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Abstract

It is often taken it for granted that all positive whole numbers except 0 and 1 can be factored

uniquely into primes. However, if K is a finite extension of the rational numbers, and OK

its ring of integers, it is not always the case that non-zero, non-unit elements of OK factor

uniquely. We do find, though, that the proper ideals of OK do always factor uniquely into

prime ideals. This result allows us to extend many properties of the integers to these rings.

If we a finite extension L of K and OL of OK , we find that prime ideals of OK need not

remain prime when they are extended into OL; instead, they can split into a product of

prime ideals of OL in a very structured way. If L is a normal extension of K, we can use

Galois theory to further study this splitting by considering the intermediate fields of K

and L, as well as quotient rings of the associated rings of integers. In this paper, we will

introduce these topics of algebraic number theory, prove that unique factorization of ideals

holds using two different methods, and observe the patterns that arise in the splitting of

prime ideals.
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Chapter 1

Background

In grade school, once we have grasped how to manipulate numbers and use basic arithmetic,

one of the first concepts we learn about is factorization of whole numbers. We can take

any whole number and find a collection of these special, irreducible, “prime” numbers that

when multiplied together yield our original number. Moreover, we are told that, for any

whole number, this factorization into prime numbers is unique. This is a very powerful

result that is exploited greatly in many fields of number theory.

More specifically, the field of algebraic number theory can be described, simply, as the

study of numbers viewed algebraically. In this paper, we will be considering finite extensions

of the rational numbers, referred to as number fields, and a specific subring of these fields

called either the associated ring of integers or associated number ring. We will attempt

to extend the properties of the integers and rationals to these number rings and number

fields, respectively. In general, we find that many properties are the same and still apply:

for example, the usual binary operations still make sense and work as we expect them to.

The important counterexample highlighted in this paper is unique factorization of elements

in the ring of integers. Unlike the regular integers, there are examples of number rings

where elements have multiple factorizations into irreducibles, and thus factorization is not

unique. Without uniqueness of factorization, many ideas, such as the greatest common

divisor among others, no longer have a meaningful definition.

The field of algebraic number theory gained much of its prominence in attempts to prove

Fermat’s Last Theorem: the equation an + bn = cn, where n ∈ Z, has no integral solutions
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for a, b, and c when n is greater than 2 and abc 6= 0. A supposed proof was worked out in

the 1800s, but it assumed certain rings of integers were unique factorization domains, which

was soon shown to be a faulty assumption. Fermat’s Last Theorem was finally proved in

1995 in a several hundred page paper, and involved topics ranging from algebraic geometry

to elliptic curves to modular groups [For more information on the story of this proof, see

Stewart and Tall [7]]. We will not go into details of all, or any, of these highly advanced

topics. Instead, we will concentrate on the ideas of factorization at the beginning of the

hunt for this elusive proof.

In this paper, we give an introduction to algebraic number theory, with a focus on

various types of factorization in algebraic number structures. In this first chapter, we will

define the terms and concepts that are necessary background for our main results. In

the last section of Chapter 1 we will briefly look at the factorization of elements in number

rings, and show that unique factorization cannot be taken for granted; importantly, this will

require clarification of the difference between a prime number and an irreducible number.

In Chapter 2 we look at a similar situation, where instead of factoring elements of a ring

of integers, we are factoring ideals in that ring; we will show that in this case all ideas

factor uniquely into prime ideals. Finally, in Chapter 3 we will look at towers of number

structures, and observe how primes behave as they are extended through different Galois

extensions.

Many of the results and discussions in this paper are based on two major works, Number

Fields by D.A. Marcus [5] and Algebraic Number Theory and Fermat’s Last Theorem by I.

Stewart and D. Tall [7]. For our discussion, we will assume some knowledge of ring theory,

specifically topics concerning ideals and quotient rings, as well as comfort with field and

Galois theory. For a good introduction to these subjects, see Herstein [3], Stewart [6],

or Howie [4].

1.1 Elements

The number structures we would like to consider are composed of very specific types of

elements. In this section, we will define these elements, as well as some of their basic
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properties.

We start with a distinction which is trivial in the integers:

Definition 1.1. An non-unit element α in a ring R is irreducible in R if whenever we have

α = βγ for β, γ ∈ R, then either β or γ is a unit.

Definition 1.2. We say a non-zero, non-unit element α is prime in R if whenever α|βγ,

then α|β or α|γ.

The following proposition follows easily:

Proposition 1.3. Every prime element of a ring R is irreducible [see Stewart and Tall

[7] p.87].

Example 1.4. Note that in the integers, all irreducibles are also prime. This is why we

typically say both of these properties define “prime” integers. We will eventually construct

extensions of the integers in which this distinction becomes significant.

1.1.1 Algebraic Numbers and Algebraic Integers

We will now define and consider two particular types of complex numbers which play a

major role in algebraic number theory, each of which satisfies a certain type of polynomial.

Definition 1.5. A complex number α is an algebraic number if it satisfies a polynomial

with coefficients in Q. The set of algebraic numbers is denoted A.

For example, all rational numbers and integers q are clearly algebraic since they satisfy

the polynomial x− q. Further, we can easily see that any algebraic number also satisfies a

polynomial in Z.

Moreover, the set of all algebraic numbers is a field:

Proposition 1.6. The set of algebraic numbers A is a subfield of C [for details, see Stew-

art and Tall [7] p.36].

A stronger condition must hold if a complex number is to be in our second class of

elements, an algebraic integer:

Definition 1.7. The complex number θ is an algebraic integer if it satisfies a monic poly-

nomial with coefficients in Z. The set of algebraic integers is denoted B.
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For example, we have that θ1 =
√
−5 is an algebraic integer since it satisfies the poly-

nomial t2 + 5; similarly θ2 = 1
2(1 +

√
5) is an algebraic integer since it satisfies t2 − θ − 1.

However, the rational number θ3 = 22/7 is not an algebraic integer, since it only satisfies

polynomials such as 7t− 22 or t− 22/7; it does not satisfy any monic polynomials over the

integers.

Clearly any algebraic integer is also an algebraic number; we also have that the set of

algebraic integers B is a ring:

Proposition 1.8. The set of algebraic integers is a subring of the field of algebraic numbers

[see Stewart and Tall [7] p.43].

Further, we find that the restriction of the coefficients to Z in the definition of algebraic

integers is stronger than necessary:

Theorem 1.9. If θ ∈ C satisfies a monic polynomial f(t) whose coefficients are algebraic

integers, then θ is an algebraic integer [see Stewart and Tall [7] p.43].

This theorem and the proposition above allow us to generate new algebraic integers out

of old ones: for example, if α and θ are algebraic integers, so are α+ θ and 3 · αθ2, as well

as the solutions of the polynomial t3 − (2α2)t2 − (5
√
−7)t.

Building off theorem 1.9, we can establish the following criterion for θ to be an algebraic

integer:

Proposition 1.10. An algebraic number α is an algebraic integer if and only if its minimum

polynomial over Q has coefficients in Z.

Proof. Let p be the minimum polynomial of α over Q, and recall that this is monic and

irreducible in Q[t]. If p ∈ Z[t], then α is an algebraic integer by definition. Conversely, if

α is an algebraic integer, then q(α) = 0 for some monic polynomial q ∈ Z[t], and we know

that p|q. By Gauss’ Lemma [see Stewart and Tall [7] p.18], there exists some λ ∈ Q

such that λp is in Z[t] and divides q. Since p and q are monic, we must have λ = 1, and

hence p ∈ Z[t]. �

Notice that the term “integer” has been used quite often in this section, many times not

referring to the elements of Z. To avoid confusion, from now on we will say rational integer
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for an element of Z, and simply integer to mean an element of B. This usage is well-defined

by the following:

Proposition 1.11. An algebraic integer is rational if and only if it’s a rational integer;

equivalently, B ∩Q = Z.

Proof. Clearly Z ⊆ B ∩ Q. For the converse, let α ∈ B ∩ Q. Since α ∈ Q, its minimum

polynomial over Q is t − α. By Proposition 1.10, the coefficients of this are in Z, hence

−α ∈ Z, hence α ∈ Z, as desired. �

1.1.2 Norm and Trace of an Element

We will now begin to describe the fields with which and in which we will be working:

Definition 1.12. A subfield K of C is a number field if the degree of the extension K over

Q is finite.

This implies that every element of a number field is an algebraic number. Further, since

[K : Q] is finite, we can write K = Q(α1, . . . , αn) for some finite list of algebraic numbers

αi (for example, the elements of the basis of K as a vector space over Q) [see Stewart [6]

p.48]. Actually, a much stronger conclusion can be obtained:

Theorem 1.13. If K number field, then K = Q[θ] for some θ ∈ B [see Stewart and

Tall [7] p.44 for details].

We will explore these fields in more detail in the next section. But first, let us quickly

look at one property:

Proposition 1.14. If K = Q(θ) is a number field of degree n over Q, then there exist

exactly n distinct monomorphisms σi : K → C. Moreover, the elements σi(θ) = θi are the

distinct zeros in C of the minimum polynomial of θ over Q [see Stewart and Tall [7]

p.38 for details].

These n embeddings of K in C play a fundamental role in our analysis. An important

example is given in the following definition:

Definition 1.15. Let α be an element of a number field K = Q(θ), and let the σi be as

above. The elements αi = σi(α) for i = 1, . . . , n are called the K-conjugates of α.
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Note that, even though it will always be the case that the θi are all distinct, it is not

necessarily the case that all αi are distinct. More importantly, it is necessary to realize that

the conjugates of α may not be members of K: for example, if we consider K = Q[ 3
√

5], the

conjugates of 3
√

5 are 3
√

5, ω 3
√

5, and ω2 3
√

5 for ω = e2πi/3; clearly these latter two are not

real, and hence not in K.

Building off of this definition, we can generate two more values associated with each

element of a number field:

Definition 1.16. With notation as above, we define the norm of α:

NK(α) =
n∏
i=1

σi(α);

and the trace of α:

TK(α) =
n∑
i=1

σi(α);

The norm and trace look like the product of the roots and the sum of the roots, respect-

fully, for some polynomial with roots σi(α); recall these would be the constant term and

the coefficient of the tn−1 term of the said polynomial, respectively. This intuition proves

to be useful, given the following definition and proposition:

Definition 1.17. For each α ∈ K, we define the field polynomial of α over K to be:

fα(t) =

n∏
i=1

(t− σi(α)).

Proposition 1.18. Let K = Q[θ] and σi be as above. Then, for α ∈ K, the field polynomial

fα of α is a power of the minimum polynomial pα of α over Q.

Proof. It can be shown that fα ∈ Q[t] [see Stewart and Tall [7] p.39], and we see that

fα(α) = 0. Thus, since pα is the minimal (and irreducible) polynomial α satisfies, pα | fα.

Hence we see fα = pαh for some polynomial h ∈ Q[t]. Let us factor all powers of pα from h,

yielding fα = pα(ps−1α h) = psαh for some monic h ∈ Q[t]. Suppose, for contradiction, that h

is not constant; then, by our definition of fα, σi(α) must satisfy h for some i.

We will show below in Example 1.27 that each x ∈ K = Q[θ] can be written as a
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polynomial in θ of degree less than n− 1; let us say α = r(θ). Then

σi(α) = σi(r(θ)) = r(σi(θ)) = r(θi).

Let us now define the composition g = h ◦ r, and note that g(θi) = h(r(θi)) = 0. We claim

g(θj) = 0 for all j: if p is the minimum polynomial of θ, it must also be for every θj . Then

p | g, hence g(θj) = 0.

We now see:

h(α) = h(r(θ)) = g(θ) = 0.

However, this would imply pα divides h, a contradiction. Thus h is constant. �

Thus the K-conjugates of α are the (potentially repeated) zeros of the field polynomial.

We can now show that the possible values for the norm and trace of algebraic integers are

very limited:

Proposition 1.19. The norm and trace of algebraic integers are rational integers.

Proof. For any α ∈ K, if α is also an integer then by Proposition 1.10 the minimum

polynomial m of α over Q has rational integer coefficients. By Proposition 1.18, we know

the field polynomial of α, fα, is a power of the minimum polynomial m; thus, it clearly

must also have rational integer coefficients. We see from our definition that, as intuitively

expected, the norm is the constant term, and the trace is the coefficient of the tn−1 term;

thus both are rational integers, as desired. �

It is also easy to see, since all the embeddings σi are monomorphisms, that the norm

acts multiplicatively:

Proposition 1.20. If α and β are elements of a number field K, then N(αβ) = N(α)N(β).

Proof. Since all the σi are homomorphisms, they preserve multiplication. Thus we have:

N(αβ) = σ1(αβ) . . . σn(αβ) = σ1(α)σ1(β) . . . σn(α)σn(β) = N(α)N(β).

�
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1.2 Sets

We continue our exploration by looking at the various important sets which contain the

types of elements we worked with in the previous section.

1.2.1 Number Fields, Number Rings, and Bases

Recall our construction of a number field K = Q[θ] above. Note that while every element

in K is an algebraic number, not all are algebraic integers. In fact, the set of integers in K

forms a subring:

Definition 1.21. For any number field K, the ring of integers of K is the set K ∩ B,

denoted OK . We also call OK a number ring, associated with its field of fractions (the

number field) K. Further, the subscript may be dropped if the field is obvious.

Proposition 1.22. K is in fact the field of fractions of its associated ring of integers O

Proof. Let α be an element of K; we must show α = xy−1 for some x, y ∈ O. It is

sufficient to show that there exists a y ∈ O such that x = yα ∈ O. Since K is an algebraic

extension, α is an algebraic number, and hence satisfies a monic polynomial f over Q, say

f(α) = αm +mm−1α
m−1 + . . .+m1α+m0 = 0 with mi ∈ Q for all i. We know there exists

some y ∈ Z ⊆ O such that, for all i, ymi ∈ Z. Multiply f(α) by ym, and we see:

f(k)ym = ymαm +mm−1y
mαm−1 + . . .+m1y

mα+m0y
m

= (yα)m +mm−1y(yα)m−1 + . . .+m1y
m−1(yα) +m0y

m = 0

Thus yα ∈ K satisfies a monic polynomial with coefficients in Z, hence yα ∈ O, as desired.

�

It is clear that O is a ring since K is a field and B is a domain. It will be useful later to

note further that O is an integral domain:

Proposition 1.23. Any number ring O is an integral domain.

Proof. This follows directly since O is a subring of a field.
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Example 1.24. The easiest example is the trivial number field, K = Q. In this case clearly

(and formally by Proposition 1.11) R = Z.

Example 1.25. Slightly more complicated examples are quadratic fields, number fields of

degree 2 over Q. These can be shown to be of the form K = Q[
√
d] where d is a squarefree

rational integer, and these make good examples since the ring of integers of such a field is

easily found. It can be shown that the ring of integers of K = Q[
√
d] for squarefree d is:

(i) Z[
√
d] if d 6≡ 1 (mod 4); and

(ii) Z[12 + 1
2

√
d] if d ≡ 1 (mod 4)

We also have an easy formulation for the norm and trace of every element in K:

N(r + s
√
d) = r2 − ds2; and T (r + s

√
d) = 2r.

[For further reading on quadratic fields, see Stewart and Tall [7] p.61].

For the remainder of our paper, the focus of our investigations will be number fields K

and their ring of integers O. However, many of our theorems and proofs hold not only in

the number ring O of a number field K, but in any commutative ring with identity R with

field of fractions K. Often we will restrict our consideration strictly to number fields and

number rings, but when we do work with a more general ring R, we will require R to be

commutative with identity.

1.2.2 Bases

We stated above that a number field K is a finite extension of Q, and recall that a finite

extension of Q is also a vector space over Q. This allows us to consider the following:

Definition 1.26. Let K be a number field. Then a basis of K as a vector space of Q is

called a Q-basis of K.

Example 1.27. Let K be a number field. By Theorem 1.13, we have that K = Q(θ) for

some algebraic integer θ, and thus the minimum polynomial over θ has degree n, where n is

the degree of the extension K over Q. Further, we have that {1, θ, . . . , θn−1} is an example
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of a Q-basis for K. [See Stewart [6] p.38 and Stewart and Tall [7] p.46]

We now define an important property of a Q-basis:

Definition 1.28. Let K = Q(θ) be a number field of degree n, and let {α1, . . . , αn} be a

basis of K. We define the discriminant of {α1, . . . , αn} to be:

∆[α1, . . . , αn] =
(
det[σi(αj)]

)2
;

where the σi are the n embeddings of K in C.

It can be shown that there exists limits on the values the discriminant can take:

Proposition 1.29. The discriminant of any basis is a non-zero rational number [see Stew-

art [7] p.40 for details].

It will also be helpful to calculate how a modification of the basis will affect the discriminant.

This idea motivates the following results:

Proposition 1.30. Let {α1, . . . , αn} and {β1, . . . , βn} be two Q-bases for K. Then

∆[β1, . . . , βn] = [det(cij)]
2∆[α1, . . . , αn], where βj =

n∑
i=1

cijαi. [see Stewart and Tall

[7], p.41]

This result allows us to compare the determinants of two entirely different bases for K.

If we instead disturb just one element of the basis, we find the following to be true:

Proposition 1.31. Let {α1, . . . , αn} be a Q-basis for a number field. Then:

(i) ∆(rα1, α2, ..., αn) = r2∆(α1, ...αn) for all r ∈ Q.

(ii) Let β be a linear combination of α2, ..., αn with coefficients in Q. Then

∆{α1 + β, α2, ..., αn} = ∆{α1, ..., αn}.

Proof. (i) The result of incorporating the r into our calculation of the discriminant will

change the first row of the matrix from [σ1(α1) . . . σ1(αn)] to [σ1(rα1) . . . σ1(rαn)] =

[rσ1(α1) . . . rσ1(αn)] since σ(r) = r for all r ∈ Q. We know that multiplying a row by

a constant changes the determinant of that matrix by a factor of the same constant; since

we are then squaring our discriminant value, the result follows.
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(ii) This follows since the change from α to α + β would change the matrix in our calcu-

lation only by elementary row operations, and we know such operations do not change the

determinant. Hence the discriminant would remain constant. �

Proposition 1.32. Let α be an algebraic integer with minimum polynomial m over Q of

degree n, and let f be a monic polynomial with coefficients (not necessarily irreducible) in

Z such that f(α) = 0. Then ∆ = ∆{1, α, . . . , αn−1} divides NQ[α](f ′(α)
)
, where f ′ is the

usual derivative of the polynomial f .

Proof. Let α1, . . . , αn be the conjugates of α. Then ∆ = [det(αji )]
2 is the square of a

Vandermonde determinant, and it can be shown [see Han [1] p.277] that

∆ =
∏

1≤i�j≤n
(αi − αj)2.

Further, we can change our indicies to see that ∆ =
∏
i�j

(αi − αj)2 = ±
∏
i 6=j

(αi − αj). Then,

since m has rational coefficients, its derivative m′ has rational coefficients, and thus:

NQ[α](m′(α)) =

n∏
i=1

σi(m
′(α)) =

n∏
i=1

m′(σi(α)) =

n∏
i=1

m′(αi).

Since the αi are the roots of m, we know m(x) =
n∏
r=1

(x− αr). Thus:

m′(x) =
n∑
r=1

∏
s 6=r

(x− αs)

 .
Note that when calculating m′(αi), all the products will become zero except for one:

m′(αi) =

n∏
j=1;j 6=i

(αi − αj).
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Therefore, we have:

NQ[α](m′(α)) =
n∏
i=1

m′(αi)

=
∏
i 6=j

(αi − αj) = ±
∏
i�j

(αi − αj)2 = ±∆;

where the index in i 6= j (or i � j) goes over all possible combinations of i and j such that

i 6= j (i � j).

Now, if f is a monic polynomial that α satisfies, we have f = mh and f ′ = m′h+mh′

for some monic h over Q. Hence f ′(α) = m′(α)h(α) + m(α)h′(α) = m′(α)h(α) since α

satisfies m. Then note that:

NQ[α](f ′(α)) = N(m′(α)h(α))

=

[
n∏
i=1

m′(αi)

][
n∏
i=1

h(αi)

]
= ±∆

[
n∏
i=1

h(αi)

]
.

Hence ∆ divides NQ[α](f ′(α)), as desired. �

1.2.3 Free Abelian Groups

We will now study the additive group of a number ring. We will show it is a special type of

group with important properties. For this section, when we are discussing the general case,

we will be using additive notation for an abelian group G, with powers of group elements g

denoted ng (for n ∈ Z).

We must first define some terms in preparation for our desired property:

Definition 1.33. G is a finitely generated abelian group if there exist g1, . . . , gn ∈ G such

that for all g ∈ G, g = m1g1 + . . .+mngn for some mi ∈ Z.

We will add structure to this concept until we have something resembling the basis of a

vector space. To that end, we say:

Definition 1.34. Elements g1, . . . , gn ∈ G are linearly independent over Z if the only

solution to the equation x1g1 + . . .+ xngn = 0 with x1, . . . , xn ∈ Z is x1 = . . . = xn = 0.
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Definition 1.35. IfG is a finitely-generated abelian group such that its generators g1, . . . , gn

are linearly independent, then G is a free abelian group of rank n, and the set of generators

is called a Z-basis of G.

The properties we expect from a basis remain true in this setting: if G has a basis of n ele-

ments, all bases for G have n elements, and all elements g ∈ G can be uniquely represented

as a linear combination of the basis elements.

Another important property of these groups is that all subgroups are also free abelian,

of lesser-or-equal rank:

Theorem 1.36. Every subgroup H of a free abelian group G of rank n is also free abelian of

rank s ≤ n. Further, there exists a basis {u1, . . . , un} for G and positive integers α1, . . . , αs

such that {α1u1, . . . , αsus} is a basis for H. [see Stewart and Tall [7] p.28]

We will now connect this idea to our number fields and number rings. We know that all

number fields have a Q-basis (a basis as a vector space over Q); we would like to be able to

show that the ring of integers of any number field has a Z-basis, telling us that number rings

are free abelian groups. Such a basis would need to consist entirely of integers. However,

even if we have a basis of K consisting entirely of integers, this does not mean we have a

Z-basis for the number ring: for example, in K = Q[
√

5], the set {1,
√

5} is clearly a Q-basis

for K consisting of integers. However, the elements12 + 1
2

√
5 satisfies t2 − t+ 1 and is thus

an integer, but is not in the span of {1,
√

5}.

Therefore, we must establish that such a Z-basis exists for every ring of integers. We

start with a lemma:

Lemma 1.37. If {α1, . . . , αn} is a Q-basis of K consisting of integers, then the discriminant

of this basis is a rational integer not equal to zero.

Proof. We already know that ∆ = ∆[α1, . . . , αn] is rational by Proposition 1.29, and is an

integer since all the αi are. Thus by Proposition 1.11 it must be a rational integer, and

again by Proposition 1.29 ∆ 6= 0. �

Using this lemma, we can prove our desired result:

Theorem 1.38. The ring of integers O of any number field K has a Z-basis, and thus all

rings of integers O are free abelian groups.
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Proof. Since K is a number field, we have K = Q(θ) for some integer θ. Thus we know

there exists at least one basis for K consisting integers, namely {1, θ, . . . , θn−1} where n is

the degree of K over Q. However, as noted above, this isn’t necessarily a Z-basis for O. By

the above lemma the discriminant of a basis of integers must be a rational integer; let us

choose our particular basis consisting of integers {ω1, . . . , ωn} such that
∣∣∣∆[ω1, . . . , ωn]

∣∣∣ is

least.

We claim this is in fact a Z-basis for O. Suppose, for contradiction, it is not a Z-basis.

Then there exists some integer ω of K such that ω = a1ω1 + . . . + anωn for ai ∈ Q where

not all the ai are in Z; renumber such that a1 /∈ Z. Then we know a1 = a+ r where a ∈ Z

and 0 ≤ r � 1.

We now define a new basis {λ1, . . . , λn}, where λ1 = ω− aω1 = rω1 + a2ω2 + . . .+ anωn

and λi = ωi for i = 2, . . . , n; clearly the λi are linearly independent over Z since the ωi are,

and they span the integers since the following holds for all b ∈ O:

b = m1ω1 + . . .+mnωn = (m1r
−1)λ1 + (m2 −m1r

−1a2)λ2 + . . .+ (mn −m1r
−1an)λn.

The determinant of the change of basis matrix from {ω1, . . . , ωn} to {λ1, . . . , λn} is:

∣∣∣∣∣∣∣∣∣∣∣∣

a1 − a a2 . . . an

0 1 . . . 0

. . . . . . . . . . . .

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= a1 − a = r;

thus, by Proposition 1.30, ∆[λ1, . . . , λn] = r2∆[ω1, . . . , ωn]. Since 0 ≤ r � 1, this contradicts

our choice of {ω1, . . . , ωn} with minimal discriminant. Therefore {ω1, . . . , ωn} is a Z-basis

for O, and so (O,+) is a free abelian group of rank n. �

Definition 1.39. The Z-basis of a number ring O in a number field K is called an integral

basis of K (or of O).

In Proposition 1.30, we see that the determinant of the change-of-basis matrix deter-

mines how the discriminant changes between two different bases. Note the following propo-

sition with that in mind:
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Proposition 1.40. The change of basis matrix between two Z-bases is unimodular (equals

±1). [see Stewart and Tall [7] p.28]

From this, we can prove the following about the discriminants of integral bases:

Proposition 1.41. All integral bases of the same number field K have the same discrimi-

nant.

Proof. ∆[α1, . . . , αn] = (±1)2∆[β1, . . . , βn] = ∆[β1, . . . , βn] �

Definition 1.42. By the above proposition, the discriminant of an integral basis is inde-

pendent of which particular integral basis of K we pick, and will always be the smallest

possible ∆ such that ∆ = ∆[α1, . . . , αn] for some Z-basis {α1, . . . , αn}. This common value

is called the discriminant of K.

Example 1.43. Recall our quadratic fields K = Q[
√
d] from Example 1.25. It is clear from

the definitions of our rings of integers that:

(i) If d 6≡ 1 (mod 4), then {1,
√
d} is an integral basis with discriminant:

∆ =
∣∣∣ 1 √d
1 −
√
d

∣∣∣2 = (−2
√
d)2 = 4d

(ii) If d ≡ 1 (mod 4), then {1, 12 + 1
2

√
d} is an integral basis with discriminant:

∆ =

∣∣∣∣ 1 1
2
+ 1

2

√
d

1 − 1
2
+ 1

2

√
d

∣∣∣∣2 = (−
√
d)2 = d

Since isomorphic fields have the same discriminant, distinct squarefree integers define ani-

somorphic fields.

We also have the following result relating properties of the basis with properties of its

discriminant:

Corollary 1.44. Let {α1, . . . , αn} be a Q-basis for K consisting of integers. If ∆[α1, . . . , αn]

is squarefree then {α1, . . . , αn} is an integral basis.

Proof. Take some integral basis {β1, . . . , βn}. Then there exist cij ∈ Z such that αi =∑
cijβj , and by Proposition 1.30 ∆[α1, . . . , αn] = [det(cij)]

2∆[β1, . . . , βn]. Since the left side
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is squarefree, it must be the case that det(cij) = ±1; thus, by Proposition 1.40, {α1, . . . , αn}

is a Z-basis for O. �

The fact that O is a free abelian group has a number of consequences. Here is one

example:

Corollary 1.45. Let O be the ring of integers in some number field K. Then, for any

p ∈ Z, |O/pO| = pn, where n is the degree of K over Q.

Proof. Since O is a number ring, we know that it is also a free abelian group over Z of

order n by Theorem 1.36, with some integral basis {α1, ...αn}. Thus, for all β ∈ O, we have

β = m1α1 + . . . + mnαn, with mi ∈ Z. By the Division Algorithm, we have mi = pxi + yi

for some xi, yi ∈ Z with 0 ≤ yi ≤ p− 1. Thus we see:

β = m1α1 + . . .+mnαn

= (y1 + px1)α1 + . . .+ (yn + pxn)αn

= y1α1 + . . .+ ynαn + p(x1α1 + . . .+ xnαn)

Since the last term p(x1α1 + . . .+ xnαn) is in pO, and all the yi are reduced modulo p, we

have that β+ pO = {y1α1 + . . .+ ynαn + pO | 0 ≤ yi ≤ p− 1}. There are p choices for each

yi, and n such i; thus |O/pO| = pn, as desired. �

Results dealing with these types of quotient fields will become very important in our

later analysis.

1.2.4 Ideals

In Chapter 3, we will be manipulating the ideals of a number ring, and thus it is important

to establish some useful definitions and properties about these special subrings.

Definition 1.46. Let a be an ideal in a (commutative with identity) ring R. We define

two special types of ideals:

(i) We say a is maximal if a is a proper ideal of O and there are no ideals of O strictly

between a and O.
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(ii) We say a is prime if either of the following hold:

• For all ideals b and c of O such that bc ⊆ a, it must be the case that either b ⊆ a

or c ⊆ a; or

• If bc ∈ a, then b ∈ a or c ∈ a.

Proposition 1.47. The two definitions of a prime ideal are equivalent.

Proof. Suppose bc ⊆ a implies b ⊆ a or c ⊆ a, and assume bc ∈ a. Then 〈b〉〈c〉 ⊆ a. Hence

〈b〉 ⊆ a or 〈c〉 ⊆ a, and thus b ∈ a or c ∈ a. Conversely, suppose bc ∈ a implies b ∈ a or

c ∈ a, and assume for contradiction that bc ⊆ a but b 6⊆ a and c 6⊆ a. Then there exists

b ∈ b and c ∈ c such that b /∈ a and c /∈ a. However, we know bc ∈ a, and our supposition

yields a contradiction. �

Example 1.48. The definition of prime ideal translates exactly to that of a prime element

if our ring is a Principle Ideal Domain: if a = 〈a〉, b = 〈b〉, and c = 〈c〉, then bc ⊆ a implying

b ⊆ a or c ⊆ a is equivalent to a|bc implying a|b or a|c. From this, we conclude that x|y if

and only if 〈x〉 ⊇ 〈y〉; further, 〈p〉 is prime if and only if p is zero or prime.

We can now expand our definitions of “divides” to apply to ideals, as well as elements:

Definition 1.49. Let a and b be ideals in O. We say a divides b, written a|b, if there exists

some ideal c such that b = ac.

We also include a definition of relatively prime for ideals in this context:

Definition 1.50. We say two proper ideals a and b of R are relatively prime if a + b = R.

We have the following result concerning relatively prime ideals our ring R, and their

associated quotient fields:

Theorem 1.51 (Chinese Remainder Theorem). Let p1, . . . , pn be pairwise relatively prime

ideals in a ring R. Then the obvious mapping R/
n
∩
i=1

pi → R/p1 x . . . x R/pn is an

isomorphism.

Proof. We will first prove this for the specific case n = 2. The kernel of this natural mapping

is clearly trivial, and hence the mapping is 1-1. To show it is onto, take any r1 and r2 in

R, and consider the element (r1 + p1)× (r2 + p2). Since p1 and p2 are relatively prime and
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1 ∈ R, there exist a1 ∈ p1 and a2 ∈ p2 such that a1 + a2 = 1, and define r = a1r2 + a2r1.

Then:

r = airj + ajri = airj + (1− ai)ri = ai(rj − ri) + ri ≡ ri (mod pi)

since ai, and hence ai(rj − ri), is in pi. Thus r maps to (r1 + p1)× (r2 + p2), and hence the

mapping is onto; therefore the mapping is a bijection, as desired.

The general result follows since all pi and pj are relatively prime, and thus we can always

find appropriate elements aij ∈ pi and aji ∈ pj such that aij + aji = 1. �

Continuing our work with quotient rings, we have:

Theorem 1.52 (Third Isomorphism Theorem). Let a and b be ideals of a ring R, with

b ⊆ a ⊆ R. Then the set a/b is an ideal of the quotient R/b, and the quotient ring

(R/b)/(a/b) is isomorphic to R/a.

Proof. To show a/b is an ideal, note that a/b = {a+ b|a ∈ a}, while R/b = {r + b|r ∈ R}.

Clearly a/b ⊆ R/b. Now let a1 + b, a2 + b be arbitrary. Then (a1 − a2) + b ∈ a/b and

ra+ b ∈ a/b for all r ∈ R since a is an ideal.

We will now construct an isomorphism φ. We start with the two induced mappings

from our ring into the two quotient rings, πa : R → R/a and πb : R → R/a. Now, since

ker(πa) = a and b ⊆ a, by the First Homomorphism Theorem there exists a mapping

φ : R/b→ R/a such that φ ◦πb = πa, with φ(α+ b) = α+ b for all α ∈ R. Since πa is onto,

φ must be as well, and further we note that the kernel of φ is a/b. Thus, again by the First

Isomorphism Theorem, we have an isomorphism φ between (R/b)/(a/b) and R/a. �

Moreover, there is a strong connection between these quotient rings and the classification

of the associated ideal as maximal or prime. We begin with a lemma:

Lemma 1.53. Let R be a ring, and a an ideal of R. Then the ideals of R/a are in 1-1

correspondence with the ideals of R containing a.

Proof. Take I to be the set of ideals of R/a and J to be the set of ideals of R that contain

a. We define the mapping h : J → I by h(b) = b/a. We know b/a is an ideal of R/a by the

Third Isomorphism Theorem. We will show (i) h is an injection; and (ii) h is a surjection.

18



For (i), suppose h(b) = h(c) for b, c ∈ J , and take b ∈ b. Since b/a = c/a, there exists

c ∈ c/a such that b+ a = c+ a, so b− c ∈ a ⊆ c. Then b− c = c2, so b = c2 + c ∈ c. By a

symmetric argument, any arbitrary c ∈ c is in b. Thus b = c, as desired.

For (ii), let b be an ideal of R/a, and take b = π−1(b), where π: R→ R/a is the natural

epimorphism. We claim b is an ideal of R containing a. We see b is an ideal since π is a

homomorphism and b is an ideal of R/a. Further, since b is an ideal, it must contain the

identity 0 + a, so a ⊆ π−1(b) = b, and hence b ∈ J . Thus h(b) is well defined and clearly

equals b.

Therefore h is a well-defined bijection between I and J , so the ideals of R/a are in 1-1

correspondence with the ideals of R containing a, as desired. �

We can now directly compare the properties of a with the properties of the quotient

ring R/a:

Theorem 1.54. Let R be a ring, a an ideal of R. Then:

(i) a is maximal if and only if R/a is a field;

(ii) a is prime if and only if R/a is a domain.

Proof. (i) By the lemma, the ideals of R/a are in bijective correspondence with the ideals

of R lying between a and R. Hence a is maximal if and only if R/a has no proper ideals,

which is true if and only if R/a is a field.

(ii) Suppose a is prime. If x, y ∈ R such that (x + a)(y + a) = 0, then xy ∈ a. Hence

x ∈ a or y ∈ a, and therefore one of (x + a) and (y + a) is zero in R/a. Thus there are no

zero-divisors, so R/a is a domain. Conversely, assume R/a is a domain. Then |R/a| 6= 1 so

a 6= R. Then suppose, for contradiction, that bc ⊆ a but b 6⊆ a and c 6⊆ a for some ideals

b and c of R. Then we must have elements b ∈ b, c ∈ c such that bc ∈ a yet neither b

nor c are in a. Therefore (b + a) and (c + a) are zero-divisors, contradicting that R/a is a

domain. �

Corollary 1.55. All maximal ideals are prime.

Proof. This follows directly from Theorem 1.54. �
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This theorem and corollary will be very useful, as we often need to shift our considera-

tions between the ideals a of R and the associated quotient fields R/a, and this allows us

to transform the associated structure.

1.2.5 Modules

A module can be considered a generalization of a vector space: informally, consider a module

as a vector space where the scalars can be from a ring as well as a field. Formally:

Definition 1.56. For a ring R, an R-module is an abelian group M together with a function

α : R×M →M , written α(r,m) = rm with r ∈ R and m ∈M , which satisfies:

(i) (r + s)m = rm+ sm;

(ii) r(m+ n) = rm+ rn;

(iii) r(sm) = (rs)m;

(iv) 1m = 1

for all r, s ∈ R and m,n ∈M . The function α is called an R-action on M .

Note that, if R is a field, this is exactly the definition of a vector space over R. We will now

define a subset of a module which is conceptually very similar to an ideal:

Definition 1.57. An R-submodule of M is a subgroup N of M such that for all n ∈ N and

r ∈ R, rn ∈ N .

Example 1.58. A Z-module is just an abelian group M with a naturally defined action:

0m = 0, 1m = m, (n+ 1)m = nm+m, and (−n)m = −nm for n ∈ Z and m ∈M .

Example 1.59. For an arbitrary ring R, there are some natural associated modules:

(i) For any subring S of R, we have that R is an S-module with action α(s, r) = sr

defined by the product of elements in R.

(ii) Suppose a is an ideal of R. Then a is an R-module with α(r, i) = ri, where the

product is that of elements in R.
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1.2.6 Noetherian Rings and Dedekind Domains

In this final introductory section, we will further explore the interesting properties of number

rings, recalling that we have already shown that they are free abelian groups as well as

integral domains. We will later show that the properties defined below have very powerful

consequences when considering different types of factorization.

Definition 1.60. A domain D is noetherian if every ideal in D is finitely generated.

Definition 1.61. A domain D satisfies the ascending chain condition if given any ascending

chain of ideals a0 ⊆ a1 ⊆ . . . ⊆ an ⊆ . . . in O, there exists some N ∈ Z such that an = aN

for all n ≥ N ; thus every ascending chain of ideals stops.

Definition 1.62. A domain D satisfies the maximal condition if every non-empty set I of

proper ideals has a maximal element (one not contained within any other ideal in I).

Proposition 1.63. The three definitions above are equivalent for a domain D

Proof. Assume D is noetherian, and consider an ascending chain a0 ⊆ a1 ⊆ . . . of ideals.

Take a =
⋃∞
n=1 an. Then a is an ideal, and since D is noetherian it is finitely generated;

assume a = 〈x1, . . . , xm〉. Each of the xi belongs to some ideal aj , and let N be the

maximum “j” of these m indices. Then a = aN and an = aN for all n ≥ N .

Now assume D satisfies the ascending chain condition, and let S be a non-empty set of

ideals. Suppose, for contradiction, S has no maximal element. Pick an arbitrary a0 ∈ S.

Then since S has no maximal element, a0 cannot be maximal, so there exists some a1 such

that a0 ( a1. Inductively, for each an we can find some an+1 with an ( an+1. However,

these form an ascending chain that does not stop, a contradiction.

Finally, assume D satisfies the maximal condition. Let a be an arbitrary ideal, and let S

be the set of all finitely generated ideals contained in a. Note that {0} is finitely generated

and contained in a, so S is non-empty; thus S has some maximal element b. If b 6= a, pick

some x ∈ a− b. Then 〈b, x〉 is finitely generated and strictly larger than b, a contradiction

to the maximality of b. Thus b = a, and therefore a is finitely generated. �

Theorem 1.64. Let O be the ring of integers of some number field K. Then O is noethe-

rian.
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Proof. We will show O is noetherian directly, without calling on Proposition 1.63. Let

a be an ideal of O. By Theorem 1.38, the additive group of O is free abelian of rank

n = [K : Q], and hence by Theorem 1.36 the additive group of a is also free abelian of rank

s ≤ n. If {x1, . . . , xs} is a Z-basis for a, then clearly 〈x1, . . . xs〉 ⊆ a since all xi ∈ a and

a ⊆ 〈x1, . . . xs〉 since 〈x1, . . . xs〉 spans a. Therefore a = 〈x1 . . . xs〉 is finitely generated, and

hence O is noetherian, as desired. �

Noetherian rings in general have some powerful properties, and some of these will be

exploited in the following chapters.

Definition 1.65. Let D be a domain. We say D is integrally closed in its field of fractions

K if, whenever α ∈ K is a root of some monic polynomial over D, we have α ∈ D.

We can now define our stronger condition:

Definition 1.66. A domain D is a Dedekind domain if it satisfies the following conditions:

(i) D is noetherian;

(ii) D is integrally closed in its field of fractions K;

(iii) Every non-zero prime ideal is maximal.

We will show all number rings are in fact Dedekind Domains; we begin with a lemma:

Lemma 1.67. Let p be a non-zero prime ideal in the ring of integers O of a number field

K. Then O/p is a finite field.

Proof. We have that O/p is a domain by Theorem 1.54. It is sufficient to show it is finite,

since all finite domains are fields [see Stewart and tall [7] p. 12]. Let α ∈ p be non-zero,

and let m = NK(α). We know that m ∈ Z by Proposition 1.19. Recall that O is a free

abelian group of degree n. Then, we see m = α1 . . . αn where the αi are the conjugates of

α, and since αi 6= 0 for all i, m 6= 0. Further, αi = α for some i since some embedding σi

of K must be the identity; renumbering if necessary, let α = α1, and define β = α2 . . . αn,

so m = αβ. Since m and α−1 ∈ K, we have β = mα−1 ∈ K; further, all αi ∈ B, so

β = α2 . . . αn ∈ B. Thus β ∈ K ∩ B = O, so m = βα ∈ p. Therefore p contains some

non-zero integer m. By Corollary 1.45, |O/mO| = mn, and since mO is a subring of p,

|O/p| divides mn. Therefore O/p is finite. �
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Theorem 1.68. Every number ring O is a Dedekind domain.

Proof. We know O is noetherian by Theorem 1.64, and O is integrally closed by Theorem

1.9. To show that every non-zero prime ideal a is maximal, note by Corollary 1.67 that O/a

is a finite field, and thus by Theorem 1.54 O is maximal. �
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1.3 Prime Factorization of Elements

We will now briefly look, often without proof, at some startling results dealing with the

factorization of elements of a number ring into irreducibles. For this section, as before let K

be a number field with ring of integers O, noting that O is also a domain by Proposition 1.23,

and recall the distinction between an irreducible element and a prime element; irreducible

means there is no proper factorization, while prime means α|βγ implies α|β or α|γ.

For discussion, let us consider some non-unit α in a domain D. If α is not irreducible

(i.e. is reducible), we can write α = a1a2 for some ai ∈ D. Now consider the ai; if they are

reducible, we can write them as the product of two factors. We can continue in this manor,

and go through this process for any α ∈ D. With this in mind, we say:

Definition 1.69. Factorization into irreducibles is possible in D if every non-zero, non-unit

α ∈ D is the product of a finite number of irreducible elements; that is, for every α, the

process described above stops, and we see α = p1 . . . pr for some irreducibles pi ∈ D.

Example 1.70. Let us consider the ring B of all algebraic integers, and note that there

are no irreducible elements: for all α ∈ B, we also have that
√
α ∈ B; thus every element

has a non-trivial factorization α = (
√
α)2. Thus, since there are no irreducible elements,

no element can be written as a finite product of such (non-existent) elements, and thus

factorization is not possible in B.

This example demonstrates that in an arbitrary extension of the integers, not only

is factorization not necessarily unique, but factorization into irreducibles itself isn’t even

necessarily possible (we are cheating slightly in this example since [B : Z] is infinite, and

number rings are finite extensions).

However, a condition we have introduced earlier is sufficient to guarantee factorization

into irreducibles is possible:

Theorem 1.71. Factorization into irreducibles is possible in a ring if it is noetherian; thus

by Theorem 1.64 factorization is possible in every number ring O. [For details see Stewart

and Tall [7] p.81]

Further, we can characterize whether or not factorization in such a noetherian domain

is unique by examining its irreducible elements; if there is a distinction between prime and
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irreducible elements, unique factorization will fail:

Theorem 1.72. Factorization into irreducibles is unique in O if and only if every irre-

ducible in O is also prime [see Stewart and Tall [7] p.87].

Definition 1.73. If factorization into irreducibles is possible and unique in a domain D,

then D is called a unique factorization domain.

There are many other ways to conclude that a domain D is a unique factorization

domain. For example, all Euclidean domains and Principle Ideal domains are also unique

factorization domains [see Howie [4] p.32].

However, not all number rings are unique factorization domains; in fact, many are not.

A good demonstration of this fact comes from considering complex quadratic fields:

Proposition 1.74. The ring of integers of K = Q[
√
d] for negative, squarefree d has unique

factorization into irreducibles if and only if d is one of the following values: −1, −2, −3,

−7, −11, −19, −43, −67, and −163 [see Stewart and Tall [7] p.86].

We will now consider an exemplary case of number ring with non-unique factorization,

and show that a particular element has multiple factorizations into irreducibles:

Example 1.75. Let K = Q[
√
−5], and note it is a quadratic field. Since −5 6≡ 1 (mod 4),

by our remark in Example 1.25 we know it has ring of integers O = Z[
√
−5]. Consider the

element 6 ∈ K, and we can easily see that 6 = 2 · 3 = (1 +
√
−5)(1−

√
−5). We claim that

the four elements 2, 3, (1 +
√
−5), and (1−

√
−5) are all irreducible in O.

We will make use of the norm to help us prove this result. Elements in O are of the form

a+b
√
−5 for a, b ∈ Z, and thus the norm N(a+b

√
−5) = (a+b

√
−5)(a−b

√
−5) = a2+5b2;

hence, we have N(2) = 4, N(3) = 9, N(1 +
√
−5) = N(1−

√
−5) = 6. Let us consider the

element 2 specifically. If 2 factors in O, say 2 = xy for x, y ∈ Z[
√
−5], then, by Proposition

1.20 we have 4 = N(x)N(y), and since the norm of an element is an integer by Proposition

1.19, for this factorization to be proper it must be the case that N(x) = ±2 = N(y).

Similarly, non-trivial factors of 3 must have a norm of ±3, and non-trivial factors of 1±
√
−5

must have norm ±2 or ±3. Thus, any proper factor of any of these four elements must have

a norm of ±2 or ±3.
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Take α ∈ O to be a non-trivial factor of 2, 3, (1 +
√
−5), or (1−

√
−5). Then N(α) =

N(a+ b
√
−5) = a2 + 5b2 = ±2,±3. Note that if b ≥ 1, then |a2 + 5b2| ≥ 5, so we must have

b = 0. Thus we must have a2 = ±2,±3. Clearly this is not possible if a is an integer; thus

no possible non-trivial factors exist of 2, 3, (1 +
√
−5), or (1 −

√
−5). Hence they are all

irreducible, and thus 6 has two factorizations into irreducibles in O. Therefore all elements

of the number ring O = Z[
√
−5] do not factor uniquely.
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Chapter 2

Prime Factorization of Ideals

As we saw at the end of the previous chapter, factorization of elements in number rings

need not be unique. In this chapter, we will show that it is much nicer to consider the

ideals of a number ring; we can expand our definitions of “prime” and “factors” to concern

ideals, and we find that, in any number ring, all ideals factor uniquely into prime ideals. In

this chapter, we will again be working in a number field K with ring of integers O, and the

term “prime” will refer to a non-zero prime ideal of O.

We will consider two ways to prove the unique factorization of ideals, presented by

Stewart and Tall and Marcus: the first involves a concept called “fractional ideals”,

the second deals with “ideal classes”. While these ideas are related, they each give a

different perspective on the problem. It is important to note that most of these proofs work

for any Dedekind domain O with field of fractions K; however, again, we will most often

be restricting our view to the more specific case of a number field and its ring of integers.

We begin by showing that every ideal in a number ring contains a product of primes.

Lemma 2.1. For every ideal a in a number ring O, there exist primes p1, . . . , pr such that

p1 . . . pr ⊆ a.

Proof. Consider the set of all ideals that do not contain a product of primes, and suppose,

for contradiction, it is non-empty. Since O is noetherian, it satisfies the maximal condition,

and thus we have a maximal element a of this set. Clearly a is not prime (otherwise it

trivially contains a product of primes), so there exist ideals b and c of O such that bc ⊆ a
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with b 6⊆ a and c 6⊆ a. Take a1 = a + b and a2 = a + c. Now note that a1a2 ⊆ a (since

elements of a1a2 are sums of elements of the form aiaj +aicj +ajbi+bicj), and both a ( a1,

a ( a2. By the maximality of a, we know there exist p1, . . . , ps, ps+1, . . . , pr such that

p1 . . . ps ⊆ a1 and ps+1 . . . pr ⊆ a2. But therefore p1 . . . pr ⊆ a1a2 ⊆ a, a contradiction. �

We can also construct show there exists an element outside our number ring O with an

interesting property:

Lemma 2.2. Let a be a proper ideal. Then there exists an element γ ∈ K\O such that

γa ⊆ O.

Proof. Since a is a proper ideal, it is contained in some maximal (hence prime by Lemma

1.55) ideal p. Take a ∈ a ⊆ p. By Lemma 2.1 we know the ideal 〈a〉 contains a product of

primes; say p1 . . . pr ⊆ 〈a〉, and we may choose this product such that r is minimal. Since

〈a〉 ⊆ a ⊆ p, by the definition of prime ideal p ⊇ pi for some i; renumbering if necessary let

p ⊇ p1. Since both ideals are maximal, we have p1 = p. Further, by the minimality of r, we

have p2 . . . pr 6⊆ 〈a〉, hence there exists some b ∈ p2 . . . pr\〈a〉.

But then we have b /∈ 〈a〉 = aO, so ba−1 /∈ O; take γ = ba−1 ∈ K\O. Note that

bp ⊆ 〈a〉, and thus ba−1p ⊆ O. Therefore γa = ba−1a ⊆ ba−1p ⊆ O, as desired. �

From here, the two proof methods diverge.

2.1 Proof Via Fractional Ideals

We begin with two equivalent definitions of a fractional ideal:

Definition 2.3. We call an O-submodule f of K a fractional ideal if there exists some

non-zero c ∈ O such that cf ⊆ O.

Definition 2.4. A subset f of K is a fractional ideal if it is of the form f = c−1a for some

ideal a ⊆ O and 0 6= c ∈ O.

These definitions are equivalent since cf is an ideal of O: cf1 − cf2 = c(f1 − f2) = cf3 ∈ cf,

and α(cf1) = c(αf1) = cf2 ∈ cf, for fi ∈ f and α ∈ O. [see Stewart and Tall [7] p.107
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for more details]. Note that clearly all ideals of O are fractional ideals (take c = 1), and

further:

Proposition 2.5. A fractional ideal f is a true ideal if and only if f ⊆ O.

Proof. Both directions are trivial. �

Example 2.6. In the rational integers, the fractional ideals are the sets rZ for some r ∈ Q.

Example 2.7. If O is a principle ideal domain, the fractional ideals are the sets c−1〈a〉 =

c−1aO = αO for some α ∈ K.

Consider the set F of all fractional ideals of a number ring O. We would like to show F

is a group. We begin with a lemma:

Lemma 2.8. If a is a non-zero ideal of O and aS ⊆ a for some subset S ⊆ K, then S ⊆ O.

Proof. Let s ∈ S be arbitrary, and by our supposition as ⊆ a. Because O is noetherian, a

is finitely generated; say a = 〈a1, . . . , am〉 for some ai ∈ O, not all zero. Then, since as ⊆ a,

we know ais ∈ a for all i. Thus, for all i, we have ais = bi1a1 + . . .+bimam for some bij ∈ O.

Consider the following associated system of equations in m unknowns:

x1s = b11x1 + . . .+ bm1xm
...

xms = bm1x1 + . . .+ bmmxm

We can rearrange these equations into a system of m homogeneous equations in over xi

with coefficient matrix as follows;


b11 − s b12 . . . b1m

b21 b22 − s . . . b2m

. . . . . . . . . . . .

bm1 bm2 . . . bmm − s


Note that we have a non-zero solution, namely xi = ai, and hence the determinant of this

matrix is zero. This gives us a monic polynomial equation with coefficients in O that s

satisfies, and thus s ∈ O by Theorem 1.9. �
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Theorem 2.9. The set of fractional ideals F forms a group under multiplication.

Proof. Let fi = c−1i ai be fractional ideals (so ci ∈ K and ai an ideal of O) for i = 1, 2.

Closure, associativity, and the existence of an identity follow easily:

Closure We have f1f2 = (c−11 a1)(c
−1
2 a2) = (c1c2)

−1a1a2 ∈ F.

Associativity This follows trivially since ideal and integer multiplication is commutative

and associative.

Identity The entire number ring O is the identity: fO = (c−1a)O = c−1(aO) = c−1a = f.

The proof of the existence of an inverse is non-trivial:

Inverse We will first define a−1 for a true ideal a of O, and show a and a−1 are inverses:

we will demonstrate, first for maximal and then for all ideals, that aa−1 = O. We will then

show that this inverse can be used to find the inverse of a fractional ideal.

For any ideal a of O, define a−1 = {x ∈ K | xa ⊆ O}. It is easy to see that a−1 is

a O-submodule of K. Note further that, if a 6= 0, then for all x ∈ a−1 and any non-zero

a ∈ a, we have ax ∈ O and hence aa−1 ⊆ O; thus a−1 is a fractional ideal. Then, since a

is an ideal of O, Oa ⊆ a, so O ⊆ a−1, and hence a = aO ⊆ aa−1. From the definition we

have aa−1 = a−1a ⊆ O, and thus aa−1 is a true ideal of O. We would like to show that

aa−1 = O.

Note that, if a ⊆ b, then b−1 ⊆ a−1 since, for all x ∈ b−1, xa ⊆ xb ⊆ O. Take our

arbitrary ideal a. Then, by Lemma 2.2 we know there exists some γ ∈ K\O such that

γa ∈ O. Hence by our definition of a−1 above, we have γ ∈ a−1; since a contains O,

O ( a−1.

We showed above that aa−1 is an ideal of O for all ideals a; consider the case where

a = p is prime. Then we have p ⊆ pp−1 ⊆ O, so pp−1 must equal either p or O since p is

maximal. However, if pp−1 = p, by Lemma 2.8 p−1 ⊆ O, contradicting our above result.

Thus pp−1 = O. Let us build on this and show that aa−1 = O for any ideal a. Suppose not

for contradiction, and then choose a maximal subject to aa−1 6= O. Again, we have a ⊆ p

for some maximal ideal p. Since O ( p−1 ⊆ a−1, we have:

a ( ap−1 ⊆ aa−1 ⊆ O.
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Thus, since ap−1 ⊆ O, ap−1 must be a true ideal. Further, since a ( ap−1, by the maximal

condition on a we have that ap−1(ap−1)−1 = O, and thus p−1(ap−1)−1 ⊆ a−1 by our

definition of a−1. Therefore:

O = ap−1(ap−1)−1 ⊆ aa−1 ⊆ O;

and hence aa−1 = O for all ideals a. Finally, for our fractional ideal f = c−1a, we define the

inverse f−1 = ca−1, and see ff−1 = (cc−1)aa−1 = 1O = O, as desired.

Therefore the set of fractional ideals F is a group. �

Proposition 2.10. For ideals a and b of O, a|b if and only if a ⊇ b.

Proof. Suppose a|b. Then b = ca for some ideal c. The result follows since the product of

two ideals is a subset of both factors.

Conversely, if a ⊇ b, define the set c = a−1b, and then clearly b = ac. Since both a−1

and b are (at least) fractional ideals, and the fractional ideals form a group, c is a fractional

ideal with c = a−1b ⊆ a−1a ⊆ O. Thus c is a true ideal, and therefore a|b. �

This augments our definition of a prime ideal, making it analogous to the definition of

a prime element: if p is prime, then whenever p|ab, p|a or p|b.

We can now prove unique factorization of ideals:

Theorem 2.11. Every non-zero ideal a of O can be written as a product of prime ideals,

uniquely up to order.

Proof. By Lemma 2.1, we know every a contains a product of primes; we will now show

it is equal to such a product. Suppose not, with a maximal with respect to not being a

product of prime ideals. Then a cannot be prime, but is contained in some maximal (with

respect to the whole ring O) ideal p. Then, as in the above proof of Theorem 2.9, we have

O ( p−1 ⊆ a−1 and thus a ( ap−1 ⊆ O. By the maximality of a, the ideal ap−1 must equal

a product of primes: ap−1 = p2 . . . pr. Thus a = pp2 . . . pr, and hence is equal to a product

of primes, a contradiction.

For uniqueness, suppose our ideal a has two factorizations into primes: a = p1 . . . pr =

q1 . . . qs. Then p1 must divide some qi, and from maximality p1 = qi. Multiply through by
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p−11 ; continuing this process inductively, we obtain uniqueness of prime factorization up to

order of the factors, as desired. �

2.2 Proof Via Ideal Classes

We now move to another method of proving ideals factor uniquely in number rings. We

begin by defining an equivalence relation:

Definition 2.12. Let a and b be ideals in a number ring O. Then we say a ∼ b if and only

if αa = βb for some non-zero α, β ∈ O.

Proposition 2.13. The relation ∼ defined above is an equivalence relation on the ideals of

O [the proof is trivial].

Definition 2.14. We call each equivalence class an ideal class.

The study of the set of ideal classes is on its own a very fruitful subject. For our current

endeavors we will show the set is a group [see Marcus [5] p.32 and Stewart and Tall

[7] p.157 for other interesting results, including that the set is finite]. We begin with a

theorem:

Theorem 2.15. Let a be an ideal in a number ring O. Then there exists an ideal b such

that ab is principle.

Proof. Let a ∈ a be non-zero. We take b = {b ∈ O | ba ⊆ 〈a〉}; it follows directly from the

definition and the fact that 〈a〉 is an ideal that b is itself an ideal. We note that ab ⊆ 〈a〉.

Now consider the set c = a−1ab; we will show ab = 〈a〉 by demonstrating that c = O.

Note that c = a−1ab ⊆ a−1〈a〉 = O, and further that c is an ideal (since ab is).

Suppose, for contradiction that c is a proper ideal of O. By Lemma 2.2 there exists a

γ /∈ K\O such that γc ⊆ O. Since a ∈ a we have that b ⊆ c, and thus γb ⊆ γc ⊆ O. Now

take γb ∈ γb and x ∈ a; then γbx = γa−1bxa = γ(a−1xb)a, but a−1xb ∈ a−1ab = c, so

γbx = γ(c)a = (γc)a ∈ 〈a〉 since γb ⊆ O. Thus γb ⊆ b.

Since O is noetherian, b is finitely generated; take b = 〈α1, . . . , αm〉. As in our proof

above in Lemma 2.8, we consider the system of equations generated by expressing each γαi
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as a linear combination of our generators, representable as the following matrix equation:

γ

[ α1

...
αm

]
= C

[ α1

...
αm

]

where C is our coefficient matrix. This can be easily transformed into a system of ho-

mogeneous equations, and using the determinant, we produce a monic polynomial with

coefficients in O that γ satisfies. Thus γ ∈ O, contradicting γ ∈ K\O.

Thus c is not a proper ideal, and therefore ab = 〈a〉, as desired. �

Corollary 2.16. The ideal classes in O form a group

Proof. We define multiplication in the natural way: if [a] and [b] are ideal classes, then

[a] · [b] = [ab]. This is well defined: suppose a1 ∼ a2 and b1 ∼ b2; then a2 = α1α
−1
2 a1 and

b2 = β1β
−1
2 b1 for α1, α2, β1, β2 ∈ O. Therefore a1b1 = α−11 α2β

−1
1 β2a2b2, or α1β1a1b1 =

α2β2a2b2, so [a1b1] = [a2b2].

Since multiplication of ideals is closed and associative, so is the multiplication of ideal

classes. The identity element is the ideal class of the whole number ring [O], since [a][O] =

[aO] = [a]. Finally, we find that the inverse of the class [a] is the class of the ideal we found

above in Theorem 2.15: for our a, consider the class of the ideal b such that ab is principle,

say ab = 〈a〉. Then [a][b] = [ab] = [〈a〉] = [O] since 1〈a〉 = 〈a〉 = aO. �

We continue by looking at some of the implications of this result:

Corollary 2.17. If a, b, and c are ideals in a number ring, then ab = ac implies b = c.

Proof. We know there exists an ideal a such that aa is principle, say aa = 〈a〉. Multiply the

equation ab = ac by a, and we have ab = ac, and thus b = c. �

The following corollary is the exact same result as Proposition 2.10, but is proved in a

slightly different way:

Corollary 2.18. For ideals a and b of O, a|b if and only if a ⊇ b.

Proof. If a|b, then b = ac for some ideal c, and then clearly a ⊇ b. Note that this direction

is in fact the argument used in Proposition 2.10.
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The converse is not proved the same way. Assume a ⊇ b, and take a such that aa

is principle, say aa = 〈a〉. We now define c = a−1ab, and note c = a−1ab ⊆ a−1aa =

a−1〈a〉 = O. We can then say c is an ideal since both a and b are, and further, that

ac = a−1aab = a−1〈a〉b = Ob = b, as desired. �

We can now prove unique factorization using this method:

Theorem 2.19. Every non-zero ideal a of O can be written as a product of prime ideals,

uniquely up to order

Proof. Suppose not, and consider the set of ideals not representable in this fashion. Since

O is noetherian, this set has some maximal element a. We know a is contained in some

prime (and therefore maximal) ideal p so a ⊆ p. By our new definition, this means p|a, so

a = bp for some ideal b by Corollary 2.18. We have that b ) a, since if b = a, we would

have ap = bp = a = aO, hence O = p by Corollary 2.17, a contradiction. Thus b is larger

than a, and hence, by the maximality of a, b is a product of primes. But then, by the above

equality, so is a.

For uniqueness, suppose we have two equal factorizations into primes: a = p1 . . . pr =

q1 . . . qs. Then p1 ⊇ q1 . . . qs and hence p1 ⊇ qi. Renumbering if necessary let p1 ⊇ q1. But

since both are prime (and therefore maximal), we have p1 = q1. Applying cancellation, and

continuing inductively in this manor we have pi = qi for all i. �

2.3 Comparison

As noted in some of the proofs, there is great similarity between these methods. They

both use their constructions to devise a method to remove an ideal from one side of an

equation; using fractional ideals we explicitly define the inverse of an ideal, while using

ideal classes we reduce any ideal to a principle ideal and then can indirectly remove it. This

is very noticeable in the final proof of unique factorization: if we look at the second proof

above, the exact same operation performed by Corollary 2.17 could have been completed

by multiplying the equation by a−1, yielding an identical proof. The formal relationship

between these concepts is demonstrated in the following proposition:
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Proposition 2.20. Let a be an ideal, and a the ideal such that aa = 〈a〉 for some a ∈ O.

Then a−1 = a−1a.

Proof. We know that O = aa−1 and O = 〈a〉a−1 = aaa−1. Since inverses in a group are

unique, we see a−1 = a−1a.

This slight variation between the methods accounts for the differences in the proof of

Proposition 2.10 and Corollary 2.18. The other difference occurs in the proof that an ideal is

equal to a product of primes. This is due to the different processes used to force a maximal

a (maximal with respect to not equaling a product of primes) to actually equal a product

of primes.

Both these methods discussed above are equivalent once we have the following relation:

Proposition 2.21. Two ideals a and b are in the same ideal class if and only if there exists

a fractional ideal f that has representations f = c−11 a and f = c−12 b.

Proof. If a ∼ b then αa = βb, so β−1a = α−1b = f, and f is a single fractional ideal with two

representations using our ideals. Conversely, if we have a fractional ideal f = β−1a = α−1b

then αa = βb, as desired. �

2.4 Examples and Consequences

Each ideal of every number ring O has a unique factorization into prime ideals. Let us

calculate such a factorization for some specific examples:

Example 2.22. Consider Example 1.75 at the end of Chapter 1: we defined K = Q[
√
−5],

O = Z[
√
−5], and showed that 6 = 2 ·3 = (1 +

√
−5)(1−

√
−5) is an example of non-unique

factorization, since all elements to the right of 6 are irreducible. However, if we now consider

the ideals of O associated with these elements, we see that these four elements are in fact

35



not prime ideals, but instead are reducible:

〈2〉 = 〈2, 1 +
√
−5〉2

〈3〉 = 〈3, 1 +
√
−5〉〈3, 1−

√
−5〉

〈1 +
√
−5〉 = 〈2, 1 +

√
−5〉〈3, 1 +

√
−5〉

〈1−
√
−5〉 = 〈2, 1 +

√
−5〉〈3, 1−

√
−5〉

Let us check the first of these cases (the arguments for the others are similar). Multiplication

of generators yields:

〈2, 1 +
√
−5〉2 = 〈4, 2 + 2

√
−5,−4 + 2

√
−5〉;

and so 〈2, 1 +
√
−5〉2 ⊆ 〈2〉 since:

(a+ b
√
−5)[4] + (c+ d

√
−5)[2 + 2

√
−5] + (e+ f

√
−5)[−4 + 2

√
−5]

=
[
(2a+ c− 5d− 2e− 5f) + (2b+ c+ d+ e− 2f)

√
−5
]
[2] ∈ 〈2〉.

Note then that (2 + 2
√
−5) − (−4 + 2

√
−5) − (4) = 2, so 2 ∈ 〈2, 1 +

√
−5〉2. Hence

〈2〉 ⊆ 〈2, 1 +
√
−5〉2 since 〈2〉 is the smallest ideal containing 2.

Further, the ideals on the right are prime. Note that O/〈2〉 = {2(a+ b
√
−5 | a, b ∈ Z},

and then we have |O/〈2〉| = 4 since 2 + 2
√
−5, 2, and 2

√
−5 are in 〈2〉, which forces

the options of a and b in our explicit formulation of O/〈2〉 to strictly 0 and 1. Thus

|O/〈2, 1+
√
−5〉| must divide 4, and since 〈2, 1+

√
−5〉 properly contains 〈2〉 and is properly

contained in O, it must have order 2. Thus 〈2, 1 +
√
−5〉 is maximal, and hence prime. The

cases for the other factors are similar.

Thus, we see that when these elements (via their principle ideals) are factored into

prime (but not principle) ideals, the two factorizations of 6 are actually the same; these

four factors are actual multiples of the three “true” factors (in the ideal sense) of 6.

Example 2.23. Let us now take K = Q[i], and then by our comment on quadratic fields

in Example 1.25, we see O = Z[i]. This number ring is very important in number theory,
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and called the Gaussian Integers. We then have the factorizations:

〈2〉 = 〈1− i〉2

〈5〉 = 〈2 + i〉〈2− i〉

A similar argument to that in Example 2.22 will show that all the ideals on the right are

prime, demonstrating how, even in a PID, primes can split.

Example 2.24. Finally, let K = Q[
√
−17], again by Example 1.25 we know O = Z[

√
−17].

We consider the factorization of the element 18 and its associated principle ideal 〈18〉. As

above, we can show the factors on the right are prime and are indeed divisors of the objects

on the left [see Stewart and Tall [7] p.111 for details]:

18 = 2 · 3 · 3 = (1 +
√
−17)(1−

√
−17)

〈18〉 = 〈2, 1 +
√
−17〉2〈3, 1 +

√
−17〉2〈3, 1−

√
−17〉2

〈2〉 = 〈2, 1 +
√
−17〉2

〈3〉 = 〈3, 1 +
√
−17〉〈3, 1−

√
−17〉

This last example is similar to Example 2.22 above, in that the non-unique factorization

of the element 18 parallels the fact that the prime factors of 〈18〉 are not principle ideals, and

thus they cannot be properly represented, if you will, as elements of O. This idea actually

holds true in all number rings, and demonstrates a very powerful relationship between the

ideals of O and the factorization of elements of O: we will show that the factorization of

elements of O into irreducibles is unique if and only if every ideal of O is principle.

In order to prove this result, we must explore other consequences of unique factorization

of ideals. We will continue to naturally extend the definitions typically given for the integers,

and applying them to the ideals in a number ring O.

Definition 2.25. An ideal g is the greatest common divisor of the ideals a and b, written

gcd(a, b), if:

(i) g|a and g|b; and
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(ii) If g′ is an ideal such that g′|a and g′|b, then g′|g.

Definition 2.26. An ideal l is the least common multiple of a and b, written lcm(a, b), if:

(i) a|l and b|l; and

(ii) If l′ is an ideal such that a|l′ and b|l′, then l|l′.

Clearly, as in the integers, if a = pe11 . . . perr and b = ps11 . . . psrr for some primes pi and

integers ei and si (which need not be all non-zero):

g =
∏

p
min{ei,si}
i and l =

∏
p
max{ei,si}
i .

Proposition 2.27. Let a, b be ideals. Then:

(i) gcd(a, b) = a + b;

(ii) lcm(a, b) = a ∩ b;

Proof. We know that c|a if and only if c ⊇ a by Proposition 2.10. Hence g must be the

smallest ideal containing a and b, and l the largest ideal contained within a and b. The rest

follows easily. �

This exemplifies the seemingly reversed nature of factorization of ideals, where divisors

of an ideal contain the original ideal, and multiples of an ideal are contained in the original

factor: the greatest common divisor is the smallest ideal that is larger than both our original

ideals, and the least common multiple is the largest ideal contained within them.

Some of our earlier examples exploited the simplicity of principle ideal domains. While

we will consider other types of domains, we can now show that all ideals in any number

ring can be generated by at most two elements:

Theorem 2.28. Let a be an ideal in a our number ring O, and let α be a non-zero element

of a. Then there exists an element β ∈ a such that a = 〈α, β〉 = 〈α〉+ 〈β〉.

Proof. Since all ideals have unique factorization, let a = pe11 . . . perr for some primes pi.

Then, since 〈α〉 ⊆ a, 〈α〉 = ah = pe11 . . . perr h for some ideal h; thus each pi divides 〈α〉.

Note that 〈α〉 also has a unique factorization, and with the above conclusion in mind we
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see 〈α〉 = pe11 . . . perr q1 . . . qsp1 . . . pt, where the pk are powers of primes not distinct from the

pi, and the qj are powers of primes distinct from the pi.

By our proposition above, we must find a β such that gcd(〈α〉, 〈β〉) = a. Further, by

our remark after the definition of gcd, this means we must find a β such that none of these

qj also divide 〈β〉; such a qj would then divide a, contradicting the unique factorization of

a. Note that this restriction must disallow both higher and lower powers of the pi as well

as any powers of new primes found among the qj . Thus, formally, we must find a β such

that:

β ∈

(
r⋂
i=1

(peii \p
ei+1
i )

)⋂ s⋂
j=1

(O− qj)

 ;

where the first set restricts to the exact powers of the pi found in a, and the second requires

β to not be in any qj .

We can construct this β using the Theorem 1.51, the Chinese Remainder Theorem. In

each set (peii \p
ei+1
i ), take some element βl (these sets are non-empty since factorization into

prime ideals is unique). Then note that, for all i and j, pei+1
i + qj = O since the sum is

equal to the greatest common divisor, which clearly must be the entire number ring. Now

let β satisfy the following system of congruences via the Chinese Remainder Theorem:

β ≡ βi (mod pei+1
i ) for i = 1, . . . , r

β ≡ 1 (mod qj) for j = 1, . . . , s

This β works, as desired. �

We also now have a correlation between prime elements and prime principle ideals:

Proposition 2.29. Let α ∈ O. Then α is a prime element if and only if 〈α〉 is a prime

ideal.

Proof. Suppose 〈α〉 is prime, and assume, for contraction, α has a unique factorization

α = p1 . . . pr. Then 〈α〉 = 〈p1〉 . . . 〈pr〉, but since 〈α〉 is prime it has no proper factorization,

so all but one of the factors 〈pj〉 = O. Thus all but one pi are units, and hence α has no

proper factorization itself, and is thus irreducible. By Theorem 1.72, since O is a unique

factorization domain, α is prime.
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Conversely, Suppose α is prime, and let ab ∈ 〈α〉. Then 〈a〉〈b〉 ⊆ 〈α〉, so ab = rα for

some r ∈ O. Thus α|ab, hence α|a or α|b since α is prime. Therefore a ∈ 〈α〉 or b ∈ 〈α〉, so

〈α〉 is prime. �

We can now prove our desired result:

Theorem 2.30. Factorization of elements of O into irreducibles is unique if and only if

every ideal of O is principle.

Proof. The “only if” is straightforward as a result from ring theory (see Howie [4] p.32).

For the converse, let O be a unique factorization domain. We will show every prime ideal

is principle; the general result will follow since any ideal a would be a unique product of

principle ideals, and would hence itself be principle.

Let α ∈ p. Then by the argument in Lemma 1.67, we know m = N(α) ∈ Z ∩ p, and

hence 〈m〉 ⊆ p and p|〈m〉. Let us factor m in O, say m = λ1 . . . λs. Then, since p is prime,

p|〈λi〉 for some i. Further, by Proposition 2.29, each 〈λi〉 is prime. Thus, by uniqueness of

factorization, p = 〈λi〉 for some i, and hence is principle. �

As a demonstration, suppose α ∈ O is irreducible but not prime for some number

ring O. Then the principle ideal 〈α〉 is not prime, so has a factorization into prime ideals

〈α〉 = p1 . . . pr. Now none of the pi can be principle, for if pi = 〈p〉, then we’d have 〈p〉|〈α〉,

implying p|α. But since α is irreducible, this would require p to either be a unit (which

would contradict 〈p〉 being prime), or an associate of α and hence making 〈α〉 = pi (which

would contradict our assumption that 〈α〉 is not prime).

In summary, we see that a number ring O always has unique factorization of ideals.

Further, it has unique factorization of elements into irreducibles if and only if all irreducibles

are primes. In this case, the factorization of elements exactly corresponds to factorization of

principle ideals. However, if O does not have unique factorization of elements, the principle

ideal of any non-prime element factors into a product of prime ideals, each with exactly two

generators.
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Chapter 3

Primes in Extensions

In this chapter, we will further explore the behavior of prime ideals. Using the main result

of the last chapter, that the ideals of a number ring factor uniquely into prime ideals, we will

build on this, but in a slightly different setting. Whereas before we only considered some

number field K over Q, here we will look at a towers of fields L over K, both containing

Q. We find that almost all definitions in which K is an extension of Q can be extended

to the case where L is an extension of K: we retain the definition of algebraic numbers

and algebraic integers (since both our fields L and K are also important as number fields

over Q), leading us to define two rings of integers, OK and OL, one for each number field.

We will also now consider polynomials with coefficients in K, and we can define norms and

traces of elements in L, both over K as well as over Q;

Definition 3.1. Let K and L be number fields with K ⊆ L, and n the degree of L over

K. Denote with σ1, . . . , σn the n embeddings of L in C which fix K pointwise. We then

define the norm and trace of an element α in L over K (as opposed to over Q), NL
K and

TLK , respectively, to be defined:

NL
K(α) =

n∏
i=1

σi(α); and TLK(α) =

n∑
i=1

σi(α).

With this notation, we have NK = NK
Q and TK = TKQ . Further, we define the field

polynomial of α over K to be f(x) =
∏

(x − σi(α)). These extended definitions allows us

to state and prove a new version Proposition 1.19:
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Proposition 3.2. Let K and L be number fields with K ⊆ L, OK and OL the associated

rings of integers. Then for all α ∈ OL, NL
K(α) ∈ OK .

Proof. Since α is an integer, let p(t) = tn + mn−1t
n−1 + . . . + m1t + m0 be the minimum,

monic, irreducible polynomial of α over K; then we have mi ∈ OK . Let σ1, . . . , σn denote

the embeddings of L in C which fix K pointwise. Then consider field polynomial f of α

over K, and note that it is a power of p by the argument of Proposition 1.18. Further notice

that the norm of α is a power of the constant term in f . Therefore the norm must be a

power of an element in OK , and thus must be in OK , as desired. �

3.1 Splitting of Primes in Extensions

We will find that ideals which are prime in K need not remain prime when considered as

ideals of L; we will explore exactly how these primes split into a prime factorization in L.

We begin by formalizing the notation discussed above to denote the rings and fields with

which we will be working. Let K and L be number fields with K ⊆ L, and let OK = B∩K,

OL = B∩L; i.e. let OK and OL be the respective rings of integers in these number fields. We

will use p as a prime (ideal) in OK , and q as a prime (ideal) in OL. When we stated above,

informally, that primes of K need not also be primes of L, what we are really considering is

the prime factorization of the ideal generated by some prime p of OK in the larger number

ring OL, which is the ideal pOL. This ideal, pOL, need not be prime in OL even if p is

prime in OK .

This phenomenon is called “splitting”:

Definition 3.3. Let OK and OL be number rings, OK ⊆ OL, and p a prime ideal in OK .

We say p splits in OL if pOL is not a prime ideal in OL.

Example 3.4. We saw above that, for K = Q and L = Q[
√
−5], in OL = Z[

√
−5] the ideal

3OL = 〈3, 1 +
√
−5〉〈3, 1−

√
−5〉, even though 〈3〉 is prime in OK = Z.

For the remainder of this chapter, we will be exploring the ways in which primes split

in various field extensions. We begin with a proposition which relates primes in various
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extensions to each other:

Proposition 3.5. Let K, L, OK , OL, p, and q be as above. Then the following conditions

are equivalent:

(i) q | pOL

(ii) q ⊇ pOL

(iii) q ⊇ p

(iv) q ∩OK = p

(v) q ∩K = p

Proof. (i)↔ (ii): Corollary 2.18;

(ii)↔ (iii): Trivial since q is an ideal in OL;

(iv)→ (iii): Trivial;

(iv)↔ (v): Trivial since q ⊆ B and K ∩ B = OK ;

(iii) → (iv): Note that q ∩ OK contains p and is an ideal in OK ; since p is maximal by

Theorem 1.68, we have q∩OK must equal p or OK . If q∩OK = OK , then 1 ∈ q, implying

q = OL, a contradiction. Thus q ∩OK = p. �

Definition 3.6. Let p and q be as above. When the properties listed above in Proposition

3.5 hold, we say that q lies over p, and p lies under q.

Example 3.7. In Example 3.4 above, we had a factorization 〈3〉 = 〈3, 1+
√
−5〉〈3, 1−

√
−5〉.

Thus 〈3, 1±
√
−5〉 are exactly the two primes of L lying over 〈3〉.

This definition allows us to see towers of primes, in towers of number rings, in towers of

number fields.

Theorem 3.8. Let OK and OL be as above. Then:

(i) Every prime q of OL lies over a unique prime p of OK .

(ii) Every prime p of OK lies under at least one prime q of OL.
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Proof. By Proposition 3.5, proving (i) is equivalent to showing p = q∩OK is prime in OK ,

since q can only lie over one prime in OK .

Note first that there is an obvious way in which OK/p is contained in OL/q: we already

have OK ⊆ OL, and this containment induces a homomorphism OK → OL/q, with kernel

q ∩ OK = p. Therefore, by the First Homomorphism Theorem we have a mapping ψ :

OK/p → OL/q. Note that ψ is an injection: if we have ψ(r + p) = ψ(r + p), it must be

that r+ q = r+ q, and hence r− r ∈ q. However, we also know that r and r are in OK , so

r− r ∈ q∩OK , or r+ q∩OK = r+ q∩OK also holds, and so r+ p = r+ p. Thus OK/p is

embedded in OL/q. Since OL/q is a field, OK/p must then be a domain; by Theorem 1.54

this implies p is a prime ideal. Finally, we know p 6= OK since if q ∩OK = p = OK , and

hence 1 ∈ q, contradicting q being a proper prime ideal. Thus p is a proper prime ideal.

For (ii), we know that the primes lying over p are the prime divisors of pOL. Thus, we

must show that pOL 6= OL, implying that pOL has at least one prime divisor. Equivalently,

we can show 1 /∈ pOL. Note that even though we know 1 /∈ p, it is non-trivial to show that

there do not exist some αi ∈ p and βi ∈ OL such that 1 6= α1β1 + ...+ αrβr.

To show 1 /∈ pOL, we use Lemma 2.2 to find a γ ∈ K\OK such that γp ⊆ OK . Then

γpOL ⊆ OKOL = OL. Suppose 1 ∈ pOL; then γ ∈ OL. But then γ is an algebraic integer

by the definition of OL, contradicting γ /∈ K\OK . �

Let us extract part of the discussion in this proof, as it is vital to our exploration. The

above proposition states that the ideal q of OL lies over exactly one prime of OK , namely

p = q ∩OK . Since p and q are prime in their respective fields, OK/p and OL/q are finite

fields by Theorem 1.68 and Lemma 1.67.

Definition 3.9. The fields OK/p and OL/q are called the residue fields associated with p

and q.

Further, we have seen that there is a natural mapping between the quotient fields OK/p

and OL/q. In fact, this mapping is 1-1 since the kernel is trivial: OK ∩ q/p = p/p. Thus

we have an embedding OK/p → OL/q, and hence another tower of containments, parallel
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to the first (K ⊆ L). Since the both fields are finite, we know OL/q is a finite extension of

OK/p.

Definition 3.10. With OL, OK , q, and p as above, the degree of the extension OL/q over

OK/p is called the inertial degree of q over p, denoted f = f(q|p).

Example 3.11. Consider Example 2.22, with 〈2〉 lying under 〈2, 1+
√
−5〉. We see OL/2OL

has order 4, and 2OL ( 〈2, 1+
√
−5〉. Therefore |OL/〈2, 1+

√
−5〉| must be a proper divisor

of 4, the only possibility being 2. So |OL/〈2, 1+
√
−5〉| = 2. Then, since OK/〈2〉 is contained

in OL/〈2, 1 +
√
−5〉 yet is also a proper ideal, we must also have |foK/〈2〉| = 2. Therefore,

since they are both fields of order 2, f(〈2, 1 +
√
−5〉|〈2〉) = 1.

Up until now we have been working with a specific prime q over p. Let us break from

this for a moment and consider some properties related to the entire factorization of p.

Definition 3.12. Let OK and OL be as above, and p a prime in OK . Let p factor in OL

as pOL = qe11 ...qerr , with the qi all distinct, and note that the qi are exactly the r primes

of OL lying over p. Each exponent ei in this unique factorization is called the ramification

index of qi over p, and is denoted ei = e(qi|p).

Example 3.13. With our same example as above, we have 2OL = 〈2, 1 +
√
−5〉2, and

3OL = 〈3, 1+
√
−5〉〈3, 1−

√
−5〉. Thus e(〈2, 1+

√
−5〉 | 〈2〉) = 2 and e(〈3, 1±

√
−5〉 | 〈3〉) = 1.

We find that these values are multiplicative in towers:

Proposition 3.14. Let K ⊆ L ⊆ T be number fields, and p ⊆ q ⊆ u be primes in OK ⊆

OL ⊆ OT , respectively. Then:

(i) e(u|p) = e(u|q) · e(q|p);

(ii) f(u|p) = f(u|q) · f(q|p).

Proof. (i) We have two different splittings of p: In the largest ring OT , pOT = ue(u|p)P1,

where u and P1 are relatively prime (so u does not divide P1) and P1 is a product of primes

of OT ; in the middle ring OL, pOL = qe(q|p)P2, where q and P2 are relatively prime and P2
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is a product of primes of OL. Further, we have the splitting of q in OT : qOT = ue(u|q)P3,

where u and P3 are relatively prime and P3 is a product of primes of OT . Note that u and

P2OT must also be relatively prime since u lies over a unique prime in OL, namely our q,

and thus cannot be a factor of P2. Hence we have:

ue(u|p) P1 = pOT = qe(q|p) P2OT = (ue(u|q) P3)
e(q|p) P2 = ue(u|q)·e(q|p) P

e(q|p)
3 P2;

where u does not divide Pi for i = 1, 2, 3. Thus, by unique factorization, it must be the

case that P
e(q|p)
3 P2 = P1 and, more importantly e(u|p) = e(u|q) · e(q|p).

(ii) This says [OT /u : OK/p] = [OT /u : OL/q] [OL/q:OK/p], which is an easy result

from field theory [for more information, see Stewart and Tall [7] p.21]. �

Next, we can begin to put some restrictions on the possible values of e and f . To do so,

it will be helpful to consider the order of the residue fields. We note that if q is any prime

in OL, then q lies over a unique prime 〈p〉 ∈ Z by Theorem 3.8 (ii). Then we see that OL/q

is a finite extension of Z/〈p〉, and thus is a field of order pf , where f = f(q|〈p〉). We know

that q contains pOL, and thus the order of OL/q is at most the order of OL/pOL. Since

|OL/pOL| = pn for n = [L : Q] by Corollary 1.45, we have that f ≤ n when the base field

K = Q.

We can generalize this conclusion, and find that f ≤ n for all primes q over p in number

fields L over K, respectively. This is a consequence of a much stronger and more important

result: we will show that, for a prime factorization pOL = qe11 ...qerr , we have
r∑
i=1

eifi = n.

3.2 Road to Theorem 3.20

Proving this result requires a series of propositions and lemmas, many of which are interest-

ing in their own right. We begin by formally naming a concept with which we have already

worked extensively:

Definition 3.15. Let p be a prime ideal in a number ring OK . The norm of p, denoted
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‖p‖, is defined to be the order of the residue field OK/p.

We have already seen that an understanding of this value can be useful for describing

our number fields and rings. Exploring further, as with e and f , we find that the norm acts

well under multiplication:

Proposition 3.16. Let OK , OL, K, and L be as before, and n = [L : K]. Then for ideals

a and b in OK , ‖ab‖ = ‖a‖‖b‖.

Proof. We prove this first for the case in which a and b are relatively prime. Taking

them to be so, by Proposition 2.27 and the definition of the gcd and lcm we have that

a+ b = OK and a∩ b = ab. By the Chinese Remainder Theorem, we have an isomorphism

OK/ab ∼= OK/a×OK/b; thus ‖ab‖ = ‖a‖‖b‖.

We claim ‖pm‖ = ‖p‖m, where p is any prime ideal. We will prove this by first noting

that we have a descending chain of ideals OK ⊇ p ⊇ p2 ⊇ . . . ⊇ pm. Then we will show that

for each k, |pk/pk+1| = ‖p‖, where the pk are considered as additive groups of OK . By the

Third Isomorphism Theorem we have (O/p2)/(p/p2) ∼= O/p, thus |(O/p2)/(p/p2)| = |O/p|

and hence |O/p2| = |O/p||p/p2|; inductively we have |O/pn−1| = |O/p||p/p2|...|pn−1/pn| for

all n. This will yield the equality ‖pm‖ = |p/p2||p2/p3|...|pm−1/pm| = ‖p‖...‖p‖ = ‖p‖m.

In order to prove that |pk/pk+1| = ‖p‖ for all k, we will show OK/p ∼= pk/pk+1. Start

by fixing any α ∈ pk\pk+1. The inclusion αOK ⊆ pk induces the homomorphism αOK →

pk/pk+1, with kernel (αOK) ∩ pk+1 = lcm(αOK , p
k+1) and image ((αOK) + pk+1)/pk+1 =

gcd(αOK , p
k+1)/pk+1. Note further that gcd(αOK , p

k+1) = pk: since α ∈ pk, αOK ⊆ pk

and thus pk|αOK ; and clearly pk|pk+1. If pk were not the gcd, then it would must be pk+1,

but we know αOK 6⊆ pk+1 since α /∈ pk+1. Similarly note that lcm(αOK , p
k+1) = αp:

clearly pk+1 divides the lcm; from the above we have that pk is the highest power of p

appearing in αOK , and thus we have αOK = pkP for some product of primes P. Thus P

must also divide the lcm, and hence lcm = pk+1P = (pkP)p = (αOK)p = αp.

Thus the image is equal to pk/pk+1, and hence this mapping is an epimorphism with

kernel αp. Therefore by the First Isomorphism Theorem we have αOK/αp ∼= pk/pk+1.
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Finally, we have an obvious isomorphism OK/p ∼= αOK/αp, and thus OK/p ∼= pk/pk+, as

desired.

Therefore we have ‖pm‖ = ‖p‖m, which implies that ‖pm1
1 ...pmr

r ‖ = ‖p1‖m1 ...‖pr‖mr .

Factoring a and b in primes and applying this formula gives us our result. �

We can now prove the desired result in a specific case, when the base field K = Q.

Lemma 3.17. Let L be a number field with number ring OL, and let n = [L : Q]. Fix a

prime p of Z, and let q1,...,qr be the primes of OL lying over p. Denote by e1,...,er and

f1,...,fr the corresponding ramification indicies e(qi|p) and inertial degrees f(qi|p). Then
r∑
i=1

eifi = n.

Proof. Since our base field is Q and OQ = Z, we have p = pZ for some prime p ∈ Z.

We consider the given prime factorization of p in OL: pOL =

r∏
i=1

qeii . Thus ‖pOL‖ =

r∏
i=1

‖qi‖ei =
r∏
i=1

(pfi)ei . We also know that ‖pOL‖ = pn by Proposition 1.45, and thus

p
∑
fiei = pn. Therefore n =

r∑
i=1

fiei. �

Let us now prove a short generalization of Lemma 2.2:

Corollary 3.18. Let a, b be non-zero ideals in O with b ( a. Then there exists γ ∈ K

such that γb ⊆ O and γb 6⊆ a.

Proof. By Theorem 2.15 there exists a non-zero ideal c such that bc = 〈a〉 for some a ∈ b, c.

Note that bc = 〈a〉 = aO ) aa since a is a proper ideal. Then bc ) aa, so bc 6⊆ aa. Let c ∈ c

be such that cb 6⊆ aa; such an element exists since we know there exists some b ∈ b and

c ∈ c such that bc /∈ aa. Take γ = ca−1. Then, first, γb = ca−1b ⊆ a−1bc = a−1〈a〉 = O.

Second, if γb = a−1cb ⊆ a then cb ⊆ a, a contradiction. Thus γ works as desired. �

We can now extend the result of Proposition 3.16 to cover ideals of the form aOL, where

a is an ideal of OK :

Lemma 3.19. Let a be an ideal of OK and n = [L : K]. For the OL-ideal aOL, ‖aOL‖ =

‖a‖n.
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Proof. With the help of Proposition 3.16, it is sufficient to prove this for the case in which

a is a prime p, and the general case will follow by factoring a into primes: if a = pe11 . . . perr ,

then, by Proposition 3.16,

‖aOL‖ = ‖pe11 OL‖ . . . ‖perr OL‖ = ‖pe11 ‖
n . . . ‖perr ‖n = (‖p1‖e1 . . . ‖pr‖er)n = ‖a‖n

Notice that OL/pOL is a vector space over the field OK/p; we claim that the dimension

of OL/pOL over OK/p equals n (which would prove our result).

First we will show the dimension is at most n by demonstrating that any n+ 1 elements

of OL/pOL are linearly dependent over OK/p. Fix n + 1 arbitrary elements α1...αn+1 ∈

OL/pOL, and let α1,...,αn+1 ∈ OL be corresponding elements in OL, that is, αi +OL = αi.

Since we have n+ 1 different αi, these are clearly linearly dependent over K, and thus over

OK . Thus we have β1α1 + ...+βn+1αn+1 = 0 for some βi ∈ OK , not all zero. Our challenge

is to show that the βi need not all be in p, so that when we reduce modulo p they do not

all go to zero, and what remains is a valid dependence equation, this time for the αi.

If the βi are not all in p, then we are done. However, suppose all the βi are in p. Then

we see that 〈β1,...βn+1〉 ⊆ p. Use Lemma 3.18 with a = p and b = 〈β1,...βn+1〉 to produce

γ ∈ K such that γ〈β1, . . . , βn+1〉 ⊆ OK but γ〈β1, . . . , βn+1〉 = 〈γβ1, . . . , γβn+1〉 6⊆ p. Thus

it must be the case that γβi /∈ p for some i. If we multiply our dependency equation by γ,

we have a new dependency equation with all coefficients still in OK but (at least) one not

in p. Hence we can reduce modulo p and get a dependence in OK/p, and therefore OL/pOL

is at most n-dimensional over OK/p.

To establish equality, let p ∩ Z = pZ, and consider all primes pi of OK lying over 〈p〉.

We know OL/piOL is a vector space over OK/pi of dimension ni ≤ n; we will show equality

holds for all i, hence in particular when pi = p.

Set ei = e(pi|〈p〉) and fi = f(pi|〈p〉). Then
∑
eifi = m, where m is the degree of K

over Q, via our special case (Lemma 3.17). We have pOK =
∏

peii , so pOL =
∏

(piOL)ei .
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Using Proposition 3.16, we see:

‖pOL‖ = ‖
∏

(piOL)ei‖ =
∏
‖piOL‖ei =

∏
‖pni
i ‖

ei =
∏
‖pi‖niei =

∏
(pfi)niei .

Thus ‖p‖ =
∑
finiei = mn. Now we know ni ≤ n for all i. Suppose there exists an i such

that ni � n. Then
∑
finiei �

∑
finei = n

∑
fiei = nm, a contradiction. Thus all ni must

equal n. Therefore, |OL/pOL| = |OK/p|n, as desired. �

We now have all the tools at our disposal to prove our result in the general case:

Theorem 3.20. Let n be the degree of L over K (with L, K, OK , OL as above), and let

q1, . . . , qr be primes of OL lying over a prime p of OK . Denote by e1, . . . , er and f1, . . . , fr

the corresponding ramification indicies and inertial degrees. Then
r∑
i=1

eifi = n.

Proof. We have pOL =
∏

qeii , so ‖pOL‖ = ‖
∏

qeii ‖ =
∏
‖qeii ‖ =

∏
‖qi‖ei =

∏
‖p‖fiei by

Proposition 3.16 and the definition of fi. However, we just showed above in Lemma 3.19

that ‖pOL‖ = ‖p‖n. Therefore n =
∑
eifi.

�

The usefulness of this result can be clearly demonstrated by a simple corollary and a

couple examples.

Corollary 3.21. Let a be an ideal in a number ring OK . If ‖a‖ = p for some prime p ∈ Z

then a is a prime ideal of OK .

Proof. Factoring a and taking norms yields ‖a‖ = ‖p1‖ . . . ‖pr‖ = p. Thus there exists some

i such that ‖pi‖ = p and for all other factors pj , ‖pj‖ = 1. Then pj = OK for all j 6= i, and

hence a is prime. �

For each of the following examples, we will be looking at cases where we have some

factorization in the upper number ring into relatively prime (but not necessarily prime)

ideals. However, we will use the conditions present and Theorem 3.20 to determine that

the ideals given must indeed be prime.
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Example 3.22. Let K = Q, and L = Q[ω], where ω = e2πi/p for some prime p ∈ Z. It can

be shown that the associated number ring is OL = Z[ω], and that the minimum polynomial

of ω over Q is f(t) = tp−1+. . .+t+1; thus n = [Q[ω] : Q] = p−1 [see Stewart and Tall [7]

p.67]. Further note that since f(t) ·(t−1) = tp−1, the other roots of f(t) must be the other

pth roots of unity, and hence we have the factorization f(t) = (t− ω)(t− ω2) . . . (t− ωp−1).

Let us carefully consider the case where p = 5. Then ω = e2πi/5, and

f(t) = t4 + t3 + t2 + t+ 1 = (t− ω)(t− ω2)(t− ω3)(t− ω4)

Since ω is a root, we see ω4 = −1− ω − ω2 − ω3, and hence:

(1− ω)4 = 1− 4ω + 6ω2 − 4ω3 + ω4

= 1− 4ω + 6ω2 − 4ω3 − 1− ω − ω2 − ω3

= −5ω + 5ω2 − 5ω3 = 5(−ω + ω2 − ω3).

Thus 〈1−ω〉4 ⊆ 5OL, so the ideal 〈1−ω〉 of OL lies over 〈5〉 of OK = Z. Further, we have:

5 = f(1) = (1− ω)(1− ω2)(1− ω3)(1− ω4)

= (1− ω)[(1− ω)(1 + ω)][(1− ω)(1 + ω + ω2)][(1− ω)(1ω + ω2 + ω3)]

= (1− ω)4[(1 + ω)(1 + ω + ω2)(1 + ω + ω3)].

Thus 5 ∈ 〈(1− ω)4〉 since (1 + ω)(1 + ω + ω2)(1 + ω + ω3) ∈ OL, and 〈(1− ω)4〉 = 〈1− ω〉4

by multiplication of generators, so 5OL ⊆ 〈1 − ω〉4. Therefore, by mutual containment,

5OL = 〈1− ω〉4.

We can now use Theorem 3.20 and Corollary 3.21 to show that the ideal 〈1−ω〉 is prime

in OL in two different ways. First, notice that any further splitting of 〈1−ω〉 would violate

Theorem 3.20: we know n = 4 and e1 ≥ 4 (even if 〈1−ω〉 is not prime, the exponent would

transfer to all of its prime factors). Therefore we must have f = r = 1, so 〈1− ω〉4 = 5OL

must be the prime factorization of 5OL, and hence 〈1− ω〉4 must be prime.
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Second, since norms are multiplicative and 〈1− ω〉4 = 5OL, by Lemma 3.19 we have:

‖〈1− ω〉‖4 = ‖〈1− ω〉4‖ = ‖5OL]‖ = 54;

and hence ‖〈1− ω〉‖ = 5; by Corollary 3.21 we have that 〈1− ω〉 is prime.

Example 3.23. Now consider the integer α which satisfies the polynomial x3 − x− 1, and

let K = Q and L = Q[α]. It can be shown, in a more general case, that if some θ satisfies

t3 + at+ b then ∆{1, θ, θ2} = −(4a3 + 27b2) [see Marcus [5] p.26 and p.46]. Then, for our

α, we see a = b = −1, and hence ∆{1, α, α2} = −(4(−1)3 + 27(−1)2) = −23. Since −23 is

squarefree, {1, α, α2} is an integral basis by Corollary 1.44. Thus OL = Z[α].

Further, let us consider the ideal 〈23〉 of Q in the number ring OL. We claim 23OL =

〈23, α − 10〉2〈23, α − 3〉. Clearly 23OL ⊆ 〈23, α − 10〉2〈23, α − 3〉. Conversely, multiplying

the generators on the right yields

〈23, α− 10〉2〈23,α− 3〉 = 〈232, 23α− 23 ∗ 10, α2 − 20α+ 100〉〈23, α− 3〉

〈233, 232α− 232 · 10, 23α2 − 23 · 20α+ 23 · 100, 232α− 232 · 3,

23α2 − 23 · 10α− 23 · 3α+ 23 · 30, α3 − 23α2 + 160α− 300〉.

All of these generators are clearly divisible by 23, with the possible exception of the final

term. However, since α3 = α+ 1, we have

α3 − 23α2 + 160α− 300 = −23α2 + 161α− 299 = 23(−α2 + 7α− 13).

Hence 〈23, α− 10〉2〈23, α− 3〉 ⊆ 23OL.

We can also show that these two ideals, 〈23, α−10〉 and 〈23, α−3〉, are relatively prime.

We will prove OL = 〈23, α − 3, α − 10〉; then we will have 〈23, α − 10〉 + 〈23, α − 3〉 =

〈23, α− 3, α− 10〉 = OL, and hence the union would equal OL.

We will show this first equality by showing 1 ∈ 〈23, α − 3, α − 10〉. Clearly (α − 3) −

(α− 10) = 7 ∈ 〈23, α− 3, α− 10〉, so we have 10(7)− 3(23) = 1 ∈ 〈23, α− 3, α− 10〉. Since
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our ideal contains 1, it must be the whole ring, and our equality holds.

Therefore, we have our desired splitting of 23OL into two relatively prime ideals. With

the notation as in Theorem 3.20, we have n = 3, e1 ≥ 2, e2 ≥ 1, and r ≥ 2. Hence it must be

the case that these are equalities, with f1 = f2 = 1, requiring 23OL = 〈23, α−10〉2〈23, α−3〉

to be the unique factorization of 23OL into primes.

Example 3.24. Finally, let us consider an example of a cubic field (i.e. n = 3). Let K = Q

and take L = Q[ 3
√

2]. Using techniques similar to those used in the previous examples, we

can show that OL = Z[ 3
√

2]. If we consider the ideal 〈2〉 in Z, we see that 2OL = 〈 3
√

2〉3,

and hence, since n = 3 and e1 = 3, by Theorem 3.20 we must have r = f = 1 and thus

〈 3
√

2〉 must be prime with inertial degree of 1 over 〈2〉.

In this same scenario, let us observe what happens to 〈5〉. It can similarly be shown that

5OL = 〈5, 3
√

2 + 2〉〈5, ( 3
√

2)2 + 3( 3
√

2) − 1〉, where the two ideals on the right are relatively

prime. It can also be shown that 〈5, ( 3
√

2)2 + 3( 3
√

2) − 1〉 is a prime with inertial degree 2.

Then it must be the case that 〈5, 3
√

2 + 2〉 is also a prime, with inertial degree 1 (we know

n = 3, f1 = 2, and r ≥ 2; therefore r = 2 and f2 = 1). [See Marcus [5] p.70 for details]

3.3 Ramification of Primes

In some of the examples above, we saw there were cases where primes split into powers of

new primes. It is especially interesting to consider those cases where e 6= 1 for some prime

q over p:

Definition 3.25. We say that a prime p of OK is ramified in OL (or L) if there exists some

prime q of OL such that e(q|p) 
 1. In other words, p is ramified if pOL is not squarefree.

Example. In addition to the examples above, going back further to Example 2.23, we see

in the Gaussian Integers Z[i], 2OL = 〈1− i〉2, and thus 〈2〉 is ramified in Z[i].
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It is also important to note the following regarding the discriminant ∆ of Z[i]:

∆(Z[i]) =

∣∣∣∣∣∣∣
σ1(1) σ1(i)

σ2(1) σ2(i)

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
1 i

1 −i

∣∣∣∣∣∣∣
2

= (−2i)2 = −4

and we see that 2 divides −4.

This observation, that 〈2〉 is ramified in Z[i] and 2 divides ∆(Z[i]), is true in a more

general context.

Theorem 3.26. A prime 〈p〉 ∈ Z is ramified in the ring of integers OK of some number

field K if and only iff p|∆(OK).

We will only prove the forward direction of this “if and only if”; the converse requires

tools not presented in this paper [for details, see Marcus [5] p. 112].

In order to do so, we first need a lemma. It is necessary to note that this lemma deals

with normal extensions, the main topic of our next section.

Lemma 3.27. Let K ⊆ L be number fields with L normal over Q (and hence over K),

G = Gal(L/K) be the associated Galois group, and p a prime of the ring of integers OK

of K. If q is a prime lying over p, then σ(q) is a prime ideal in σ(OL) = OL lying over

σ(p) = p, for all σ ∈ G.

Proof. Let σ1, . . . , σn be the elements of G, and consider their restrictions σi|OL
for i =

1, . . . , n. We claim that σi(OL) = OL. To prove this claim, take α ∈ OL, and p(x) to be the

irreducible monic polynomial of α over Z; note that since σi is the identity on K ⊇ Q ⊇ Z

point-wise, we have σ(p(α)) = p(σ(α)), and thus we have a monic polynomial over Z which

σ(α) satisfies, and hence σ(α) is an integer and thus in OL.

Let p be a prime ideal of OK , and let q be any prime ideal of OL lying over p. Now

consider the composition of σ with the induced mapping OL → OL/q. Clearly this com-

position is onto, and the kernel is σ−1(q). Thus, by the First Isomorphism Theorem,

OL/σ
−1(q) ∼= OL/q. We know OL/q is a domain since q is prime by Theorem 1.54, and
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thus so must be OL/σ
−1(q); again by the same theorem σ−1(q) must be prime. Further,

σ−1 fixes p ⊆ K point-wise, and since pOL ⊆ q, pOL = σ−1(pOL) = σ−1(q), as desired. �

We now begin our proof of Theorem 3.26: Let p be a prime of OK lying over 〈p〉 such that

e(p|〈p〉) 
 1. Then pOK = pP, with P some product of primes of OK that is divisible by

all primes of OK lying over 〈p〉; this is allowed since e 
 1 and thus some power of p divides

P.

By Theorem 1.38 we know there exists an integral basis {α1,...,αn} for OK . We will

modify this basis by replacing one of the αi with a new properly defined element which will

allow us to see directly that p divides ∆(OK). We begin by observing that, since pOK ( P,

there exists some α ∈ P\pOK . Note that α is in every prime of OK lying over 〈p〉 (since

α ∈ P, the product of all such primes, and the product of ideals is a subset of all of its

factors), but again is not in pOK (even though we may be tempted to think, falsely, that

pOK is prime OK). If we write α = m1α1 + ... + mnαn (for mi ∈ Z), then the fact that

α /∈ pOK implies that not all mi are divisible by p; we can renumber the αi such that

p - m1.

Take ∆ = ∆(OK) = ∆{α1, ..., αn}, and let β = m2α2 + . . . + mnαn; we have that

α = β + m1α1. Then, by Proposition 1.31 (i), we see that ∆{m1α1, α2, . . . , αn} =

m2
1∆{α1, ..., αn} = m2

1d, and then by (ii) we have ∆{α, α2, ..., αn} = ∆{β+m1α1, α2, ..., αn} =

∆{m1α1, α2, . . . , αn} = m2
1d. Since p - m1, it will be sufficient to show that p|∆{α, α2, ..., αn}.

Now consider an extension L of K which is normal over Q (and hence K). It follows

that α is in every prime of OL = B∩L lying over 〈p〉, since each such q contains p for some

prime p of OK lying over 〈p〉 and α ∈ p for all such p. Fix any of these primes q of OL

lying over 〈p〉; by the lemma σ−1(q) is a prime of OL lying over 〈p〉, and hence α ∈ σ−1(q).

Then we see the stronger condition that σi(α) ∈ q for all σi ∈ G.

Notice that the calculation of ∆{α, α2, ..., αn} only involves ring operations on elements

we now know to be in q — the σi(α) — and elements we know to be in O — the σi(αj). It

follows that this discriminant is in q. Since the discriminant must also be in Z by Proposi-

tion 1.37, we know it is in q ∩ Z = pZ. Thus p | ∆{α, α2, ...αn}, and therefore p | ∆(OK),
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as desired. �

We can build off of this theorem to prove a very interesting result about this aspect

of splitting primes: for number rings OK and OL such that OK ⊆ OL, only finitely many

primes of OK are ramified in OL. We will first need a corollary.

Corollary 3.28. Only finitely many primes of Z are ramified in a number ring OK .

Proof. Since ∆(OK) is a finite rational integer, there are only finitely many p ∈ Z that

divide it; thus, by the theorem, there are only finitely many possibly ramified primes 〈p〉 in

Z. �

We are now ready to prove our desired result:

Theorem 3.29. Let OK and OL be rings of integers of some number fields K ⊆ L, respec-

tively. Then only finitely many primes of OK are ramified in OL.

Proof. If p is a prime of OK which is ramified in OL, then p∩Z = pZ is ramified in OL since

ramification indices are multiplicative in towers. There are only finitely many possibilities

for p, and each one lies under only finitely many primes of OK . Hence there are only finitely

many possibilities for p, as desired. �

We can also further restrict which primes may ramify in L:

Corollary 3.30. Let K = Q, L = Q[α], α ∈ OL, and f be any monic polynomial over Z

such that f(α) = 0. If p ∈ Z is a prime such that p - NL
K

(
f ′(α)

)
, then 〈p〉 is unramified in

L.

Proof. By Proposition 1.32, we know that ∆{1, α, . . . , αn−1} divides NK
(
f ′(α)

)
. Thus,

since p - NL
K

(
f ′(α)

)
, we also have that p - ∆(1, α, . . . , αn−1). Therefore, by Theorem 3.26,

〈p〉 is not ramified in L. �
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3.4 Normal Extensions

We will now restrict our considerations to number fields K and L, where L is a normal

extension of K.

Definition 3.31. Recall that L is normal over K when any of the following (equivalent)

conditions holds:

(i) L is the splitting field of a polynomial in K[x];

(ii) All embeddings of L into the algebraic closure of K which fix K point-wise are K-

automorphisms on L;

(iii) Every irreducible polynomial in K[x] which has a root in L factors completely into

linear factors in L[x].

Refer back to Example 3.23. Note that the primes lying over 〈23〉 do not have the same

ramification index, and in the previous examples the primes over 〈5〉 did not have the same

inertial degree. We will see shortly that this sort of behavior can only occur if L is not

normal over K.

We have already seen with Lemma 3.27 the structural benefits of a normal extension;

this result can be extended to the stronger conclusion about the relationship between G =

Gal(L/K) and the primes of OK and OL:

Theorem 3.32. Let K, L, OK , and OL be as above (with L normal over K), and let q

and q′ be two primes of OL lying over the same prime p of OK . Then there exists some

σ ∈ G such that σ(q) = q′.

Proof. Suppose not; then σ(q) 6= q′ for all σ ∈ G. Then, by the Chinese Remainder Theorem

there is a solution to the system of congruences:

x ≡ 0 (mod q′)

x ≡ 1 (mod σ(q)) for all σ ∈ G.

Let α ∈ OL be such a solution, and note that α ∈ q′ since α ≡ 0 (mod q′). Then we have

NL
K(α) ∈ OK ∩ q′ = p since one of the factors of NL

K(α) is α ∈ q′, and NL
K(α) is in OK
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by Proposition 3.2. We also have, by our construction of α, that α /∈ σ(q) for all σ ∈ G,

and hence σ−1(α) /∈ q. Notice that we can express NL
K(α) as the product of all σ−1(α)

(as opposed to the product of all σ(α)) since we also have σ−1 ∈ G for all σ ∈ G. Then

NL
K(α) ∈ q since σ−1(α) /∈ q for all σ ∈ G. However, we showed above that NL

K(α) ∈ p ⊆ q,

a contradiction. Therefore there must exist some σ ∈ G such that σ(q) = q′. �

Using Theorem 3.32, we see that primes split in a very particular way in normal exten-

sions (unlike our splittings in the examples above):

Corollary 3.33. If L is normal over K, and q1 and q2 are two primes of OL lying over a

prime p in OK , then:

(i) e(q1|p) = e(q2|p);

(ii) f(q1|p) = f(q2|p).

Proof. (i) We factor pOL in OL, and write pOL = qe11 qe22 P with q1, q2, and P relatively

prime, P a product of primes. Choose σ such that σ(q1) = q2 by Theorem 3.32, and note

that σ(pOL) = pOl since σ fixes p point-wise and is an isomorphism on OL. Then:

qe11 qe22 P = pOL = σ(pOL)

= σ(qe11 qe22 P) = σ(qe11 )σ(qe22 )σ(P) = σ(q1)
e1 σ(q2)

e2 σ(P)

= qe12 σ(q2)
e2 σ(P).

Further, we have σ(q2) 6= q2 since that would require q1 = q2, and σ(P) 6⊆ q2 since that

would imply q1 ⊆ P which would contradict the fact that P and q1 are relatively prime.

Thus, by uniqueness of factorization on the above equation, it must be that case that

e1 = e2.

(ii) It is sufficient to show there exists an isomorphism φ from OL/q1 to OL/q2. Consider

the composition of σ : OL → OL and the induced mapping OL → OL/q2, and since

σ−1(q2) = q1 we know the kernel of this composition is q1. Thus by the First Homomorphism

Theorem we know there exists a mappings φ : OL/q1 → OL/q2 by φ(s + q1) = σ(s) + q2,
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where σ(q1) = q2. Further, since the composition is onto, φ is an isomorphism by the First

Isomorphism Theorem. Thus OL/q1
∼= OL/q2, and since each is a finite field, they have the

same number of elements, and further they have the same degree over OK/p which they

both cover. �

This corollary shows that when L is normal over K, a prime p of OK splits uniformly

in OL: pOL = (q1 . . . qr)
e, where qi are distinct primes, and each have the same inertial

degree f over p. Moreover:

Corollary 3.34. Let L, K, OL, and OK be as above, with L normal over K and n =

[L : K]. Then, for any prime p ∈ OK which factors in OL as pOL = (q1 . . . qr)
e with

f = f(qi|p), we have r · e · f = n.

Proof. This follows from a direct application of Theorem 3.20 to this factorization. �

3.4.1 Intermediate Fields

We will now look at certain intermediate fields between K and L, and see how primes of

OK split in these fields. Recall our setup: we have number fields K ⊆ L with L normal

over K, associated rings of integers OK and OL, and Galois group G = Gal(L/K) with

order n = [L : K]. We begin by looking at specific subgroups of G:

Definition 3.35. For a fixed prime p of OK , and a particular prime q of OL lying over p,

we define the decomposition group of q over p as:

D = D(q|p) = {σ ∈ G | σq = q}.

With notation as above, define the inertial group of q over p as:

E = E(q|p) = {σ ∈ G | σ(α) ≡ α (mod q) ∀α ∈ OL}.

Proposition 3.36. Let L, K, OK , OL, p, and q be as above. Then:

(i) D(q|p) and E(q|p) are subgroups of G = Gal(L/K);
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(ii) E ⊆ D.

Proof. (i) It will be sufficient to show that D and E are closed under compositions since

G is a finite group. First, for σ1, σ2 ∈ D, we have σ1 ◦ σ2(q) = σ1(σ2(q)) = σ1(q) = q. In

addition, for σ1, σ2 ∈ E and an arbitrary α ∈ OL, σ1 ◦ σ2(α) = σ1(σ2(α)) ≡ σ1(α) ≡ α

(mod q).

(ii) Let σ ∈ E and α ∈ q. Then σ(α) ≡ α ≡ 0 (mod q) (by the condition to be an element

of E, and the fact that α ∈ q). Thus σ(α) ∈ q. �

Now consider the residue fields OL/q and OK/p. The elements of D induce automor-

phisms of the field OL/q in a natural way: each σ ∈ G restricts to an automorphism of

OL, and if σ ∈ D, the composition of σ with the induced mapping OL → OL/q has kernel

σ−1(q) = q. Thus, by the First Isomorphism Theorem, each σ ∈ D induces an automor-

phism σ of OL/q such that the following diagram commutes, where σ(α+ q) = σ(α):

OL
σ
> OL

OL/q
∨ σ

> OL/q
∨

Moreover it is clear that σ fixes the subfield OK/p point-wise (since σ fixes K, hence OK ,

point-wise). Thus σ ∈ G, where G is the Galois group of OL/q over OK/p.

In other words, we have a mapping ψ : D → G that sends σ to σ, which is a group

homomorphism since compositions of automorphisms in D correspond to composition in G;

we can add commuting squares to the diagram above with σi ∈ D above and σi ∈ G below.

Further:

Proposition 3.37. The kernel of the homomorphism ψ described above is exactly the sub-

group E of G.

Proof. Let σ ∈ E and α ∈ OL be arbitrary. Then σ(α) ≡ α (mod q), and hence σ(α)−α ∈

q. Thus ψ(σ(α + q)) = σ(α + q) = σ(α) + q = α + q, so clearly ψ(σ) is the identity.
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Conversely, if ψ(σ) is the identity, it must be the case that α + q = σ(α) + q, exactly the

condition required for σ to be in E. �

From this result, we see that E must be a normal subgroup of D, and that D/E is

embedded in G by the First Homomorphism Theorem.

Now let H be a subgroup of G. We can consider special fields associated with H:

Definition 3.38. Let K, L, OK and OL be as above, p a prime of OK , and q a prime

of OL lying over p. Let H be a subgroup of G = Gal(L/K). The fixed field of H is

LH = {α ∈ L|σ(α) = α for all σ ∈ H}.

We call the fixed field of D the decomposition field LD; the fixed field of E is the inertial

field LE .

In order to keep things organized, we will adopt some additional notation, introduced

by Marcus [5]. With notation as above:

• If H is a subgroup of G, we use the notation above and let LH denote the fixed field

of H; for example, if I is the identity on L then L{I} = L and, since L is normal over

K, LG = K.

• If X is a subset of L, let XH = X∩LH ; for example, (OL)H = OL∩LH = B∩L∩LH =

LH ∩B is the ring of integers in LH ; and qH = q∩LH = q∩OL ∩LH = q∩ (OL)H is

the unique prime of OH lying under q, which clearly lies over p (by Theorem 3.8).

We will break this particular notational convention almost immediately when dis-

cussing number rings, and instead write OH when we mean (OL)H .

• Finally, we note that, since qH is a proper prime of OH , OH/qH is a field; further, we

have a mapping OK/p → OH/qH → OL/q defined by r + p 7→ r + qH 7→ r + q since

OK ⊆ OH ⊆ OL and p ⊆ qH ⊆ q. These mappings are injective since they map fields

to fields, and hence we will always think of OH/qH as an intermediate field between

OK/p and OL/q.

We can now state our main result, which shows the precise way the prime p splits in

these specific fields between K and L:
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Theorem 3.39. Let K, L, OK , OL, p, q, G, D, E, r, e, f , and n be as above. Then:

ramification inertial

degree index degree

L q

e e 1

LE qE

f 1 f

LD qD

r 1 1

K p

Proof. We begin by establishing the values associated with the extension LD over K.

We will first show that [LD : K] = r. From Galois theory we know that [LD : K] is

equal to the index (number of cosets) of D in G, |G/D|. Each left coset σD of G/D (with

σ ∈ G) sends q to σ(q) since for all τ ∈ D, στ(q) = σ(q). Further, we claim that σD = τD

if and only if σ(q) = τ(q). If σD = τD, then τ−1σ ∈ D and so τ−1σ = δ for some δ ∈ D.

Therefore σ = τδ, and thus σ(q) = τδ(q) = τ(q). Conversely, if σ(q) = τ(q), then we have

τ−1σ(q) = q, so τ−1σ ∈ D, and thus σD = τD.

This establishes a one-to-one correspondence between the left cosets σD and the primes

σq;. By Theorem 3.32, the set of primes of the form σ(q) exactly covers all primes of OL

lying over p, and hence there are r of them. Thus [LD : K] = r.

Next, we will show that the ramification index and the inertial degrees between qD and

p, e(qD|p) and f(qD|p), both equal 1. We can consider the Galois group G1 of L over

LD (since L is normal over K ⊆ LD, G1 is well defined), and we know the primes q of L

lying over qD are permuted transitively by the elements of G1. However, G1 = D by our

definition of D and Galois theory, and we know σ(q) = q for all σ ∈ D. Thus there is only

one prime of OL lying over qD, namely q, so in the case of L over LD, r = 1.

Applying Theorem 3.20 to this scenario, we see [L : LD] = e(q|qD) · f(q|qD) · 1. Further,
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we know [L : LD] = [L:K]
[LD:K] = n/r = ref/r = ef (again by Theorem 3.20). Moreover, we

note that e(q|qD) ≤ e and f(q|qD) ≤ f since these values are multiplicative in towers. Hence

these inequalities must in fact be equalities, and therefore, since e · f = e(q|qD) · f(q|qD),

we see e(qD|p) = f(qD|p) = 1.

Once these bottom values have been established, we jump to the top of these towers.

We will show f(q|qE) = 1 by demonstrating that the Galois group G2 of OL/q over OE/qE

is trivial (i.e. contains only the identity). To that end, let λ ∈ OL/q, and fix any α ∈ OL

corresponding to λ, so λ = α+q. Now consider the polynomial g(x) =
∏
σ∈E

(x−σ(α)). Note

that the coefficients are in OE by Proposition 3.2. Now, reduce the coefficients modulo q

to generate a polynomial g ∈ (OL/q)[x]. We find g actually has coefficients in OE/qE since

g had coefficients in OE and OE ∩ q = qE . However, all σ(α) reduce to λ modulo q since

σ ∈ E, and thus g(x) = (x−λ)m ∈ (OE/qE)[x], where m = |E|. Note that σ sends roots of

g to other roots for all σ ∈ G2, since g is a polynomial with coefficients in the fixed field of

G2. This means all σ ∈ G2 map λ to λ, and since λ was arbitrary we have that all σ ∈ G2

are the identity. Hence f(q|qE) = 1.

Since f(qD|p) = f(q|qE) = 1, by Theorem 3.20 we must have f(qE |qD) = f(q|p) = f .

Then, retaining our consideration of LE (normal) over LD, we can apply Theorem 3.20

again to define the lower bound [LE : LD] ≥ f . But we know E is a normal subgroup of

D and D/E is embedded in G, which is a group of order f . Then [LE : LD] = |D/E| ≤ f ;

hence it must be exactly f . Then, by again applying Theorem 3.20 to LE over LD, we have

e(qE |qD) = 1.

Finally, we complete our array and obtain [L : LE ] = e and e(q|qE) = e by Theorem

3.20 and the figures already established. Thus all values are as desired. �

This result demonstrates some of the beautiful underlying structure of these intermediate

fields and the splitting of primes within them. Let us now consider a special case, where

we see the terms “inertial” and “decomposition” describe exactly what happens to primes

in these special intermediate fields:
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Corollary 3.40. Let K, L, OK , OL, p, q, G, D, E, r, e, f , and n be as above, except

suppose D is a normal subgroup of G. Then:

(i) The prime p of K splits into r distinct primes in LD and LE, so each factor p′ of

pOD lies under a unique factor p′′ of pOE, and each factor p′′ of pOE lies under a

unique factor p′′′ of pOL;

If E is also a normal subgroup of G, then:

(ii) None of the r factors of pOE are ramified (neither over p nor its unique p′);

(iii) Each of the r distinct prime factors of pOL is raised to the eth power.

Proof. (i) If D is normal in G, then LD is a normal extension of K by the Fundamental

Theorem of Galois Theory. By Corollary 3.33, every prime p′ of OD lying over p has the

same ramification index and inertial degree, and by Theorem 3.39 we know both of these

are 1. Therefore, by Theorem 3.20, there must be exactly r such primes in OD lying over

p. Building off this result, since p splits into r primes in LD and L, it must also do so in

LE .

(ii) If E is normal in G, then LE is also a normal extension of K, and hence a normal

extension of LD ⊇ K. We must show that none of the p′′ are ramified over p and p′.

However, this follows directly when E is normal over K since Theorem 3.39 and Corollary

3.33 state that e(p′′|p) = e(qE |p) = 1, so e(p′′|p′) = 1. Thus each factor p′ of pOD is inert

between OD and OE .

(iii) Since e(p′′|p) = 1, we have e(p′′′|p′′) = e(p′′′|p)
e(p′′|p) = e/1 = e. Therefore for each factor

p′′ of pOE , p′′OL = (p′′′)e, and thus each prime factor of pOL is raised to the eth power.

�

Definition 3.41. Let K ⊆ L be number fields with number rings OK and OL respectively.

If p is a prime in OK , we say p is inert in L if pOL is also a prime in OL.

Clearly, in the situation above (where D and E are normal subgroups of G), a prime p

splits into its r components by the time it reaches LD, and then these primes remain inert

up through LE , after which they ramify.

64



We will continue with some examples that show the power and usefulness of Theorem

3.39 and its corollaries.

Example 3.42. It can be shown that p = 〈2〉 ⊆ Z splits into two distinct primes in

the number ring Z[
√
−23] associated with the number field K = Q[

√
−23], and further

that these two factors remain prime in L = Q[ω], where ω = e2πi/23 (one can show that

Q[
√
−23] ⊆ Q[ω]). Thus, with notation as above, we see r = 2, so the decomposition field

has degree two over Q. Moreover, since the Galois group of L over Q is cyclic of order 22,

and the factors of the order of a cyclic group are in 1-1 correspondence with its subgroups,

there is exactly one subgroup (which must be normal) of order two. Hence there exists

exactly one subextension of degree 2, namely Q[
√
−23], and therefore it must be the case

that LD = Q[
√
−23]. Further, since 〈2〉 is not ramified in Q[ω], the inertial field is the

entire field LE = L = Q[ω]. [For more details, see Marcus [5] p.40, 74–76, 86]

This behavior is true in a more general case:

Proposition 3.43. Let L be a normal extension of a number field K with cyclic Galois

group G, and take p to be a prime in K which splits into r primes in L. Then the decom-

position field LD is the unique intermediate field of degree r over K, and p splits into r

primes in every intermediate field containing the decomposition field.

Proof. Recall the properties of cyclic groups listed in the above example: all subgroups of a

cyclic group are normal, and the factors of the order of the group are in 1-1 correspondence

with its subgroups, which are further in 1-1 correspondence with the subextensions LH of

L over K. Note that Theorem 3.20 requires LD to have degree r, and hence there is exactly

one subextension which satisfies this condition. Then, by Corollary 3.40 we see p splits into

exactly r primes in this subfield LD. Now, since p splits into r primes in L, in any subfield

F such that LD ⊆ F ⊆ L, p splits into exactly r primes. �

Let us look at another example with an abelian Galois group:
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Example 3.44. Let L = Q[i,
√

2,
√

5], and K = Q. Then L is a normal extension of degree

8 over K, and the Galois group is the direct sum of three cyclic groups of order 2. Let us

observe how the prime 〈5〉 of Q behaves in each of the obvious subextensions. As we have

seen before, it splits into two primes 〈2 + i〉 and 〈2− i〉 in Q[i], and becomes a square 〈
√

5〉2

in Q[
√

5]. Further, it is inert in Q[
√

2]: since Z[
√

2] is a unique factorization domain (see

Hardy and Wright [2] p.217) and here the element 5 is clearly irreducible, by Proposition

2.29 〈5〉 is a prime ideal. Therefore, if 〈5〉OL = (q1 . . . qr)
e, then:

(i) the number of primes r ≥ 2 (there must exist at least two factors to lie over the split

in Q[i]);

(ii) the ramification index e ≥ 2 (there is a square below, so must be squares above);

(iii) the inertial degree f ≥ 2 (f = 2 in Q[
√

2] since ref = 2 and r = e = 1).

By Theorem 3.20, each must be exactly 2. By Theorem 3.39 the inertial field must be of

degree 4 over Q (since r = f = 2) where 〈5〉 is still unramified (since by Corollary 3.40

all ramification occurs between LE and L). The only choice is Q[i,
√

2]. Thus 〈2 + i〉 and

〈2− i〉 remain prime in Q[i,
√

2], and become squares of primes in L.

Finally, let us consider an example where the Galois group is non-abelian:

Example 3.45. Take K = Q and L = Q[ 3
√

19], ω] where ω = e2πi/3. Then we know L is

normal over K, and it can be shown that the Galois group G = Gal(L/K) equals S3, the

permutation group over three letters [see Marcus [5] p.103].

Let us consider how the prime 〈3〉 of Z splits in L. If we look at the two most obvious

subfields of L, we see that in Q[ω] = Q[
√
−3], 〈3〉 is a square (namely 〈

√
−3〉2), and it can

be shown that it has the form p2p in Q[ 3
√

19], where p and p are primes. Thus, in L, there

must be at least two primes lying over 〈3〉, and each must have a ramification index divisible

by 2 (since each must lie over a square). Therefore it must be the case that 〈3〉 splits into

three primes in L, each with e = 2 and f = 1.

By Theorem 3.20, since r = 3, the decomposition field for any of these three primes over

Q has degree 3. There are three such subfields of L: Q[ 3
√

19], Q[ω 3
√

19], and Q[ω2 3
√

19]. This
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gives us three towers of fields over 〈3〉, with one of these subfields acting as the decomposition

field in each tower. It its interesting to note that each of these fields can be sent to any

other by an automorphism of L since they are all roots of the polynomial t3 − 19. In each

of them, 〈3〉 would again decompose as above in the form p2p. Further, since f = 1 for

both primes, the inertial field is the same as the decomposition field in each of these three

towers.

It is important to notice that 〈3〉 does not split into three distinct primes in any of the

three possible decomposition fields; in each it is of the form p2p and hence is ramified in

each. This verifies that the normality condition is necessary in Corollary 3.40.

The general conclusion we take from the above theorems and examples is that these

two fields, the decomposition field and inertial field, are special and play a vital role in the

structure of how primes split between K and L.
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