroplasts, 

photosynthetic enzymes and other materials for photosynthesis.   

The objectives of this study are to use a comparison approach with three 

Sphagnum  species from different microhabitats 1) to assess variation in polyuronic acid 
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content and structure by analyzing component monomers and their linkages from 

different Sphagnum species, 2) to investigate how this variation affects the cation 

exchange capacity of the peat moss species, and   3) to evaluate whether polyuronic acid 

concentrations, as well as specific monomer concentrations, affect maximum 

photosynthetic rates.  

Methods 

Maximum Photosynthetic Rate 

Samples of S. fallax, S. magellanicum, and S.  fuscum were collected in rings of 

3.5cm PVC pipe from Twila’s bog in Queensbury, NY.  Efforts were made during 

collection to keep moss canopies intact.  Samples were maintained in a controlled 

environment with 16 hours of light per day for 2 weeks and kept between 16⁰C and 18⁰C. 

Before analysis, excess water was removed by blotting dry with paper towels from the 

top and bottom of the sample tubes for approximately 15 minutes. Light curves were 

established for each of the three species to determine saturating light levels. Six samples 

of each species were analyzed at 95% saturating light levels (at 550 μmol photons m
-2

s
-2

) 

for maximum photosynthesis rates using a LICOR 6400 photosynthesis system (LiCor, 

Lincoln, NB).  Measurements were taken at temperatures ranging from 25⁰C to 28⁰C and 

humidities ranging between 75% and 85%.   Following photosynthetic analysis, the 

samples were dried at 65 ºC for 72 hours to remove excess water and dry weights for 

each sample where taken.  Photosynthesis was then calculated on per area and per dry 

weight bases.  Statistical significance was measured using ANOVA implemented in 

SPSS. (Somers, NY). 
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Cell Wall Extraction 

 Samples of S. fallax (3 samples), S. magellanicum (3 samples) and S. fuscum (2 

samples) were collected from Twila’s bog.  Branches from the top 1 cm below the stem 

and capitulum were removed and stored in a freezer at -70⁰C until needed.  The 

procedure for cell wall extraction followed Zablackis et. al. (1995).  Samples of each 

species were ground in liquid nitrogen to a powder to help break up the tissue. 

Approximately 0.3g of powder were put into each sample tube.  Then the sample tubes 

were extracted with 1.5% SDS followed by two extractions with 0.5% SDS to break open 

the cell membranes, with each extraction being followed by a 5 minute centrifuge at 3000 

rpm. Then the sample was extracted 0.5M KPO4 and 1.5M KPO4 and centrifuged again.  

After a wash with water, the sample was extracted with a phenol:acetic acid:water (2:1:1) 

solution and dried with acetone twice. Samples were air dried for 2 weeks, then dried at 

50 C for 24 hours, and then analyzed.  Cell wall content was calculated as sample dry 

weight after extraction divided by sample dry weight before extraction. Statistical 

significance was measured using Vassar Statistics (ANOVA). 

 

Cation Exchange Capacity 

 The cation exchange capacity (CEC) of the three species was determined using 

the procedure outlined by Soudzilovskaia et. al. (2010).  Six 100 mg samples from each 

of the three species were placed into mesh bags.  Dry tissue was used as there is no 

significant difference in CEC between wet and dry tissue (Soudzilovskaia et. al., 2010).  

The sample bags were then placed in a beaker with 20 ml of 0.02M hydrochloric acid for 
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1 hour to remove all ions that the PUA were holding.  After the hour long treatment, the 

sample bags were placed into 500 mL of milliQ water for 20 minutes to remove the acid 

from the tissue. The sample bags were then put into a treatment of 20 ml of 0.02M 

sodium chloride, which saturated all cation exchange sites on the plant tissue with sodium 

ions. The sample bags were left in this solution for 2 hours in total (two 1 hours 

treatments).  After the two changes of sodium chloride, the sample bags were again 

washed in 500 mL of milliQ water to remove all sodium ions that were not bound to 

cation exchange sites. The sample bags were then placed in a final treatment of 0.02M 

hydrochloric acid to unbind all sodium ion from the cation exchange sites and release 

them into solution.   The resulting solution was then be analyzed for sodium content to 

determine CEC, using inductively coupled plasma mass spectrometry (ICP-MS). 

 

 

Polyuronic Acid Content 

 

 The content of polyuronic acid content was determined using a protocol outlined  

by Foster et. al. (2010). First the cell walls were broken down into monomers.  Two mg  

of dry cell wall material (obtained from cell wall isolation procedure) was taken from the  

six sample of each species and placed into a glass screw cap tube.  Two addition sample \ 

tubes containing  two mg of galacturonic acid and glucuronic acid respectively, were  

taken through the treatment to use as eternal standards.  To make sure that all the material  

was attached to the side of the tube, 250 μL of acetone was used to wash the sides of the  

tube and collect all the material at the bottom.  The acetone was then evaporated off.  The  



9 
 

cell walls were then hydrolyzed by adding 250 μ of 2 M trifluoroacetic acid, capping the  

tubes and autoclaving the samples at 121⁰ for a 90 minute cycle. Following the  

incubation period, the resulting solution was then centrifuged for 10 minutes at 10,000  

rpm to separate the solid crystalline cellulose from the dissolved matrix monosaccharides,  

which contain monomers of the polyuronic acids.  Once the samples had been  

centrifuged, 75 μL of the supernatant was pipette off and placed into test tubes. The  

trifluoroacetic acid was then evaporated off leaving a film of non-cellulose cell wall  

monomers.  To remove all traces of acid, 300 μL of 2-propanol was added to each sample  

and evaporated off three times.  Ten mL of water was added to each sample as a solvent.   

The samples were then analyzed for uronic acid monomers using a triple quadrupole  

liquid chromatography- mass spectrometer.  

 

Results 

Maximum Photosynthetic Rate 

 

 The maximum photosynthetic rate on a per area basis differed significantly 

between S. fallax, S. magellanicum, and S. fuscum (p<0.01 among all species, ANOVA).  

S. fallax had the highest maximum photosynthetic rate/area and averaged 4.28 μmol 

CO2/m
2
/s.  S. magellanicum averaged 2.73 μmol CO2/m

2
/s.  S. fuscum had the lowest 

photosynthetic rate/area and averaged 1.66 μmol CO2/m
2
/s (figure 1).   
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Figure 1: Maximum photosynthetic rate on a per area basis differed significantly between 

S. fallax, S. magellanicum, and S. fuscum (p<0.01 between all species, ANOVA).  S. 

fallax averaged 4.275 μmol CO2/m
2
/s.  S. magellanicum averaged 2.727 μmol CO2/m

2
/s.  

S. fuscum averaged 1.662 μmol CO2/m
2
/s. 

 

The maximum photosynthetic rate on a per dry weight basis also differed 

significantly between S. fallax, S. magellanicum, and S. fuscum (p<0.01 between all 

species, ANOVA).  S. fallax had the highest photosynthetic rate/dry weight and averaged 

0.0149 μmol CO2/g/s.  S. magellanicum averaged 0.0079 μmol CO2/g/s.  S. fuscum had 

the lowest photosynthetic rate/ dry weight and averaged 0.0012 μmol CO2/g/s (figure 2).   
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Figure 2: The maximum photosynthetic rate on a per dry weight basis differed 

significantly between S. fallax, S. magellanicum, and S. fuscum (p<0.01 between all 

species, ANOVA).  S. fallax averaged 0.0149 μmol CO2/g/s.  S. magellanicum averaged 

0.0079 μmol CO2/g/s.  S. fuscum averaged 0.0012 μmol CO2/g/s. 

 

Cell Wall Analysis 

For all three species the cell wall accounted for over 70% of dry weight.  S. fallax 

averaged 71.42% cell wall/dry mass, S. magellanicum averaged 77.60% cell wall/ dry 

mass, and S. fuscum averaged 79.48% cell wall/dry mass (Figure 3).  None of these 

differences were significant. 
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Figure 3: The fraction of dry weight made up of cell wall. S. fuscum had a cell wall/ dry 

weight ratio of 0.794.  S. fallax had a cell wall / dry weight ratio of 0.714.  S. 

magellanicum had a cell wall / dry weight ratio of 0.776. The differences were not 

significant. 

Cation Exchange Capacity 

 The ion exchange capacity, or the ability of the plant to exchange hydrogen ions 

from nutrient cations in the environment was measured in parts per million (ppm) of 

sodium ion (Figure 4). S. fallax had the lowest cation exchange capacity (15.00 ppm).  S. 

magellanicum and S. fuscum had higher ion exchange capacities or 60.07 ppm  and 50.09 

ppm respectively.  The standard deviation for all species, especially S. magellanicum and 

S. fallax were all high.  S. magellanicum was significantly different from S. fallax.  All 

other pair-wise comparisons were not significant. 
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Figure 4: The cation exchange capacity (CEC) measured in parts per million of sodium 

ions.  S. fallax had the lowest CEC of 15.00ppm.  S. magellanicum and S. fuscum had 

higher CEC of 60.07 ppm  and 50.09 ppm respectively.  S. fallax was significantly 

different from S. magellanicum (p<0.01). 

 

 

Polyuronic Acid Content 

 We found that the S. fallax and S. magellanicum devoted 9.56% and 9.14% 

respectively of their cell walls towards polyuronic acids (Figure 5). S. fuscum devoted a 

lower percentage of 6.21% of their cell walls towards polyuronic acids.  The two former 

species differed significantly from the latter species (p<0.01 for both S. fallax vs. S. 

fuscum and S. magellanicum and S. fuscum).  S. fallax and S. magellanicum were not 

statistically different from each other though.  
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Figure 5: The fraction of cell wall devoted to uronic acids. The fraction was highest in S. 

fallax  and S. magellanicum (0.956 and 0.914 respectively). These two species differed 

significantly from S. fuscum, which devoted only 6.21% of its cell wall toward uronic 

acids (p<0.01 for both comparisions).  

 

 

When uronic acid content was examined on the basis of dry weight instead of cell wall, S. 

magellanicum  had the highest percentage of uronic acids (7.09% of dry weight, Figure 

6).  S. fallax had a slightly lower percentage of dry weight devotes towards uronic acids 

(6.88% of dry weight).  S. fuscum again had the lowest percentage with only 4.60% of 

dry weight.  There was not a significant difference between S. fallax  and S. 

magellanicum  or between S. fallax and S. fuscum.  There was a significant difference 

between S. magellanicum and S. fuscum  though (p<0.01). 
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Figure 6: The fraction of dry weight devoted toward uronic acids. S. magellanicum and S. 

fallax had the highest fraction of dry weight devoted toward uronic acids (0.709 and 

0.688 respectively).  S. fuscum devoted only 4.60% of dry weight to uronic acids.  S. 

magellanicum and S. fuscum differed significantly (p<0.01). 

 

 

Discussion 

 The results from the analysis of photosynthesis expressed on area (PSarea) or mass 

(PSdw) bases agreed strongly with each other.  In both cases, S. fallax had the highest 

maximum photosynthetic rate, S. fuscum had the lowest photosynthetic rates, and S. 

magellanicum was in the middle.  It is important that these two agreed, because either 

measurement on its own would not completely quantify the trait.  There are a few factors 

that cause this.  First, the different species grow at very different densities.  S. fuscum 

grows in very dense canopies.  The individual plants are very intertwined with each other 

leaving almost no gaps.  S. fallax, on the other hand, grows in much less dense canopies 
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and is not intertwined.  These differences in canopy structure could skew the 

photosynthetic measure on a per area basis.  A dense canopy will have more 

photosynthetically active biomass per unit area.  If only PSarea  was measured, this 

difference in canopy density would be largely ignored, and a major morphological 

difference between S. fuscum and S. fallax with not be accounted for.  Secondly, the 

species may not conduct photosynthesis equally at the same depths into their canopy.  For 

example S. fallax allows light to penetrate much deeper into its canopy then S. 

magellanicum or S. fuscum (Aclander, 2006).  This difference could cause us to include 

tissue that is effectively photosynthetically active in our measure of dry weight for S. 

magellanicum or S. fuscum, skewing our measurement of PSdw.  The measurement of 

PSarea  accounts for any differences in photosynthetically active tissue depth between 

species. By measuring both PS area and PSdw we can take both of these factors into 

account.  Because our analysis yields results for both of these that not only were strongly 

suggestive of a trend by themselves, but also agreed strongly with each other,  it lends 

even more support to S. fallax having the highest photosynthetic rate among the three 

species, S. fuscum having the lowest among the three, and S. magellanicum being in 

between. 

In terms of our initial hypothesis, this result was expected. S. fallax, the species 

that to grows in a hollow environment that is less nutrient poor had the highest 

photosynthetic rates.  We had hypothesized that hollow species, such as S. fallax, would 

not have to devote large amounts of resources towards building up nutrient scavenging 

compounds, allowing it to put more of its resources toward photosynthetic machinery, 

thus yielding a higher photosynthetic rate.  We had hypothesized that the lowest 
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photosynthetic rate would be for a hummock species, such as S. fuscum. Because the 

environment that it grew in was more nutrient poor, the hummock species would have to 

devote relatively more resources towards nutrient scavenging compounds.  This 

allocation would leave relatively less resources to put towards photosynthetic machinery, 

yielding a lower photosynthetic rate.  This result also agreed with Titus et. al. (1983), 

which looked at photosynthetic rates for hummock and hollow species (S. nemoreum and 

S. fallax respectively) in a similar way that we did.  They also found that the hollow 

species was able to photosynthesize at a higher rate than the hummock species.  

In hollow microhabitats, photosynthesis seems to be the driving force of 

competition.  The species that has the highest photosynthetic rate (S. fallax) is able to 

assimilate more carbon, grow faster, and outcompete species with lesser photosynthetic 

rates.  S. fallax though, gets outcompeted by S. fuscum in hummock environments even 

though the former has a higher photosynthetic rate.  There must therefore be other 

physiological characteristics that favor S. fuscum in a hummock microhabitat and allow it 

to outcompete S. fallax, which should be able to outcompete it photosynthetically.  We 

had hypothesized that one such factor was the ability of species to scavenge the nutrient 

poor environment for nutrient cations. 

Our results for the comparison of cation exchange capacity, or the ability of the 

moss to exchange a hydrogen ion for a nutrient cation in the environment, somewhat 

agreed with our hypothesis.  S. fallax had the lowest cation exchange capacity.  We 

would have expected this result because S. fallax grows in a hollow environment.  This 

microhabitat is not as nutrient poor, therefore the plant does not need to put as many 

resources in increasing its cation exchange capacity.  There are already enough nutrients 
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in the environment that are freely available to the moss without having to put energy it 

nutrient gathering.  S. magellanicum and S. fuscum, which thrive on the side of 

hummocks and on the top of hummocks respectively, had higher cation exchange 

capacities.  The environment that they live in has fewer nutrients available and a higher 

cation exchange capacity allows them to scavenge for nutrients and survive.   

The cation exchange capacity data that was obtained showed high variation.  The 

results, especially among S. fuscum and S. magellanicum, varied by extreme amounts. In 

the case of S. fuscum the highest and lowest sample differed by a factor of 6.  This made 

it hard to find any statistical significance in the data.  Soudzilovskaia et. al. (2010), who 

utilized a similar method of measuring cation exchange capacity, did not have the same 

variation.  In fact their samples hardly varied at all.  The excessive variation in our 

samples may be due to our protocol.  One possible source of intra-species variation 

would be the washes after the sodium chloride treatments.  This step in the protocol is 

meant to remove all of the sodium ions in the solution that are not bound to cation 

exchange site on the plant tissue.  If the wash is not thorough enough, sodium ions that 

are not bound will remain on the plant tissue and cause artificial inflation of the sodium 

ion concentration in the final solution.  The wash becomes even more important because 

of the sample bags that we had the moss contained in.  These mesh bags were used to 

keep the tissue collected and allowed for easy transfers between solutions.  The down 

side to using the bags was that it allowed for an addition site for sodium ions to get 

trapped in.  A thorough wash after the sodium treatment was therefore all the more 

important to remove all unbound ions from both the tissue and the bag.  
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Our wash protocol may not have been adequate.  We left the sample bags in 500 

mL of milliQ water for 20 minutes.  To increase the effectiveness of the water and 

possibly reduce the intra-species variation, the samples should be left in the water for a 

longer period.  An hour may be more appropriate than 20 minutes as the other treatments 

of acid and sodium chloride each were an hour long. Also the wash may be more 

effective if the beakers containing the wash are shaken for the hour-long wash instead of 

just left stationary. 

By measuring cation exchange capacity we can get a better idea of the relative 

physiological differences between the species’ ability to scavenge for nutrients.  But this 

ability to exchange ions may be directly correlated to the amount of polyuronic acid 

compounds in the moss’ cell wall.  By investigating the nature of uronic acids in the cell 

walls of the plant we may be better able to characterize the plant’s nutrient scavenging 

abilities. Because the cell walls contain the uronic acid compounds, the more dry weight 

that a plant allocates towards cell wall, the more uronic acids the moss will contain, 

assuming uronic acid concentration in the cell wall is constant between species.  We did 

not see this in the data.  There was not a significant difference between any of the three 

species in terms of their cell wall concentration.   

Like the cation exchange capacity results, the cell wall analysis did not yield may 

statistically significant results due to excessive intra-species variation (although less 

variation than the CEC).  Also like the cation exchange capacity experiment, the methods 

could be improved to attempt to decrease this variation.  The protocol to isolate cell walls 

consisted of a series of washes to break up cell membranes and wash away all internal 

components of the cells, leaving behind only cell wall.  In order for the solutions to be 
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effective at breaking up the membrane, it must first be able to penetrate the cell wall that 

surrounds the cell membrane.  There was no step in the procedure to attempt to break up 

the cell wall by chemical means in order to allow the other solutions access to the cell 

membrane.  Instead the cell walls were broken up manually by grinding the tissue with a 

mortar and pestle in liquid nitrogen.  Even though the samples were ground thoroughly, it 

was difficult to ensure that every cell had its cell wall manually broken up allowing the 

following solutions access to the membrane. The result was that after all the solution 

treatments there were two layers of tissue.  One layer contained the pure cell wall 

resulting from the adequately ground plant tissue.  The second layer contained the result 

of the inadequately ground plant tissue and was a mix of cell wall and other cell 

components.  This method therefore yielded enough pure cell wall to use for uronic acid 

analysis, but may have not accurately showed how much dry weight the mosses devoted 

to cell wall.  Because the second layer contained other cell components, the measurement 

of the fraction of cell wall may have been overestimated with this protocol. 

In our analysis of the implications of cell wall content on nutrient uptake ability 

we assumed that polyuronic acid concentration in the cell wall was constant between 

species.  Our results from the uronic acid experiment showed that this assumption may 

not be valid.  S. fuscum had a significantly lower concentration of uronic acids in their 

cell walls compared with the other two species.  This result means that in order to fully 

quantify the amount of nutrient uptake machinery it is not sufficient to use cell wall 

content as a proxy for uronic acid content.  The cell walls of different species contain 

different concentrations of polyuronic acids and therefore a full analysis of uronic acid 

monomer content must be done to understand the cation exchange compounds. 
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The results from the uronic acid experiment also showed that the novel method of 

acid hydrolysis of the cell walls to obtain uronic acid monomers and the analysis of the 

resulting molecules by LC-MS/MS was a valid way to measure uronic acid 

concentration.  The results showed that uronic acids made up between made up between 

3.7% and 8.8% of the dry mass of the moss.  Clymo (1963) looked at species where 

uronic acids made up 12-25 percent of the dry mass of the plant, so our results were 

comparable.  Also the method allowed for reliable and repeatable results and yielded low 

intra-species variation. 

In terms of our hypothesis, the fraction of dry weight that each species devoted to 

uronic acids was not what we originally expected.  We had hypothesized S. fuscum would 

have the highest amount of uronic acids per dry weight because it grew in a nutrient poor 

environment that would require the moss to devote a lot of resources towards building 

nutrient gathering compounds.  Instead what we saw was that S. fuscum had the lowest 

amount of uronic acids per dry weight.  There are a few possible reasons for this 

discrepancy.  For example there may be other compounds that are involved in nutrient 

uptake that we did not measure.  There are many acidic compounds in the cell wall of 

Sphagnum  species, such as phenol compounds, that may be able to donate a proton to 

take up nutrient cations.  Perhaps S. fuscum utilizes other molecules in addition to uronic 

acids to fulfill its nutrient needs.   

Another possible factor is the way that the uronic acid monomers are linked into 

polyuronic chains may vary between species. Differences in monomer linkages of the cell 

wall have been shown in other plant species (Zablakis et. al., 1995). In Sphagnum 

species, these differences in the linkages may results in more or less cation exchange sites 
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being exposed to the environment and available to nutrient uptake.  S. fuscum may have a 

linkage conformation that is more favorable to cation exchange and is therefore able to 

utilize fewer uronic acid monomers to uptake nutrients more efficiently.  The problem 

with this linkage hypothesis is that forming favorable linkage group does not necessarily 

come at a cost to the moss, whereas building addition polyuronic acid polymers to 

increase nutrient uptake comes at an obvious metabolic cost to the moss, and would result 

in less resources being available for photosynthetic machinery.  Linking the monomer 

together in a certain way does not imply the same energetic costs that would be 

detrimental to photosynthesis, therefore linkage effects on the tradeoff between nutrient 

uptake and photosynthesis may be negligible.  

A third factor that may have led to S. fuscum having the lowest uronic acid 

fraction of dry weight is that different uronic acids may not be present in equal 

concentrations among different species. There are many uronic acids that are found in the 

plant cell walls.  The two main uronic acids in polyuronic chains are galacturonic acid, 

which is the major monomer, and glucuronic acid, which is present to a lesser extent. The 

two uronic acids are isomers with the same molecular weight, meaning that we could not 

easily distinguish between the two in the LC-MS/MS analysis of the samples and 

determine their relative concentrations.  Because we did not therefore know the relative 

concentrations of the different uronic acids, we averaged the peaks obtained from the 

galacturonic acid standard and the glucuronic acid standard in order to estimate the 

amount of uronic acid in the samples.  This makes the assumption that the two uronic 

acids are present in equal concentrations in the sample, which is likely untrue.  Because 

the peak obtained from galacturonic acid standard resulted in a peak on the LC-MS/MS 
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that was half the magnitude of a glucuronic acid standard of identical concentration, this 

assumption would severely underestimate the uronic acid content of species high in 

galacturonic acid and severely overestimate the uronic acid content of species high in 

glucuronic acid.  Therefore the assumption that was necessary for calculation could have 

skewed the results and underestimated S. fuscum’s uronic acid content if the species is 

high in galacturonic acid monomers.  Another consequence of this assumption was that 

the uronic acid content of all three species in general was underestimated.  Instead of 3.7 

to 8.8 percent of dry weight, the actual fraction may be higher and more towards the 

Clymo (1963) estimate of 12 to 25 percent of dry weight. 

In order to avoid making this invalid assumption in the future, the samples may 

need to be acetylated prior to LC-MS/S anlaysis.  By removing hydrogens from all of the 

hydroxyl groups on the uronic acids and replacing them with acetyl groups, differences 

between the monomers are accentuated.  This may allow the different monomers to be 

separated in the LC column by retention time and allow the individual monomer 

concentrations to be measured, resulting in more accurate measurements of uronic acid 

content differences between species.  Accounting for individual monomer concentrations 

rather than lumping all uronic acids together may be even more essential if the different 

uronic acids have different affinities for nutrient cations.  If galacturonic acid is better 

able to scavenge for nutrients than glucuronic acid, it would be even more important to 

determine individual monomer concentrations separately. 
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