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ABSTRACT 

BECTON, MAXWELL     Building an Electric Motorcycle: Design and Construction of a Zero 

Roadside Emissions Vehicle. Department of Mechanical Engineering, June 2011. 

 

ADVISOR: Bradford A. Bruno, Ph.D. 

 

This report details the process of building an electric drive system for a motorcycle, and covers 

some of the background information necessary for a full understanding of the components involved and 

their functionality. Topics discussed in this paper are: power estimates, compressed air power, battery 

chemistries, battery management systems, battery chargers, electric motors, motor controllers, direct 

sprocket drive, frame modifications, part mounting, and wiring. These topics are discussed in the context 

in which they apply to the project build, which is a conversion of a street motorcycle to fully electric 

drive. The complete electric drive system which resulted from this project was fully assembled on a sport 

motorcycle chassis, and has an estimated top speed and average range of 70 mph and 40 miles. 
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Introduction 

 It is well known that vehicle emissions contribute to air pollution and greenhouse gas 

buildup, which are major environmental factors causing global warming and climate change 

issues. Any reduction in vehicle emissions is a step toward a more sustainable transportation 

system. Reducing vehicle emissions is not an easy task, there are more cars and trucks on the 

road every day, and catalytic converters are expensive to manufacture and do not address the 

problem of greenhouse gas buildup. Current emissions standards may not be stringent enough to 

make a significant difference in the limited time frame for avoiding major environmental 

consequences. 

 New vehicle technologies and energy sources are the only way to solve these problems in 

the transportation industry, and a comprehensive plan for implementing these technologies is the 

only way to make the changes necessary in the existing systems. This project is an attempt to 

design a basic vehicle for a commuter which will produce no roadside emissions and be a part of 

a sustainable future zero emissions transportation system. 

Zero Emissions Drive System 

 The goal of this project is to construct a zero roadside emissions motorcycle capable of 

transporting a single commuter over short to moderate distances with enough power to make the 

experience enjoyable for the user. “Zero roadside emissions” means that during normal operation 

the vehicle will not emit any harmful compounds into the atmosphere, this however does not 

mean the energy used to fuel the vehicle was produced without creating environmentally harmful 

emissions. This vehicle will possess a balance of power and range, with careful thought given to 
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these parameters in order to attempt to maximize both to whatever degree possible, without 

sacrificing the other. 

Power, Range, and Convenience 

A first step in the design of any vehicle is to get an idea of how much power will be used 

under average circumstances. In this case that means the amount of power that is required to 

move a motorcycle and rider at whatever speed and acceleration are required. When the desired 

values of speed and acceleration are determined, they can be used along with the mass of the 

system to arrive at rudimentary estimations for power use under acceleration and up an incline. 

These initial calculations neglect factors such as friction and air drag. In order to arrive at 

reasonable values for these initial system parameters, a good degree of knowledge about the 

amount of energy available onboard the vehicle is necessary, without this knowledge it would be 

easy to make estimates that would result in unrealistic necessary drive system powers. 

Power is energy divided by time, which is equivalent to force multiplied by velocity. 

Power is a measure of how quickly energy is being used, and thus is very important to consider 

when designing a vehicle. One use of this definition is its ability to demonstrate how intimately 

vehicle power and range are linked. A vehicle which uses its energy quickly (i.e. which has high 

power) will have the ability to achieve very high accelerations and will be able to climb hills at 

high speed, while conversely a vehicle which uses its energy slowly (low power) will not be able 

to quickly accelerate or climb hills at high speed, but may be able to travel farther, spreading its 

energy usage out over time to continue traveling for a longer period. 

This demonstrates something very significant; the vehicle will have either greater range 

or greater performance depending on how the rider utilizes the energy stored onboard. This 
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potential for range and/or power is directly proportional to the amount of energy stored onboard. 

It is therefore desirable when designing a vehicle to maximize the stored energy, and to design 

all of the onboard systems to be compatible with both aggressive and a conservative use patterns, 

therefore giving the rider as much control as possible over the performance characteristics. 

The core challenge with this design will be integrating all of the vehicle systems to allow 

this wide range of use characteristics, and in making these systems require minimal or no 

modification in order to change the parameters important to different performance regimes. 

Background 

An Air Power Investigation 

Overview 

 Using compressed air to power a vehicle is a concept that has been explored by many 

researchers and companies, most notably in the form of a compressed air car by French 

Company MDI Motor Development International, which as of January 2009 was working with 

Indian company Tata Motors to release a compressed air car in India
4
. Compressed air has also 

been utilized to power motorcycles, as in a project at Gyan Vihar University in India, where a 

team of mechanical engineering students used a piston cylinder air motor design to drive a small 

motorcycle
1
. This project makes an inquiry into whether an air powered motorcycle capable of 

moderate speeds and ranges can be constructed using commercially available parts. 

 A compressed air powered vehicle essentially uses the energy stored in the pressurized 

air as a mechanical battery with which to drive a turbine, and power the vehicle. This type of 

drive system would produce no roadside emissions, other than air, and has a few beneficial 

properties which come with many drawbacks. Utilizing compressed air as a zero roadside 
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emissions drive system for a commuter motorcycle was considered as a part of this project, and 

the advantages, disadvantages, and possibilities for this technology were briefly evaluated in 

relation to the project goals. 

Research 

 As was stated above, the initial design process for any vehicle involves quantifying how 

much power the vehicle will need to use in transit. And this, as was discussed, is going to depend 

on how the user wants to use the vehicle and on how much energy is stored onboard. In the case 

of compressed air, the first step in conceptualizing a vehicle was to get an idea of how much 

energy could potentially be stored onboard. This meant calculating under ideal conditions the 

available energy in whatever tanks would be used to store the air on the vehicle.  

 The tanks used in this analysis were 21.5” by 6.5” cylindrical carbon fiber air tanks 

manufactured by Airhog which store air at 4500 PSI
2
. These tanks were chosen by this researcher 

as the most promising compressed air storage device capable of being mounted on a motorcycle. 

When fully charged these tanks contain the equivalent of 88 cubic feet of air at STP, which 

amounts to about 3kg of compressed air. The exergy, or useful energy available to be extracted 

through some process, of these tanks was calculated using Equation 1 below. 

Equation 1                                  (     )   (     )    (     )         

Where X is exergy, M is mass, u is internal energy, P is pressure, v is specific volume, T is temperature, s is entropy, and Ke and 

Pe are kinetic and potential energy respectively. 

 The maximum possible available energy, with external conditions at STP, in one 

of these tanks was found to be approximately 1191 KJ. The actual energy available would be far 

less than this because of the irreversibility inherent in any expansion the air would undergo in an 

air powered actuator. A compressed air tank can look like a very good energy source when 
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considering all aspects under ideal scenarios, but quickly becomes less appealing when the 

inefficiencies of reality are taken into consideration. For example, a compressed air tank can 

theoretically be nearly instantly recharged with compressed air, a very useful characteristic for 

vehicle refueling, but in reality the compression and transfer processes are not ideal, and create 

excess heat which must be removed from the air, making this process very inefficient. This 

problem of the heat transfer which occurs with pressure change is one of the major factors when 

considering compressed air as an energy storage device, because of its large effect on process 

efficiencies. 

The next step in the design process was to estimate the amount of power the vehicle 

would need to use in transit. This estimation was performed as described above, and was 

evaluated at a range of different accelerations to various speeds and with varying rider masses.  

The expression used to evaluate these circumstances can be seen below in Equation 2, this 

expression ignores all drag and frictional forces. 

Equation 2                                                         ( )( )( ) 

Where P is power, m is the total vehicle mass with rider, a is the acceleration, and v is the speed to which the vehicle is 

accelerating. 

  The result of these calculations was a range of powers which the vehicle might need to 

provide under different acceleration conditions. These conditions varied over a large range in 

order to evaluate all possibilities. The resulting power values ranged from 2 to 13 KW, and were 

used as the starting point for finding an air motor appropriate for a motorcycle drive system.  

 A search for a commercially available air motor, or multiple air motors, which would 

provide power outputs similar to those found in the above calculation was conducted. This 

search resulted in a few air motors which were found to provide the lower end of this power 
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range at estimated necessary air consumption rates (which were supplied by the manufacturers). 

These volumetric air consumption rates were then converted to mass flow rates, which were then 

compared to the mass of air stored in one of the above mentioned carbon fiber air tanks when 

fully pressurized. A mass flow rate representative of this power spectrum was found to be 

approximately 41 Kg/m, and the mass of air in the tanks at full pressure was found to be 3 Kg. 

The results of this comparison show that the tanks would be drained in seconds at these power 

demands. This is principally because the only air motors commercially available were not 

designed to operate efficiently, but instead to operate smoothly and need very little maintenance.  

Conclusion 

  This investigation shows that without an air motor specifically designed to efficiently 

operate at the power levels required for this application, a compressed air powered drive system 

for a motorcycle is not feasible.  
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Electric Drive Sustainability 

Overview 

 Electric vehicles are widely agreed upon as a part of the solution to the world’s 

transportation problems, and to the world’s current reliance on fossil fuels. One of the primary 

arguments often used to dispute the emission reducing benefits of electric vehicles is that the 

electricity used to power them is still generated using fossil fuels or through other 

environmentally unfriendly methods. This is a valid point, but not a reason to not utilize electric 

vehicles, rather this is just another reason to produce electricity sustainably. Electric vehicles 

have the potential to be zero emissions vehicles, if the power used to generate them is produced 

by using wind, solar, tidal, or other sustainable power sources. But on a basic level they are 

simply zero roadside emissions vehicles, like all other sustainable transportation technologies. 

The lack of roadside emissions from these vehicles could offer significant air quality benefits in 

crowded urban areas. Thus they have the potential to greatly benefit our transportation system, 

but only with the necessary supporting infrastructure, without which they will never be able 

compete with gasoline powered vehicles. 

Batteries 

Overview 

 Battery selection is the most important decision to be made when designing an electric 

vehicle. All energy to power all systems comes from the battery pack, and the way that all of 

these systems behave will depend directly on the pack. The most important features of the 

battery in relation to the drive system are its voltage, energy density, and charge/discharge 

characteristics. These values will directly dictate the size of the motor, type of motor controller, 
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and speed and range abilities of the finished motorcycle. Many other important factors which 

dictate the selection of a specific battery size and chemistry for this application are summarized 

and discussed in this section. 

 Each of the many battery chemistries has different characteristics. These characteristics in 

turn provide the different chemistries specific strengths and weaknesses. Battery selection is the 

process of matching the battery characteristics most beneficial to your application with the 

battery chemistry which can best provide them. 

 There are primary and secondary batteries, primary batteries are designed for a single 

use and then disposal, and so will not be discussed in this section as they are not relevant for use 

in EVs. Secondary batteries are rechargeable batteries, and will be discussed below in detail. 

Important Characteristics 

 Some important battery characteristics for EV applications include but are not limited to: 

high energy density, high cycle lifetime, lack of memory effects, low self-discharge, high 

charge/discharge current, high pulse current, non-toxic (if possible), and good high current 

discharge efficiency. Cycle lifetime is the number of times the batteries are rated by the 

manufacturer to fully discharge and recharge to 80%+ of full capacity , this is very important 

because it essentially tells you how long the batteries will last if ideally maintained. Memory 

effects occur when a batteries depth of discharge is dependent on how fully it was charged in the 

previous cycle, this would be a very troubling effect to see in an EV battery, as it would mean 

that you would need to fully charge the battery every time you use it in order to maintain its 

ability to attain full DOD (depth of discharge). Self-discharge occurs when a battery in storage 

will slowly discharge itself over time. Pulse current is a rating of the peak current the battery can 
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discharge or charge over a short period normally falling between ten seconds and five minutes. 

The efficiency with which the battery discharges its stored energy is important because most 

batteries can very efficiently discharge over longer time periods at low current rates, but are 

inefficient at discharging higher currents over shorter time periods.  

 Batteries are rated primarily in amp hours, which is a measure of the total energy the 

battery possesses. The amp hour rating of a battery is measured over a specific rating period, the 

standard being a one hour discharge; this means that a 100 Ah battery rated over a one hour 

period would discharge 100 Amps for one hour, and then be fully discharged. This standard one 

hour rating is fairly straightforward, but because a higher amp hour rating means the battery 

contains more energy, some battery manufacturers artificially increase their batteries amp hour 

rating by testing their batteries over longer periods, at lower currents. They do this because some 

batteries are much more efficient when discharged at lower currents, and therefore put out far 

more energy overall than they would have had they been discharged more quickly, at higher 

currents. When a battery is rated over a longer period, it normally indicates that the battery 

chemistry is inefficient at higher discharge current rates. For example, a 100 Ah battery rated 

over 20 hours means that the battery can discharge at 5 Amps for 20 hours, and then be fully 

discharged; were the rating period for this same battery condensed to one hour, it would likely 

score far lower than 100 Ah, because it would have to discharge at much higher currents at 

which its operation is far less efficient. Because of this the amp hour rating of a battery means 

almost nothing without the period over which is was rated. These amp hour ratings will usually 

be tailored to give relevant information based on the most common application in which the 

battery is used, because different characteristics are important in different situations.  
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Battery charge/discharge rates are important to consider when selecting a battery because 

the discharging of the battery is where all of the power on the vehicle at any given moment will 

be originating. The maximum continuous discharge rate will limit the vehicles top cruising 

speed, and the maximum pulse discharge will correlate to the fastest periods of acceleration or 

steepest hills the vehicle can climb. 

Battery Chemistries 

 The storage of electrical potential in the form of chemical energy in a battery can be 

accomplished in many ways; the modern range of different battery chemistries is a testament to 

this fact. For every application requiring electrical storage, there is a battery chemistry that will 

function most effectively; it is the job of the system designer to take into account all of the 

important parameters for the application, and make a battery chemistry selection based on how 

the properties of that chemistry interact with their system. 

 In the case of an electric vehicle, the goal is to achieve the greatest energy storage 

potential in a limited space, with limited weight and cost, while insuring this energy can be 

extracted and replaced quickly and efficiently. This section will cover the major differences 

between, and advantages/disadvantages of some of the battery chemistries that are most 

applicable to electric vehicles (EVs). The chemical reactions and internal differences in the 

various battery chemistries which create these behavioral differences will not be thoroughly 

discussed due to their staggering complexity and lack of direct subject relevance. 

Lead Acid 

 Lead acid batteries are made up of lead and lead oxide plates, and sulfuric acid. The 

electrical energy is created in a reaction between lead and lead oxide, which takes place between 
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the plates suspended in sulfuric acid. This is by far the most common large battery chemistry, 

and also the best understood
5
. Lead acid batteries, like all battery chemistries, have varying 

properties depending upon how the battery is constructed internally. 

 The batteries used in cars, often referred to as “car batteries” or starter batteries, are 

designed to put out high current and only discharge a very small amount. These batteries are 

constructed with many thin lead plates rather than a few thicker plates. This allows them to 

expose a higher reacting lead surface area, thereby producing more current. This also means that 

there is less active material in each plate, which results in the battery reacting very badly to a 

high depth of discharge. This type of battery is only designed to operate within 20 % of a full 

charge, and will be permanently damaged if discharged more than 50%
5
. This is why when you 

leave your headlights on a few times you battery suddenly can’t hold a charge, and a good reason 

why this specific lead acid type is not appropriate for use in an EV. 

Deep Cycle lead acid batteries are designed to produce a moderate current, and discharge 

to 20% of their full capacity
5
. This cell type is constructed with thicker plates, which increases 

the active material in each plate, but reduces the total reactive surface area in the cell. This is 

what gives deep cycle lead acid batteries the ability to be discharged to a much greater depth 

than starter batteries while still maintaining a longer cycle lifetime, which is approximately 400-

1000 cycles
5
. 

Absorbed gas mat (AGM) batteries are sealed lead acid batteries in which the acidic 

electrolyte is contained in a fine fiber boron-silicate glass which is about 95 % saturated
5
. This 

makes these batteries much more rugged and safe than classic deep cycle batteries, because they 

will not leak or spill if broken, and they are less sensitive to low temperature and freezing 
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because there is no liquid. These batteries are two to three times the cost of regular deep cycle 

lead acid batteries
5
. 

All lead acid batteries share general characteristics that are useful to consider when 

making a decision about whether they are appropriate for a particular application. They generally 

have a low energy density, meaning that they do not store a lot of energy per unit volume and 

they are quite heavy. These two facts make this battery chemistry relatively unattractive to 

anyone attempting to design a small lightweight electric motorcycle, but for some the other 

benefits outweigh these negative aspects. These benefits include high discharge rates, a very low 

price, and being a very well understood technology. It is also important to note that there are 

several safety concerns associated with all chemistries. In lead acid batteries hydrogen gas is 

created during the charging phase of some battery types as part of the chemical structure change 

during recharge, and must be vented through a port in the top of the cell, hydrogen is highly 

flammable and definitely a safety concern. 

Nickel Based 

 Nickel cadmium batteries typically have about twice the energy density of lead acid 

batteries
5
, and are capable of very high discharge rates without damage. These facts, paired with 

a much longer lifecycle of 2500-3000 cycles
5
 and an ability to discharge more fully on every 

cycle than lead acid and lithium-ion batteries, make this chemistry a good alternative to deep 

cycle or AGM lead acid batteries. This type of battery can be charged and discharged very 

quickly and is more rugged than most other chemistries. Unfortunately these batteries contain 

high levels of cadmium, which is very environmentally harmful, and they suffer from memory 

effects under charging and self-discharge when in storage. 
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 Nickel metal hydride batteries possess properties similar to those of nickel cadmium 

batteries, but have approximately two to three times the energy density, and reduced memory 

effects in comparison. This is the type of battery in many consumer electronics products, and 

was the type of battery used in the GM EV1 electric vehicle, as well as many other pioneering 

electric vehicles. Unfortunately these batteries have higher self-discharge rates and longer 

charging times than NiCd and have a typical cycle life that is slightly lower than NiCd cells. 

Despite these facts, the large increase in energy density and lower memory effects show these 

batteries are generally a better option for EV applications than lead acid and other nickel based 

chemistries. 

Lithium-Ion Based 

 Lithium-ion batteries use carbon based anodes (negative electrodes) and typically use 

either lithium-cobalt-oxide or lithium-manganese-oxide for the cathode (positive electrode). 

These metal oxide lithium-ion chemistries are present in most consumer electronics, and are one 

of the most popular types of rechargeable battery due to their high energy density, lack of 

memory effects and low self-discharge. This type of battery typically has almost twice the 

energy density of NiCd cells
6
, and needs very little maintenance over its lifetime, which is in the 

range of 2000-3000 cycles. High continuous discharge and pulse currents are also possible with 

lithium-ion chemistries. 

A few drawbacks to this battery chemistry are its high upfront cost, and the fact that a 

battery management system to maintain the battery health is absolutely necessary. Like most 

battery chemistries, there is a limit to the depth of discharge (DOD) which the cells can reach 

without permanently damaging the internal chemical processes creating the electricity, this value 

is typically around 80% DOD, and should not be exceeded in any scenario.  Pure lithium is 
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highly reactive, and reacts violently with water to produce lithium hydroxide and flammable 

hydrogen gas. Because of this, non-aqueous electrolytes are typically used, and the cells are 

normally completely sealed. Lithiated metal oxide lithium-ion chemistries, unlike some others 

which use different cathode materials, are prone to thermal runaway issues. This means that if 

they get to hot, they are in danger of exploding
7
. These thermal runaway issues are due to the 

decomposition of the lithiated metal oxide cathode under abuse, and its release of oxygen into 

the cell
8
. 

  Other lithium-ion chemistries use a lithiated metal phosphate cathode material instead, 

such as lithium-iron-phosphate (LiFePo4) cells. When a metal phosphate is used as a cathode 

instead of a metal oxide, the risk of thermal runaway is significantly reduced because cathode 

degradation will not lead to any oxygen release in the cell
8
. These batteries are therefore very 

well suited to large volume applications where more reactive material is present, such as in 

electric vehicles. They possess a slightly lower energy density than the metal oxide cells, but are 

also slightly lighter, and have a potential for a longer lifecycle if treated well, 2000-5000 cycles. 

Because of this use of iron phosphate, the benefits of lithium ion chemistries over other battery 

types are significant, and as a result this chemistry choice becomes a very attractive one to the 

EV designer. 

Selected Battery Chemistry for Build: Lithium Iron Phosphate 

 The battery chemistry decided upon for use in this build project was LiFePo4. These 

batteries were selected because they possess all of the benefits of lithium-ion based chemistries 

without the major safety concerns. The cells used in the build were 40 Ah 3.2V prismatic, for the 

manufacturer fact sheet please see Appendix B. 
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Ultracapacitor Consideration 

The integration of ultracapacitors (very large capacitors capable of driving the motor or 

storing regenerated energy) into the drive system was considered, but was deemed unnecessary. 

This decision was made based on the fact that a parallel ultracapacitor system, where an 

ultracapacitor is wired in parallel with the battery, would require an ultracapacitor of similar 

voltage to that of the battery pack, which makes it far too expensive.  A series configuration 

would not allow for any energy transfer between the batteries and the capacitor making it unable 

to recharge the battery. Any configuration utilizing an ultracapacitor will also require an extra 

control stage, which adds cost and complexity to the drive system, mainly because there are not 

any commercially available ultracapacitor controllers for this type of application. Ultracapacitors 

would be the most useful when high charge or discharge rates were required for the regenerative 

braking or acceleration. LiFePo4 batteries have continuous discharge and charge rates of up to 

3C or three times the amp hour rating of the battery, with pulse rates of up to 20C
9
.  Though this 

is much less than then instantaneous current a large ultracapacitor can produce, it is sufficient for 

very fast acceleration and fits the needs of this project. 

Battery Management System and Charger 

 Batteries need careful care, and how well they are cared for and maintained will make a 

big difference in the reliable performance of any electric vehicle. Any battery system is a large 

investment, and in order to maximize the effectiveness of the battery pack and keep it 

functioning smoothly for its rated lifetime, many conditions must be constantly monitored and 

modified by active systems. 
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 The various battery chemistries all have different charging regimens and require 

different amounts of energy over specific time periods to function most effectively, the purpose 

of the battery charger is to provide the necessary charging scheme for the chosen batteries in 

order to maintain optimal operating conditions. This function and others are also sometimes 

accomplished with a battery management system (BMS) depending on the battery chemistry 

being used. Some require a BMS in order to monitor and balance cells during discharge and 

charge, and to communicate with the electrical load and battery charger. Cell balancing is the 

process of transferring energy between cells in the battery pack in order to keep every individual 

cell at a similar voltage level. When this is done the pack will be discharging most effectively, 

with the load spread evenly over all cells in the pack. Some of the functions performed by a 

BMS, such as cell balancing and over/under voltage monitoring can be accomplished using the 

battery charger or other supplemental systems, like battery balancers… etc., but for the purposes 

of this project only the overall BMS will be discussed. 

Lithium-ion battery chemistries always require a battery management system, while most 

other battery types need less specific operating conditions and can often function quite 

effectively without any active monitoring system. If programmed and used properly, a battery 

management system can significantly increase the labeled lifecycle of a LiFePo4 battery pack. A 

BMS has many different functions, but is always concerned with keeping every individual cell in 

the battery pack at appropriate operating conditions. This means monitoring things like cell 

temperature, state of charge, discharge current, and charge current, and having the ability to 

communicate with the charger and discharge electrical load (motor controller) via CAN bus or 

direct logic connection to actively control the charge and discharge demands on individual cells 

and the pack as a whole. Cell balancing is also a very important feature of a BMS, because if a 
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certain cell is at a much lower state of charge than others in the pack around it, it can be 

destroyed by reaching 100% DOD or even can even reverse polarity, which is very dangerous 

when it is connected to the other cells in the pack due to the risk of a chain reaction.  
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Electric Motors 

Overview 

 Electric motors operate by using two opposing magnetic fields to create rotational 

mechanical energy from electrical energy. They are currently the most efficient mechanical 

devices know, converting between 85 and 90 percent of the electrical energy input into 

mechanical energy
5
.   Current flowing through coils of wire is used in all electric motors to 

create one or both of the magnetic fields which produce the rotational motion, with permanent 

magnets providing one of the fields in certain motor types. These fields are always located in the 

stator, the outer non-rotating portion of the motor, and the armature, the inner part of the motor 

which is mounted on bearings and rotates to produce mechanical energy. The different 

configurations and methods used to create and control these two magnetic fields give rise to the 

different types of electric motors.  Electric motors can be divided into two main categories, AC 

electric motors and DC electric motors, sometimes called induction motors and brushed motors. 

A brief description of each applicable type of motor and its characteristics will be presented and 

discussed in this section. 

 DC Electric Motors 

Series 

 In a series DC motor, the stator and armature magnetic fields are both produced through 

the use of inductive coils, and as the name implies these coils are wired in series with one 

another. This means that the current passing through the two coils at any given time is the same, 

excepting the transient periods. In all DC motors which use an inductive coil in the armature, 

carbon brushes transfer the electrical current to the armature through the commutator, which is a 
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rotating device which switches the current to keep the two magnetic fields aligned properly at all 

times. Series motors have high starting toque (100% of the torque that the motor is capable of 

producing can be achieved at startup) making these motors very powerful, but unsafe to use 

without a permanently attached load. This is because if the motor were to start under zero load it 

would accelerate out of control, and the centrifugal forces from this acceleration would tear it 

apart. This particular torque characteristic also makes these motors very good at accelerating 

large loads to high speed quickly, a good feature for an EV motor. However, the speed of a series 

motor is decreased as the load is increased, and increases if the load is decreased, this makes 

speed control of these motors in load varying applications difficult. Because of this series motors 

will often be slightly oversized for an application in order to have the desired RPM range fall 

well within the motors torque capabilities. Series motors cannot be used for regenerative braking 

without modifying the circuit they are a part of each time its use is required, this can be done 

within the motor controller, but it rarely is on commercially available controllers. 

Shunt 

 Shunt DC motors use two inductive components just like series motors; the only 

difference is that the armature and stator are wired in parallel, rather than in series. This gives the 

motor different characteristics than a series motor, such as a lower starting torque, and easier 

speed control due to a “back electromotive force” which is caused by an induced voltage in the 

armature. Shunt motors are typically used in industrial applications where simple speed control is 

a large benefit, and where a high starting torque is not as important as higher torque at moderate 

speeds. Shunt motors can be used for regenerative braking by reversing the current in the 

armature, and are utilized on EV’s largely as a result of this feature, although with the lower 

starting toque abilities, a lower gear ratio is often needed than would be with a series motor, 
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reducing top speed capabilities. Another way to use a shunt motor is to configure it in a 

separately excited control configuration, where the armature and stator coils are excited by 

separate DC sources, allowing for a large range of possible torque and rpm capabilities. 

Unfortunately the few commercially available controllers which utilize this configuration don’t 

allow enough programmable customization to utilize the full motor capabilities. 

Permanent Magnet 

 Permanent magnet DC motors have an armature with induction coils, and a permanent 

magnet stator. The permanent magnet stator is used in the place of one of the induction coils on 

the series motor, serving to generate the magnetic field which interacts with the field induced 

when current is passed through the armature, and create mechanical force. Permanent magnet 

motors have lower starting torque characteristics than a series motor, but have a higher torque at 

their maximum rated speed, a characteristic they share with shunt DC motors. Permanent magnet 

dc motors are similar to shunt motors in most respects, but recent advancements in magnetic 

materials have allowed them to surpass the starting torque capabilities of shunt motors
5
. 

Compound 

 Compound motors are a combination of a series and shunt configuration, and can possess 

varying torque and speed characteristics depending on which configuration they most closely 

resemble. Compound motors are slightly more complex and are generally used in industrial 

applications where the higher torque characteristics of a series motor is required as well as the 

easier speed control characteristics of a shunt motor. 
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 AC Electric Motors 

 AC electric motors operate on the principle of induction, this means that the magnetic 

field present in the armature coil is not created by a current passed through the coil from the 

brushes and commutator, but rather is induced by a rotating magnetic field in the stator coils. AC 

motors lack the friction created by brushes and a commutator, along with many other 

components in the DC motor which create excess heat, and because of this they are usually 

slightly more efficient than DC motors
5
, they also have a greater range of torque and speed 

control characteristics, and are capable of more effectively executing regenerative braking. AC 

motors themselves are a less expensive to produce then DC motors, but they must be constructed 

very carefully alongside their controllers, as the control process is much more complex, and this 

drives the overall system cost to nearly twice that of a DC system for the same power demands. 

For this reason AC drive systems were outside the scope of this project, and so the various types 

of AC motors and drive will not be fully discussed. 
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Motor Controllers 

Control Methods 

 Motor controllers are one of the most important components in any electric vehicle; they 

are essentially the control stage between the energy source and the energy use. The user input for 

control of the motorcycle is entered into the motor controller, processed, and then output as a 

certain level of voltage and current to the motor from the batteries. The user input usually takes 

the form of a voltage difference over a potentiometer, which acts as a throttle. The methods for 

achieving different output voltages and currents have advanced a long way from the first motor 

controllers, which essentially used switches and different parts of the battery pack to change the 

effective voltage output to the motor
5
. These methods meant the vehicle had as many speed 

settings as it had parts of the battery pack to utilize for different voltage settings, making these 

systems very cumbersome, not to mention inefficient due to many repercussions of this control 

process. Operating a DC motor at lower than its suggested voltage usually results in large 

amounts of heat production, and a reduced motor efficiency. 

 Modern methods for speed control use a process called pulse width modulation, which 

utilizes a rapid switching of the power supply to the motor in order to cause the motor to see a 

lower effective voltage or current. In the earlier incarnations of this method, the controllers used 

silicon-controlled rectifiers
5
 to accomplish this switching, but the switching frequency that these 

controllers used was approximately 400 Hz
5
, within the audible range, and so produced a loud 

noise while operating.  

 New controllers utilize metal-oxide-semiconductor field-effect transistors or MOSFETs 

to achieve higher and more efficient switching frequencies of approximately 15000-18000 Hz. 
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This allows smooth and efficient motor control, and paired with a slew of safety, control, and 

system stability improvements, makes modern motor controllers very safe and effective control 

systems for electric vehicle applications. 

System Integration 

 A motor controller is filled with complex circuitry and power routing and switching 

technology, and also provides many functions above simple motor control. Many controllers 

available on the market allow extensive custom programmability of important user input settings, 

such as how the controller will respond to different inputs to the potentiometer based throttle, 

and what values of current and voltage the different throttle inputs will correspond to in the 

motor. The controller also usually serves as a current limiter in the design of the drive system. 

This is because the circuit components which accomplish this pulse width modulation or PWM 

control can only handle certain current values, and are usually the most sensitive component in 

the drive system to overcurrent failure. These controllers therefore usually internally monitor 

themselves for overcurrent and overheating conditions
5
, and have many other failsafe’s built into 

their operation. These can range from not turning on if the key is not turned, to cutting power to 

the whole system when the throttle is open upon system startup. Undervoltage cutback is also an 

important feature on modern motor controllers, because certain batteries can only be discharged 

to a certain depth, a programmable undervoltage cutback setting allows the user to determine 

when the motor controller should stop attempting to draw current from the battery. 
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Analysis and Simulation 

Preliminary Calculations 

Identifying Unknowns 

 As the design of an electric drive system begins, power estimates once again become 

important. By looking at previous projects and commercially available products, it was shown 

that it is clearly possible to get enough mechanical power to drive a motorcycle from an electric 

motor, and so the question of exactly how much power will be required for how long quickly 

becomes the most important design concern. This means that accurate power estimates must be 

made, estimates which include all drag, friction, and common situational factors like wind speed 

and road incline. 

Solution Strategy 

In order to make these new estimates, the differential equation governing the behavior of 

the motorcycle in motion was derived from its free body diagram, seen below in Figure 1. 

  

Figure 1: Motorcycle Free Body Diagram 

 The mathematical model of the motorcycle derived for this situation, seen below shown 

as basic forces in Equation 3, will be iteratively solved in order to find out how the motorcycle 



26 
  

responds to these forces over time.  All of the forces that have a large effect on the motorcycle in 

motion are represented here, and so by using this model along with careful estimates of these 

forces, the power demands for different situations can be accurately determined.  

Equation 3                                                             

Refined Model and Simulation 

 Modeling Forces 

 Each of the forces shown above in Equation 3 must be carefully estimated in order to get 

a good idea for how the motorcycle would behave when being acted on by the torque of the 

motor and the different inertial, drag, frictional, and gravitational forces it would experience 

during transit.  

 Aerodynamic drag force can be represented by the expression shown in Equation 4 

below, which gives the magnitude of drag force based on an aerodynamic drag coefficient, the 

frontal area of the motorcycle and rider, the velocity of the motorcycle, and the air density. 

Equation 4                                    (
 

 
)     (           )  

Where   is the air density,    is the drag coefficient,    is the frontal area,       Is the motorcycle velocity, and 

      is the opposing wind velocity. 

 The density of air at STP was used for all simulations, and the frontal area was calculated from 

the below photo of motorcycle and rider shown in Figure 2. 
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The drag coefficient was initially varied within the range (.5-1) which was deemed the 

general range where the motorcycles drag coefficient would fall, but was later set to .5 for most 

simulations when a reference source was found which had determined a drag coefficient of .48 

for a similar sized motorcycle
10

.  This value served as a “middle of the range” drag estimation, 

rather than a worst case estimation, simulations for which were run with a drag coefficient of 1 

and taken into account. 

 The rolling friction acting on the motorcycle in motion can be expressed as the normal 

force between the motorcycle and the road multiplied by a coefficient of rolling friction which 

represents the frictional losses in the bearings and in the contact between tire and ground, this 

expression can be seen in Equation 5 below. 

Equation 5                                                   

Where    is the mass of motorcycle and rider,    is the gravitational constant, and    is the coefficient of rolling 

friction associated with the system. 

The mass of the motorcycle was initially calculated based on rough estimates, and later 

on direct refined as the weights of the selected components became known. The coefficient of 

rolling friction was initially varied over a large general range in which it was known to lie 

Figure 2: Frontal Area of Motorcycle and Rider 
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(≈.006-.3) and was later set within a much more representative range of values for a midsize 

motorcycle on pavement when this range (.01-.08) was located in research article
11

. 

 The inertial and gravitational forces on the motorcycle can be modeled using the forms 

shown below in Equations 6 and 7, the inertial force is just the mass of the system multiplied by 

its acceleration, and the gravitational force is just given by the degree gravity is in opposition to 

the direction of motion, and can be found using simple trigonometry. 

Equation 6                                                ̈  

Where  ̈ is the acceleration of the motorcycle, the second derivative of its position, and   is the total mass of the 

motorcycle and rider. 

Equation 7                                                   ( ) 

Where   is the total mass of motorcycle and rider,   is the gravitational constant, and   is the angle of incline of 

the road surface. 

 The amount of mechanical power being produced by the motor will serve as the input to 

the mathematical model in order to arrive at reasonable values for the amount of mechanical 

power required under different driving conditions and at different output steady state velocities. 

 Simulation 

 The mathematical model of a motorcycle in motion derived in the previous section results 

in a second order nonlinear differential equation, shown below as Equation 8. This equation was 

programmed into Matlab and was used with Simulink to create a motorcycle simulation which 

would give accurate values for accelerations and steady state velocities that were resultant from 

different input motor powers. 
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Equation 8             ̈  
      ( )

 
 

(
 

 
)     (           ) 

 
     ( )      

 This simulation was then modified to show how much of the input motor power was 

expended on each of the forces at play in order to see what forces were most important in what 

situations, plots showing this output and the velocity and acceleration output can be seen below 

in Figure 3. The simulation was also modified to calculate the amount of energy used during 

acceleration and travel at constant velocity, and this value was used to estimate the amount of 

battery energy needed onboard. Many subsequent changes to the simulation have added the 

effects of a current limiter and other small factors affecting the validity of the results. 

 

Figure 3: Larger versions of these plots are shown in Appendix A 

 Drive Cycles 

 The simulation was eventually modified to use pulse inputs of varying magnitudes and 

time periods as the mechanical power output from the motor. This means that instead of a 

constant power being the input (simulating holding the throttle at a certain fixed value) a set of 

constant powers were used (simulating accelerating to a constant speed and cruising, then 

stopping and accelerating to a different constant speed and cruising). These pulse inputs made up 
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a virtual drive cycle which represented accelerating to many different steady state velocities and 

traveling for different time periods. This drive cycle more closely represented everyday use of a 

motorcycle, than a single acceleration to a steady state velocity, and so provided relevant 

information about the energy usage and potential range abilities of the motorcycle. The output 

from one of these drive cycle simulations can be seen below in Figure 4. By calculating the 

amount of energy used in each of these cycles of acceleration, steady state travel, and stopping, 

the useful energy remaining in the battery after this drive cycle can be calculated. By useful 

energy it is meant that the motor efficiency, electrical transfer efficiency, and charge which must 

remain in the battery at full discharge have been taken into account and so this remaining charge 

estimate is of the actual energy available for use. 

 

Figure 4: Larger versions of these plots are shown in Appendix A 

 

 

 

 

 

 



31 
  

Selected System and Project Build 

Batteries 

Battery System 

Selection Rational 

 The battery pack for use in the project build was selected after taking into account 

important system parameters, battery chemistry characteristics, information from the simulations 

preformed, general electric vehicle research, and an extensive review of other projects and the 

commentaries of their designers. 

 The chemistry selected for the project was lithium iron phosphate, principally due to its 

high energy density, light weight, reduced risk of thermal runaway, and long lifecycle. This 

selection means that a battery management system is an integral part of the battery system, and 

that a programmable charging regimen is required. These batteries have very high lifecycle 

ratings (rated for 3000 cycles by manufacturer) and so will last for a long time if cared for 

properly, an equivalent lead acid pack would need to be replaced 5 or 6 times over the lifetime of 

the selected pack. This makes these batteries more cost effective on the long term, if the cost for 

the battery management system is not included in the estimate. These batteries also have 

discharge and charge rates that will allow for higher continuous and pulse currents than most 

other chemistries, meaning the motorcycle will be able to accelerate faster and recharge more 

quickly using these batteries.  

The Ah (amp hour) rating of the cells which will make up the battery pack was another 

difficult decision, one that can greatly affect the stability and integrity of the drive system. It was 

decided based on research that many small cells were a better choice than a few large ones. The 
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factors considered were battery pack stability in relation to individual cells failing, and the 

effectiveness with which cells could be fit onto the vehicle
12

. This decision had a large effect on 

the choice of a series/parallel configuration for the battery pack, which was influenced by the 

current and voltage needs predicted by the simulation, and will be discussed in the battery design 

integration section. 

Design Integration 

 The cells chosen were LFP (LiFeYPo4) 40 AH 3.2V prismatic cells manufactured by 

Thunder Sky Battery Limited (now Winston Batteries), a Chinese company that is a trusted long 

time manufacturer of these batteries for use in EVs. The fact sheet for these batteries can be 

found in Appendix A, and the extra Y in the name is yttrium, which was apparently added to the 

chemistry for legal reasons and does not affect preformance
15

. 44 of these batteries will be 

mounted on the motorcycle, this number is a result of the decision to use many smaller cells 

rather than a few large ones, and a result of the series/parallel configuration used. Table 1 below 

shows the voltages which make up the operating range of these batteries, these values are 

important because they must be programmed into the battery management system in order to 

maintain proper health of the cells during charge and discharge. 
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Table 1: LiFePo4 Voltage Values
13

 

 These cells expand when they are charged or discharged as a result of changes in the 

internal cell chemistry, and in order to avoid eventual warping of the cell case under these 

constant loads, each cell must be strapped within a compression pack. This adds to the size of the 

cells, and must be considered when designing mounting configurations for the battery pack.  

These 44 40Ah cells will be used in a 22S2P configuration, where there will be two sets 

of twenty two batteries wired in series, with these two sets wired in parallel, a simple 

representation of this configuration is shown below in Figure 5. 

 

Figure 5: Series/Parallel configuration example 

  This configuration will make the one hour discharge current of the battery pack 80A, and 

the pack voltage 72V. These batteries have a continuous discharge rating of 3C (3 multiplied by 

the amp hour rating of the battery), and a pulse discharge rating of 20C. This means that the 

maximum continuous output current of the battery pack is 240A, and the absolute maximum 
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current value that the battery can achieve is 1,600A. However, this high value will never be 

approached unless the system is in a catastrophic failure mode. During normal operation the 

motorcycle should fall well below this continuous rating, and during periods of intense 

acceleration and hill climbing will reach current values which will be limited by the capabilities 

of the motor controller, which will limit the current going to the motor to less than 450A at all 

times. 

 The battery pack will be mounted to the frame of the motorcycle in three separate 

locations where battery mounting trays were placed in order to effectively fit all of the cells into 

the chassis. The locations and orientations of these trays can be seen in Figure 6 below, which is 

a photo of the chassis after the battery mounting trays had been partially fabricated & attached to 

the frame. These three battery mounting locations will house all 44 cells, and their compression 

packs, which will be strapped down into the trays using heavy duty tie down straps. CAD 

drawing of these parts and a general Solidworks model of the battery mounting can be found in 

Appendix C.  

 

Figure 6: Battery Mounting Trays 
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  Because the battery management system must monitor and interact with every cell in the 

pack, it is necessary to split the battery pack into smaller “banks” or portions of the overall pack. 

Each of these banks must contain cells which are not physically separated (cells cannot be 

mounted in a different location if they are part of the same bank), and no bank can have more 

than 16 cells due to the restrictions of the battery management system. The project bike’s battery 

pack consists of four of these banks, one in the bottom tray, one in the top tray, and two in the 

middle tray. These four banks make up the whole of the battery pack, and will each have a 

wiring harness which connects it directly to the BMS controller unit. These banks will be wired 

into the BMS from most positive to most negative (within the battery pack) in order for it to 

locate and monitor all of the cells effectively. The top battery mounting tray will contain the 

most positive bank (bank 1), which contains 8 cells. Banks 2 and 3 are located in the middle 

battery mounting tray, and contain 12 and 8 cells respectively. Bank 4 is the most negative bank, 

and contains the 16 remaining cells which are located in the bottom battery mounting tray. A 

wiring diagram showing the battery pack split into its four banks and wired in the 22S2P 

configuration discussed above can be seen in Figure 7 below. 
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Figure 7: Battery Banks and Cell Wiring 

 Figure 8 shows a photo of the four battery banks for the project build with the cells wired 

in parallel. The battery can be thought of as 22 80 Ah cells, each made up of 2 40 Ah cells. 

 

Figure 8: The four battery banks 
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The cells were connected in series and parallel using copper bus bars, some of which 

came with the cells from the manufacturer, and some of which were fabricated from ultra-

conductive copper bar. They were then mounted into their location on the frame, and the battery 

management system was connected. The final mounting configuration, with the batteries wired 

and mounted in their proper locations on the chassis, can be seen in the images found in the 

conclusion section. 

Battery Management System 

Selection Rational 

 There are a limited number of commercially available battery management systems for 

LiFePo4 battery technologies, and even fewer which are well built and possess all the features 

necessary for successful integration into a small EV battery system. The system chosen was one 

of these few, produced by a company which has come about as the electric vehicle industry has 

grown in recent years. The system selected for use on the project bike is the Elithion Lithiumate, 

which is a modular BMS designed for use in small projects very similar to this one.  

This BMS has the capability to monitor temperature and state of charge, and to balance 

the cells by distributing the charge in the pack evenly among the individual cells. It can also open 

and close relays if certain state of charge levels in the pack are reached, and estimate the battery 

pack’s SOC accurately and output it to a secondary device as a logic voltage. Fault lights on the 

BMS are activated if any cells fall below or above the voltage or temperature range which was 

programmed in, and the BMS also possesses many other features which will be discussed in the 

design integration section if relevant to the build. 

 



38 
  

Design Integration 

 

Figure 9: Battery Management Controller (seen without protective metal case)
14

 

 The battery management system used in this project is the Elithion Lithiumate, it is made 

up of the central BMS controller unit (seen above in Figure 9), the cell boards which will be 

mounted to the LiFePo4 cells in the pack, and the wiring and wiring harnesses which connect the 

system together. The BMS controller preforms many functions in the design, acting as the 

“brain” of the electrical system. It is responsible for disconnecting the pack from the charger in 

case of overvoltage (SOC to high), and the pack from the motor controller in case of 

undervoltage (SOC too low), these functions are discussed in the 12V Relay System section. The 

BMS controller also outputs the SOC to the SOC display (discussed in Supporting Systems), and 

gives the rider active feedback through the throttle (discussed in Drive System). The BMS 

controller also has two current sensors which monitor the charging and discharging current at all 
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times, and will disconnect the pack if these values are not within the appropriate programmed 

range. These sensors are placed on the positive wire connecting the pack to the charge, and on 

the positive battery lead which powers the motor controller and other electronics. 

 The BMS controller is mounted to the frame of the motorcycle as shown below in Figure 

10, which is a photo of the finished mounting plate in its location on the chassis. This plate is 

located in the front of the frame, in a cavity just to the rear of where the frame connects to the 

front forks and steering column, the BMS controller unit will bolt directly to the plate.  

 

Figure 10: Battery Management System Controller Mounting Plate 

 The battery management system cell boards, seen below in Figure 11, must be placed on 

each of the 22 80 Ah cells in the pack (each of which is made up of two 40 Ah cells wired in 

parallel, see Figures 7 & 8). This is necessary in order for the BMS to monitor the temperature 
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and state of charge in the cell, as well as the charge and discharge current. The cell boards also 

function to balance the state of charge level of all the cells in the pack. The ring connector 

attached to the red wire is placed on the positive terminal of the cell, and the ring connector 

connected directly to the cell board is place on the negative terminal of the cell. 

 

Figure 11: The three types of cell boards  

 Each bank of batteries in the pack connects to the battery management system controller 

with a wiring harness which attaches to the most positive and most negative cell boards in the 

bank (via the black wire clip). The most positive cell board in the bank is directly connected to 

the cell board on the next most positive cell (via the orange wires and clips) and so on until the 

most negative cell board is reached. The wiring and cell boards for the all four banks being used 

in the project build can be seen below in Figure 12. 
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Figure 12: Cell boards and wire for battery banks 

 The wires seen above in Figure 12 are four conductor wires, meaning they have four 

smaller wires within them. Two of the four wires connect to the most positive cell board in a 

bank (via crimped on pins and a wiring clip) and the other two connect to the most negative cell 

board in the bank, one of the wires in each connection is a ground, and the other transfers data 

from the board to the BMS controller. The other end of the wire is then connected to a clip and 

inserted into the BMS controller so it can monitor that bank of batteries.  

 The battery management system controller has an R-232 serial port which can connect to 

a PC running a terminal interface with the serial connection to the device. Through this interface, 

the battery management system has a variety of settings which can be modified, and the ability to 

monitor the battery pack and all its relevant information. The gain and offset of the current 

sensors being used to monitor the charge and discharge current must be programmed in this 

interface in order to get accurate current readings. The state of any returns which are being used 
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to open or close relays must also be properly set in this interface (ex. The relay is normally 

grounded, and is opened upon overvoltage). There are many other programmable features which 

can be modified, and many tests which can be conducted on the system, these are worth 

mentioning, but will not be discussed here. 

Battery Charger 

Selection Rational 

 The battery charger selected for this project build is the Elcon PFC 1500. This charger 

was selected because it has the ability to communicate with the battery management system 

selected via relays (discussed in 12v Electronics and Relays section), and because it has been 

custom programmed with a charging algorithm specifically designed for the current iteration of 

the exact LiFeYPo4 cells being used on the motorcycle. This charger was originally designed to 

charge lead acid batteries, but was reprogrammed with a custom charging scheme for the battery 

pack chemistry, size, and series/parallel arrangement used on the build motorcycle. This charger 

stood out above other similar options because of how specifically the charging algorithm 

(discussed below in Design Integration section) was matched to the cell chemistry being used.  

 After considering the options for how to have the battery management system control the 

charger while it was active (charging the batteries), an AC to DC converter was also purchased 

in order to power the BMS from an AC supply during charging. This was done because in order 

to have the BMS control the charging process (have override capability in case a cell gets 

overcharged), it must be powered up while charging is occurring. This could have been 

accomplished by running it off the battery pack through a DC to DC converter which would 

provide 12v when the battery was on, but this would load the battery pack while it was charging, 
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which is undesirable. Because of this, the BMS is powered during charging using the connected 

AC power supply and AC to DC converter mentioned above. The wiring and control which 

occurs between these three components (charger, BMS, and AC to DC converter) is discussed in 

the 12v Electronics and Relays section. 

Design Integration 

 This battery charger can be either mounted to the rear of the motorcycle, or left at a 

charging station. A permanent charger mount has not yet been added to the rear of the 

motorcycle, but will be as the final stylistic and finishing touches are made in the coming weeks. 

The charger interacts with the motorcycles electrical system through two control pins, one of 

which enables and disables charging, and the other of which powers a relay which will power up 

the BMS when the charger is turned on, these connections will be more thoroughly discussed in 

the 12v Electronics and Relays section. 

 The charger can deliver a maximum of 15A and will accept from 90 to 260 Volt (120 or 

220 V nominal) AC power, at 45-65 Hz. It will deliver the preprogrammed charging algorithm 

seen below in Figure 12 to the motorcycles battery pack when it is connected and the proper 

relays are activated.  
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Figure 12: Charging algorithm for battery pack
15 

 This algorithm is specific to the cell chemistry being used, and would look very different 

if it were designed to charge a different type of battery. Using a custom charging scheme 

designed specifically to minimize the stress on the cells during charging can significantly 

increase the life of a battery pack. This is because at different state of charge levels, the cells 

within the battery are more or less inclined to receive and discharge current, and if too much is 

added at the wrong voltage level, one can easily overtax the internal chemistry of the cell, and 

damage it. In lithium iron phosphate cells, the different voltage and current levels used during 

charging coincide with the ability of the free lithium ions to enter or exit the nanostructure of the 

iron phosphate cathode material. These algorithms are therefore developed very closely with the 

cell chemistries, and modified if the internal structures of the cells should eventually be changed 

by the manufacturer. This is very important as minor changes in the thicknesses of membranes 

which make up cathode and anode materials can drastically modify the necessary charging 
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scheme.  It should be noted however that in many applications where speed charging is desired, 

long term cell health will be sacrificed in order to shorten the amount of time required for the 

charging process. 
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Drive and Control 

Motor 

Selection Rational 

 AC motor systems which may have been preferable to DC alternatives were not a viable 

option due to price, but would most likely have been utilized had the budget limitations been less 

stringent. The DC motor decided upon for this project was a series motor manufactured by 

Advanced DC motors, a company which is a trusted motor manufacturer in the EV industry. The 

motor selected for the project bike was the A00-4009, a 6.7” diameter DC series motor which is 

commonly used for vehicle conversions totaling less than 1600lb. 

 This motor was selected based on a review of commercially available DC series motors 

which was conducted after it was decided that a series motor would be the best choice for the 

project bike. This decision on a series motor was made based on many factors, the foremost of 

was that regenerative braking would not be a viable way to increase range (based on drive cycle 

simulation results), and that this, and efficiency, would be the primary benefit of using a shunt or 

PM motor configuration. The most liberal estimates of range extension with regenerative braking 

put the maximum possible range extension at about 10% of the vehicles original range, and this 

value turns out to be more like 3% in practice; this shows that for this application, regenerative 

braking is not cost effective. A 3% increase in range can be easily bettered by reinvesting any 

money that would have been spent on regenerative braking into the battery system. Series motors 

also have much higher starting torque than shunt or PM motors, which means that a higher gear 

ratio can be used, and still allow for quick acceleration and good top speed (at the price of 

efficiency). 
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Design Integration 

 This motor is rated for 12 hp continuous at 72V, and provides all of the torque it is 

capable of producing at startup (0 RPM). The gear ratio and sprockets used in order to arrive at a 

desirable set of torque and RPM characteristics being delivered to the road will be discussed in 

the Drive Train section, along with any relevant power output and efficiency information 

pertaining to the motor.  

A DC series motor needs to be very securely mounted. This is primarily because of the 

theoretically infinite starting torque of these motors, which could cause warping or even shearing 

issues in situations where the motor is not correctly or securely mounted. Any warping or 

movement that occurs in the motor mount will likely cause serious issues in the drive train, 

because it would cause the chain and sprockets to experience unusual loading. The primary 

mounting location for most electric motors is the front plate, which will often bolt right into a 

transmission, if one is being used.  

In this project, a ½” plate will serve as the mount to which the front plate of the motor 

will bolt, and a ½” thick hoop support will hold the rear of the motor in line with the front, in 

order to reduce wobble and reinforce the cantilever style front plate mount.  The plate to which 

the motor will mount was tested using finite element analysis methods, with a static load of 1500 

Nm (which represents a worst case scenario load). This analysis resulted in a factor of safety of 

9, which was deemed acceptable; factor of safety is the stress in the plate divided by the yield 

stress of the plate.  The hoop support which will secure the motor against vibrations and wobble 

will bolt around the rear of the motor. This mounting configuration can be seen below in Figure 

13, which is a photo of the partially fabricated chassis, detailed drawings of the parts can be 

found in Appendix C. 
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Figure 13: Motor mounting configuration 

 This motor has four electrical connections which will allow it to be used with the Alltrax 

7245 motor controller.  These connections are the two leads for the armature inductor, A1 and 

A2, and the two leads for the stator inductor, S1 and S2.  In order to wire this motor to the motor 

controller, A2 and S2 must be connected (this connects the stator and armature in series). The A1 

and S1 leads must then be connected to the B+ and M- terminals on the motor controller 

respectively; a wiring diagram showing these connections can be seen in Figure 14 in the motor 

controller section below. Images of the completed motorcycle with the motor mounted, wired, 

and connected to the drive train can be found in the conclusion section. 
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 Motor Controller 

Selection Rational 

 The motor controller for use on the project bike was selected based on information about 

the battery and motor systems, and through a comparison of commercially available motor 

controllers. The motor controller selected is the Alltrax AXE 7245, which operates at 24-72V 

and has a 450A current limit. This controller manufacturer has received very good product 

reviews and is considered a trusted controller manufacturer by many in the EV industry. 

Programmability and safety features were high priorities to this project, and so were very 

important decision making factors in selecting a motor controller. The Alltrax controllers possess 

a high degree of functionality at a lower price than most competing controllers, and do not 

require a special programming unit. This is a large benefit, as most programmable controllers 

will force the purchase of an expensive programming unit with which to change the customizable 

settings. One possible drawback of this interface is the controllers lack of a CAN bus interface, 

which can be very useful for communicating electrical load information to the battery 

management system and providing system information in the form of digital readouts. However, 

this information can still be accessed through sensors integrated into to the battery management 

system. 

Design Integration 

 The Alltrax 7245 motor controller serves as the control stage between the battery pack 

and the DC motor in this drive system. The user input to this control stage is given in the form of 

a voltage difference over a potentiometer (variable resistor) which serves as a throttle on the 

motorcycle. The motor controller interprets the voltage difference across this potentiometer and 
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delivers a certain value of voltage or current to the motor based on programmable settings. The 

maximum current which can be used with this motor controller is 450A, and a fuse is placed in 

the high voltage drive train circuit in order to ensure that this limit is never exceeded, which 

would cause damage to the controller. The basic wiring setup for this controller can be seen in 

the diagram shown below in Figure 15, provided by Alltrax Inc on their website (an overall 

system circuit diagram can be found in Appendix D). 

 

Figure 14: Alltrax motor controller wiring
16

 

 The motor controller will not provide any power to the motor if the key switch pin (pin 1 

above the B- terminal in the above figure) has not been activated. This pin is wired to the 

original key switch on the motorcycle, which must have the motorcycle key inserted and turned 
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to the fully on position before the motor controller can deliver power to the motor (see Appendix 

D for circuit). Pins 2 and 3 on the controller are wired to the potentiometer based throttle, which 

is also wired to the BMS via a diode to the DCL (discharge current limit) logic output. This 

serves to provide active feedback about the SOC in the battery pack to the rider through the 

throttle. The DCL output starts at 0v, which means that there is no current limit, and as the pack 

loses charge, this voltage increases to 5v, at which point no more current should be removed 

from the pack. This output is connected to the potentiometer via a diode in order to give the user 

feedback about the SOC in the pack that they can feel while driving. The potentiometer throttle 

used on the project bike mounts directly to the right handlebar and is a twist grip style throttle 

which is functionally and visually very similar to a conventional throttle on a motorcycle, see 

Figure 15 below. 

 

Figure 15: Twist grip style potentiometer 

 The motor controller is mounted to the frame of the motorcycle just to the rear of the 

middle battery mounting tray, and just above the rear wheel well. A photo of the motor controller 

mount which was fabricated and installed in this location on the project bike is shown below in 

Figure 16. In this location the motor controller is close to both the battery pack and the motor, 

and can be easily accessed and removed for modifications/reprogramming. 
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Figure 16: Motor controller mount in its location on the motorcycle chassis 

 Images of the motor controller mounted and wired in its final configuration on the project 

bike can be found in the conclusion section. 

Drive Train 

Selection Rational 

 A direct drive sprocket system was selected as the transmission for the project build. This 

was done as a result of the type of motor selected, and due to the simplicity of this type of 

design. The DC series motor selected for the build has the torque and RPM characteristics 

necessary to achieve the acceleration and top speed goals desired if this type of transmission is 

used. Using a direct drive system meant that the original sprocket mount on the rear wheel could 

be utilized, and that the chain path could follow the same course it originally did on the bike. 

This means that with a properly set up sprocket and chain system, the rear swing arm on the bike 

will not significantly change the distance between the motor and rear wheel when the rear 
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suspension moves (because the motors drive sprocket is located in the same place it was on the 

IC engine). This will allow for similar drive train and suspension performance to the original 

motorcycle, and reduce the risk of chain overloading/failure. 

Design Integration 

 The gear ratio to use with the direct drive sprocket system was decided upon after 

analyzing the torque and RPM characteristics of the selected motor, along with the motorcycle’s 

desired performance characteristics, and the RPM range in which the motor most efficiently 

operates. A plot comparing the torque and RPM characteristics of the DC motor at different gear 

ratios with the necessary torque RPM characteristics to achieve the desired performance can be 

seen in Figure 17 below.  

Figure 17: Torque and RPM characteristics of selected motor at different Gear Ratios 
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  Figure 17 shows that the desired top speed of the motorcycle (denoted by the top of the 

line with green triangles) cannot be reached with a GR of 4 or higher.  The DC series motor 

which was chosen for the build operates most efficiently at 4000 RPM when being used at 72V. 

This means that as long as the torque necessary to reach the desired top speed is present at the 

proper RPM, the GR must be made as high as it can be in order to keep the motor operating at 

higher, more efficient RPMs. 

 Since a gear ratio of just under than four was the upper limit according to the above 

analysis, the necessary size of the sprockets to achieve this ratio on the motorcycle was 

investigated. Due to size limitations on the rear sprocket (the sprocket can only be a certain size 

before it would come into contact with the rear swing arm) a GR of 3.75 was selected. This ratio 

allowed the desired max speed of 70 mph to be reached, and allowed the motor to operate with 

efficiencies greater than 70% at speeds of 50-70 mph, and efficiencies closer to 50% at lower 

speeds (0-30 mph). The sprocket mounted on the motor shaft has 16 teeth, and the sprocket 

mounted on the rear wheel has 60 teeth, and an ANSI # 50 chain with 5/8” pitch was used to 

connect them. A taper-lock style bushing was used to mount the sprocket to the motor shaft, and 

the bolt pattern for the original sprocket was utilized on the rear wheel (see Appendix C for part 

drawing). A photo of the sprockets mounted to the motor and rear wheel and motor can be seen 

below in Figure 18. 
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Figure 18: Direct drive sprockets 

 Figure 19 below shows the chain and sprockets mounted in their final configuration on 

the project bike. Minor modifications to the swing down stand which supports the rear tire above 

the ground when the bike is stationary were necessary, as its folded up position intersected the 

new path of the chain due to the larger rear sprocket. Small stopper bars were welded in to 

correct this issue. 

 

Figure 19: Chain and sprocket drive train final configuration 
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Supporting Systems 

Bike Chassis 

Selection Rational 

 The motorcycle chosen as the build bike for this project was a 1989 Kawasaki Ninja 

500R, and can be seen below in Figure 20. This chassis was chosen for its combination of a light 

weight frame and suspension and its reasonably large amount of storage space onboard. 

Aerodynamics and stylistic factors also contributed to this decision, as well as availability due to 

the relatively low number of cheap motorcycles available in the area. 

 

Figure 20: Motorcycle Chassis Prior to Build 

Design Integration 

The bike’s suspension, steering, brakes, and other supporting mechanical systems remain 

overall unchanged, with perhaps some very minor modifications. The internal combustion engine 

and all of its supporting systems have been completely removed from the bike, and replaced with 

a new electric drive system. The stripped down chassis can be seen below in Figure 21. 
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Figure 21: Motorcycle chassis with IC engine & drive train removed 

 This chassis has been modified in order to properly mount all of the components necessary for the 

electric drive system. The mounting configuration for each part is discussed within the section dedicated 

to that part, but the resulting modifications to the motorcycle chassis can be seen below in Figure 22, 

which is a photo of the bike after all of the major structural modifications had been made, and part 

mounting locations had been fabricated and installed 

 

Figure 22: Final modified motorcycle chassis  
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The 12V electronics on the motorcycle were temporarily removed, then were rewired and 

connected to a DC to DC converter which supplies a low current 12V source that originates from 

the battery pack. 

12V Electronics and Relay System 

Selection Rational 

 The 12V electronics used on this motorcycle are powered by a DC to DC converter when 

running from the battery, and an AC to DC converter when the vehicle is charging. These 

components were selected rather than using an auxiliary 12V battery because they simplify the 

system by removing the limitations associated with such a battery (charging, SOC, 

maintenance... etc.). 12V automotive relays are used to provide power to the BMS, and to control 

the charger through the high voltage limit return pin on the BMS. These relays are necessary in 

order to supply 12V to the BMS without a transient voltage input occurring during power up and 

power down, which can damage its internal electronics 

Design Integration 

 The DC to DC converter is mounted via two ¼” bolts to the front end of the middle 

battery tray, and supplies all of the 12V power to the motorcycle when it is running off the 

battery. The selected DC to DC converter is capable of 12.5A, and will power the lights, horn, 

and BMS on the motorcycle. The ignition switch must be turned on in order for the DC to DC 

converter to deliver power to the 12V system on the motorcycle. 

 The BMS controls the charger through a relay which is attached to pin 1 and pin 3 on the 

charger (see charger circuit in Appendix D), pin 1 enables charging when it is powered by pin 3 

(pin 3 is an 11V source), and disables it when it is not. This relay is switched off by the BMS if 
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the HLIM (high voltage limit) return is opened, which will occur when the pack was fully 

charged. The BMS is powered up through relays whenever the DC to DC converter or the 

charger is switched on. The 11V line from pin 3 on the charger powers a relay which provides 

power to the BMS through the AC to DC converter when the battery charger is switched on (see 

charger or overall circuit diagram in Appendix D). And the 12V power provided by the DC to 

DC converter powers the BMS by activating its relay when the ignition switch is turned on. . A 

12V contactor which connects the battery to the motor controller is used as the main failsafe in 

the system, and is closed by turning the key switch on the motorcycle after the ignition switch 

has been flipped. This contactor can be opened (cutting power to the motor controller) by the 

BMS through the use of the LLIM (low voltage limit) return or by turning off the ignition or key 

switches (see overall circuit diagram in Appendix D). A logic diode was placed across the coil 

power input and ground on all relays and on the main drive contactor to prevent electrical noise 

issues. A precharge resistor was also placed over high voltage contacts of the main contactor, to 

prevent arcing caused at startup by capacitors in the motor controller. 

SOC Display 

Selection Rational 

 A state of charge display is necessary in order to let the rider know how much charge 

remains in the battery pack during use. The display selected for use on the project bike was the 

E-Xpert Pro, manufactured by TBS Electronics. This unit can selectively display battery voltage, 

charge and discharge current, consumed amp hours, remaining battery capacity, and the 

remaining time to a fully discharged pack. This information will be useful during testing and use 

of the motorcycle, and can supplement other measurements taken to determine drive train 

efficiency and many other important drive system performance factors. 
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Design Integration 

 This SOC display will be powered by the 72V battery pack, and will measure the 

discharge current of the battery pack through a shunt placed on the negative line from the motor 

controller back into the battery pack. This part has not yet been mounted as it will be placed on a 

modified control panel which will be part of the future modifications to the motorcycle.  

Conclusion 

 The result of this project build is a successfully constructed electric motorcycle drive 

system which will have an estimated top speed of 70 mph and average range of 40 miles. This 

drive system meets the project goals by having the capability to transport a single commuter 

short to moderate distances with zero roadside emissions. The drive system has not yet been 

tested, but has been fully assembled and is functionally complete. Figures 23 and 24 below show 

images of the completed drive system mounted on the project bike. This drive system’s function 

will be tested in the coming weeks, after some visual and safety features have been added, and 

all parts have been properly insulated and individually tested.  
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Figure 23: Completed drive system mounted to project bike 

 

Figure 24: Completed drive system mounted to project bike 
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Appendix A 
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Appendix B: Part Fact Sheets 

LiFeYPo4 Fact sheet 
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The Elithion Lithiumate’s living manual (constantly updated web manual) can be found at the following 

URL. 

 http://lithiumate.elithion.com/php/index.php 

The Alltrax 7245 Operators Manual can be found at 

 http://www.alltraxinc.com/files/Doc100-003-B_OP-AXE-Operators-Manual.pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://lithiumate.elithion.com/php/index.php
http://www.alltraxinc.com/files/Doc100-003-B_OP-AXE-Operators-Manual.pdf
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Appendix C: Part CAD Files 
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Appendix D: Circuit Diagrams 

 

Motor Controller Wiring Diagram 

 

Charger Wiring Diagram
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Overall Wiring Diagram
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Appendix E: Major Parts List 

 

Index Manufacturer Part 

Number 

Item 

Name 

Description Purchased From Quantity Price 

1 Thundersky TS-

LYP40AH

A 

Batteries Lithium Iron 

Phosphate 

40AH 3.2V 

http://evolveelectrics.com/Thunder%20Sky%20Lithium%20Batteries.html 44 $52.00 

2 Advanced Dc 

Motors 

#A00-4009 

6.7" 

Motor 36-72V, 

80A 

continuous, 

100A for 

one hour 

http://www.evparts.com/products/golf-cart/motors-dot/48-to-96-volt-golf-cart-

motors/mt2112.htm 

1 $802.2 

3 AllTrax AXE7245 

72V 

Motor 

Controller 

450A 

Current 

Limit 

http://www.electricmotorsport.com/store/ems_ev_parts_controllers_alltrax_7245.ph

p 

1 $590.0 

4 Elcon PFC-1500 Charger Charges 

Batteries W/ 

custom 

algorithm 

http://evolveelectrics.com 1 $590.0 

5 Elithion NA Lithiumat

e 

Battery 

Managemen

t System 

http://evolveelectrics.com 1 NA 

6 Elcon 60-84 VDC DC to DC 

converter 

DC to DC 

converter 

http://evolveelectrics.com 1 $300.0 

7 TBS 

Electronics 

Expert-PRO Expert-

PRO 

SOC 

Display 

http://evolveelectrics.com 1 $300.0 
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