
i

The Advanced Educational Robot

By

Calder Phillips-Grafflin

Submitted in partial fulfillment

of the requirements for

Honors in the Department of Electrical and Computer Engineering

UNION COLLEGE

May, 2012

ii

ABSTRACT

 PHILLIPS-GRAFFLIN, CALDER The Advanced Educational Robot

 ADVISOR: JOHN SPINELLI

Existing literature in the field of computer science education clearly demonstrates that

robots can be ideal teaching tools for basic computer science concepts. Likewise, robots are an

ideal platform for more complicated CS techniques such as evolutionary algorithms and neural

networks. With these two distinct roles in mind, that of the teaching tool and that of the research

tool, in collaboration with customers in the CS department we have developed a new robotics

platform suitable for both roles that provides higher performance and improved ease-of-use in

comparison to the robots currently in use at Union.

We have successfully designed and built a medium-sized robotics platform for classroom

and research use that provides better maneuverability, increased flexibility, and is easier to use

than commercial equivalents at significantly lower cost. In particular, our robot provides a

platform with human-level mobility suitable for use in human-machine interaction (HMI)

research and testing. Using a combination of easily available off-the-shelf parts, newly available

sensors, and open-source software, we have built a platform that is both easy enough for

beginners to use but also powerful enough for advanced users to customize and adapt to their

specific needs.

iii

Contents

Abstract…….……………………………………………………………..……………………….ii

Introduction..………………………………...……………………………………………………..1

Background…………………………………………..……..……………………………………..4

Design Requirements…………………………………….…………..……………………………7

Design Alternatives……………………………………………………..………………………..12

Component Overview………………………………………………...…………...……………...19

Final Design………………………………………….………………………………...…………21

Design Details…………………………………………………………………………...………..25

Control System……………………………………..………………………………………..…...28

ROS Driver…………………………………………………………………………...…………..30

Performance………………………………………………………………...…………………….32

Production Schedule…………………………………..……………………………...…………..33

Cost Analysis………………………………………..…………………...……………………….34

Conclusion……..………………………………………………...……………………………….36

Future Work…………………………………………………………………………...………….39

User’s Manual……………………………………………….…………………………...……….40

Appendix A – ROS Driver Code……..………..…………………………………………...…….41

Appendix B – Microcontroller Code…………………………………..…………...…………….43

Appendix C – Project Budget…………………………………….…………………...………….50

References……………………………………………...………………………………………....52

iv

Figures

Figure 1 - 3rd design, looking at front left quarter.. .. 21

Figure 2 - Rendering of final design, exterior sensors not shown. Note batteries underneath the

body. ... 22

Figure 3 - Annotated diagram of the drive system for each wheel. .. 23

Figure 4 - Front and side bumper layout. .. 23

Figure 5 – Completed Robot ... 24

Figure 6 – Control System .. 28

Figure 7 – ROS Driver Nodes ... 30

file:///F:/Dropbox/Dropbox/Union%20Advanced%20Educational%20Robot/Advanced%20Educational%20Robot%20Final%20Report.docx%23_Toc319609836
file:///F:/Dropbox/Dropbox/Union%20Advanced%20Educational%20Robot/Advanced%20Educational%20Robot%20Final%20Report.docx%23_Toc319609838
file:///F:/Dropbox/Dropbox/Union%20Advanced%20Educational%20Robot/Advanced%20Educational%20Robot%20Final%20Report.docx%23_Toc319609839

1

Introduction

 Existing robots used in educational environments fall into two categories: simple robotics

kits and commercial robotics development platforms. The first category ranges from simple

devices like Parallax’s Scribbler to the more comprehensive Lego NXT ecosystem. These robots

are cheap, relatively easy to use, and (in the case of Lego or Vex systems) relatively flexible in

the ability to add additional sensors and actuators. However, these systems lack the kind of

processing power necessary to process video input in real time or to run more complicated control

algorithms. In most cases, such functionality must be implemented through the use of a host

computer, which imposes sharp limits on portability and autonomy. [6][8]

In contrast, commercial robots range from comparatively simple devices like Mobile

Robots’ Pioneer series all the way up to complete development platforms such as Willow

Garage’s PR2. These robots almost universally have on-board computers capable of video

processing and navigation, and provide nearly complete sensor suites for use in development.

However, these robots often trade flexibility for reliability, with limited means for expansion or

component replacement. In particular, the popular Pioneer series robots are designed to last years

in educational settings, but are relatively limited in their ability for expansion (particularly true

when using the on-board computer). In addition, these commercial robots are not always

affordable; while simpler systems like a Pioneer start at approximately $4000 US, more flexible

and complex platforms range up to $400,000 US in the case of the PR2. These are by no means

affordable for educational use, especially if multiple units are desired. Thus, the ideal platform for

educational robotics combines strong flexibility with high computational power and relatively

low cost. [6][8]

 Our project is the design and construction of a medium sized (approximately 40 kg when

fully loaded) mobile robot for educational and research use. This robot is designed to provide a

strong baseline chassis with sensors, actuators and necessary software to allow for easy

integration with existing robotic equipment, software and curricula. In particular, it is designed

2

for use in intermediate and advanced undergraduate robotics courses and undergraduate research

projects in robotics. The following descriptions from professors in the Computer Science

department illustrate the characteristics needed for this:

An ideal teaching robot for me would be mobile, robust, and capable of running the Robot

Operating System (ROS). Mobility is important because most interesting problems in AI and

robotics appear when robots leave "staged" labs and enter the real world. Robustness is important

not only for any number of obvious reasons (students will be driving this robot into walls a lot,

and I would like it to last longer than a week), but also because I'd like to use this as a platform for

embodied evolution (EE) which requires hours and hours of unsupervised robot learning. ROS is

an extremely versatile programming environment for teaching robotics - it is simple enough that

students can write a module in a matter of minutes, and complex enough to be used in very

expensive industrial robot systems. – John Rieffel, CS

I am interested in seeing a robotic platform designed at Union, for use in both research and

teaching. One of my interests is in social robotics. For a robot to be social, it has several basic

requirements. First it needs to be able to navigate in human-scale environments. This means that it

requires sufficient sensing capability to be able to perform both localization and object avoidance.

In turn, this requires a platform capable of controlled maneuvering, and carrying a payload

(processing power) that can support the sensing required.

Second, it needs to be a minimum height to promote social interaction, via voice or gesture.

Again, to support these requirements, the platform should be able to support an appropriate

payload, including microphones, speakers and the necessary processing power. The platform as

proposed [our project] is extensible, such that adding components (an extending head, for

example) should be possible.

Toward the end of this academic year, I am proposing to develop, in conjunction with upper level

students, a toolkit for creating voice interfaces. Ultimately, as a test of such a system, it would be

3

useful to deploy an interface created using this toolkit on a roving platform [our project] capable

of navigating the computer science department. This would be a great continuing platform to

experiment with both fundamental robotics principles (control, navigation, etc.) and interaction in

a unified manner. – Nick Webb, CS

 In addition to hardware design, this project involves the creation of the necessary

software for complete integration between the robot and existing production-quality robotics

software such as Willow Garage’s ROS (Robotic Operating System) and Microsoft’s MRDS. The

proposed robot will be less expensive than a Pioneer while offering superior mobility and

flexibility. In addition, we plan on making the robot accessible to everyone by using only open-

source components whenever possible and by publishing the final plans on the Internet for

anyone to use and adapt. Doing so allows other users, both at Union and at other schools, the

ability to freely use and modify the design to suit their needs.

4

Background

Design Features

 Previous researchers have attempted to define the ideal features of an educational robot,

with Weiss and Overcast identifying the following criteria as essential: platform flexibility and

extensibility, quality and durability of hardware, quality of documentation and teaching resources,

availability of sample code, continuing developer activity, total system cost, SDKs available, and

the available programming languages. [6][8] This means that any good educational robot should

provide as flexible a platform as possible without compromising cost, durability or ease of use.

Especially important is that such a robot must come with the necessary sample code and

documentation necessary to effectively teach using the platform, and that development (if

possible) should be possible using standard SDKs and programming languages. Moreover, if

possible, a robot should provide a high-level interface for development so that students do not

spend too much time trying to control low-level hardware operation and instead can focus on

high-level operation. [6][8]

New Technologies

 Numerous technical advances have occurred in the field of robotics and sensors in the

past few years, and many of these advancements can be applied to educational robotics. In

particular, a series of advancements in sensors and software have made professional production-

quality technologies accessible to the point at which they are reasonable and affordable for use in

educational robotics. In terms of hardware, the Neato Robotics LIDAR scanner and Microsoft’s

Kinect RGB-D sensor provide advanced sensing capabilities with both low cost and ease-of-use.

[9] These sensors offer capabilities previously only possible through expensive and rare depth

cameras, or computationally-intensive stereoscopic vision. These sensors allow for more

advanced navigation, mapping and operation than previously expected in an educational robot.

Along with these new sensors, Mecanum wheels, which have long been too rare and

expensive for general robotics usage, have become available. These wheels, which allow for

5

movement in any direction without the need for steering axles, provide maximum vehicle

maneuverability with a minimum of drivetrain complexity. [2] While these wheels can be

problematic to control, improvements in the processing power of low-power computers make

complicated control algorithms feasible. [2] Similarly, these improvements in computer

performance (in particular, major performance/Watt power efficiency improvements) mean that

real-time image and video processing can be performed on small mobile battery-powered robots

using affordable off-the-shelf hardware without unacceptable power consumption.

 In addition, these new pieces of hardware are easy to interface with new pieces of

software. Willow Garage’s ROS is an open-source equivalent to the older MRDS system offered

by Microsoft, and it allows the easy abstraction of particular robotic hardware to allow the use of

more generic high-level code. Interfacing with new hardware simply requires the availability of

new ROS “packages” supporting the hardware, which are then run as distributed services. This

produces an extremely flexible platform for robotics development. This abstraction allows for

easy integration with robotics education, as development can easily be split up among “nodes” in

the ROS package, allowing for easy cooperation and debugging. [1]

 A good educational robot must combine flexibility with ease of use and durability.

Importantly, given the pace of robotics developments in recent years, it should be easily

upgradeable to take advantages of future technologies. Given the expense of investment in

educational robotics, it only makes sense for such a platform to be adaptable for years to come.

Our project aims to satisfy this through the use of as many off-the-shelf components as possible,

including but not limited to sensors, computing hardware and software. Thus, individual

components are easy to adapt and replace for different uses. Through the use of standard software

like ROS and MRDS, our project allows development in standard programming languages

(Python, Java and C++ for ROS; C#, IronPython and others for MRDS) with no need for

proprietary SDKs. [1] In particular, by using standard x86/x64 hardware, students can run and

simulate their code on their own computers without needed special robotics hardware to test their

6

code. In addition, the open-source nature of the project allows for easy modification and

adaptation by users to continuously improve the platform. [3]

7

Design Requirements

 Previous researchers have attempted to define the ideal features of an educational robot,

with Weiss and Overcast identifying the following criteria as essential: platform flexibility and

extensibility, quality and durability of hardware, quality of documentation and teaching resources,

availability of sample code, continuing developer activity, total system cost, SDKs available, and

the available programming languages. [6][8] This means that any good educational robot should

provide as flexible a platform as possible without compromising cost, durability or ease of use.

Especially important is that such a robot must come with the necessary sample code and

documentation necessary to effectively teach using the platform, and that development (if

possible) should be possible using standard SDKs and programming languages. Moreover, if

possible, a robot should provide a high-level interface for development so that students do not

spend too much time trying to control low-level hardware operation and instead can focus on

high-level operation. [6][8]

 Existing work and the needs of our CS department customers have led to the following

requirements:

 The robot must be capable of autonomous indoor navigation and movement, and must be

able to easily pass through doorways.

 The robot must be able to use modern high-performance sensors like the Microsoft

Kinect in concert with computationally intensive navigation and localization software.

 The robot must have an equivalent level of maneuverability as an adult human (2 degrees

of linear freedom, 1 degree of angular freedom, speed of 1.5 m/s) without incurring

undue mechanical complexity.

 The robot must be capable of carrying a meaningful payload (~10 kg) and supporting it

with the necessary power, data connections, and processing power.

8

 The robot must be extremely robust; it must be able to survive collisions, protect its

electronic equipment from damage, and maintain performance during extended

unsupervised operation.

 The robot must provide an accessible software platform that is both accessible and

powerful, posing limited obstacles to use by novice student users without limiting the

capabilities available to more advanced users.

 The robot’s software platform must abstract away any and all complexities of low-level

hardware control in favor of simple yet powerful high-level control interfaces.

 The robot must be as inexpensive and flexible as possible, using off-the-shelf

components whenever possible to limit costs and ease fabrication. In addition, it must be

easy to modify without the need of special tools.

 Our design provides for these requirements by providing the following characteristics: a

flexible and extensible platform, integrated actuators and sensors for easy high-level control,

support for production-quality robotics software, and a fully open-source design.

 Flexibility & Extensibility: Our design allows for easy mounting of additional sensors

and actuators on the top deck, which can range from simple grippers and cameras to

complex models of torsos and faces used for social robotics research. In addition to easy

mounting, our design provides easily accessible data and control (USB, Ethernet, Serial,

SPI, I
2
C, Digital I/O, PWM and Analog input) and power connections (5V & 12V DC).

 Off-the-shelf Structural Elements: Instead of custom-fabricated structural components,

our design is entirely comprised of easily available extruded aluminum ‘80/20’ stock with

minimal machining. All cutting, drilling and fabrication can be accomplished with hand

tools (although it may be easier to fabricate using automatic (CNC) machining), which

means that anyone with access to the necessary raw materials can build their own robot.

9

Joints in the 80/20, while only bolted for simplicity and ease of assembly, are more than

strong enough to handle any expected load.

 Mecanum Wheels: Mecanum wheels provide a maximum of maneuverability with a

minimum of mechanical complexity in the drivetrain. There are no steering axles, no

complicated castering wheel sets and no expensive slip rings for electrical connections.

Instead, due to the special design of the wheel, four wheels each equipped with its own

motor are capable of movement in any direction and rotation in place. The mechanical

simplicity of this design improves reliability of the robot and reduces cost.

 Integrated Actuators & Sensors: Our design provides all the sensors necessary for an

inertial measurement unit (IMU)-based navigation system, allow with the sensors

necessary for naïve control of the Mecanum-wheel based platform. This allows users to

take advantage of the robot’s robust sensor and localization capabilities without needing

to understand the complexities of the control system in use. In addition, all

communication between onboard sensors and control systems will be done over USB

connections, making it very easy for students to connect to the robot, and also providing

for easy upgrading of the onboard components when necessary.

 Powerful Onboard Computational Resources: The robot is provided with multiple levels

of processing power, ranging from a simple microcontroller handling A/D conversion and

Digital I/O, to a high-performance mini-PC (equipped with a 2.5 GHz Intel Core i3) for

depth and image processing and high-level control. These onboard resources mean that

the robot will be able to operate autonomously without requiring off-board processing

support. In addition, this allows for high-performance sensors such as the Kinect, which

would not otherwise be usable.

 Redundant Control: Control of the robot is provided by a combination of two ARM

Cortex-M series microcontrollers, which directly control the motors and handle low-level

10

sensor data, and an x86/x64 PC that issues high-level commands. As a result, crashes or

unexpected behavior in user programs on the PC do not result in a loss of control of the

robot or a safety problem. In the case of such a crash or error, the robot will immediately

stop, and the user can trigger the start of the “rescue” driver by connecting a USB

joystick. Even in the extremely unlikely worst-case scenario where all control fails, the

individual motor controllers can be programmed to automatically stop the motors and

bring the robot to a safe state, or the user can trigger the emergency stop switch on the

top of the robot.

 Production-Quality Software Support: We intend for our robot to be fully supported in

Willow Garage’s ROS and possibly Microsoft’s MRDS in addition. ROS and MRDS are

two of the most used robotics platforms in commercial and research use, and full support

for ROS and MRDS makes it easy to integrate the robot into existing teaching and

research projects which are already using these software suites. Importantly, this lets our

robot take advantages of the robust high-level functionality (search, path planning,

mapping, etc.) provided in these systems.

 Complete Drive System Abstraction: To compensate for any inherent difficulties in the

use of Mecanum wheels, our software completely abstracts away the complexity of the

drive system. Users need not understand the subtleties of the implementation; instead,

they simply provide a linear and angular velocity vector (effectively standardized in ROS

as Twist message, better known as the “cmd_vel” topic, which provides <x,y,z> linear

and <x,y,z> rotation commands) which is then effected by the drive algorithms. A

combination of the inertial measurement unit, wheel rotation encoders, and external

references can be used to ensure that the robot either completes the commanded

movement or alerts the user of the failure to do so.

 Familiar Programming: ROS in particular supports programming in Python, Java and

C++. Almost all students using the robot will have previous experience with at least one

11

of these languages, which improves the accessibility of the robot to new users. This

allows for easy integration with existing curricula without requiring that students be

taught new programming languages.

 Fully Open Source Design: Our design will be one of the exceedingly few open source

robotics platforms available, and it will be the only medium-sized non-humanoid open

source robot available. Open source means CAD design files, circuit designs, program

source code, bill of materials, documentation and a detailed reference implementation are

all available under a suitable license (in this case, a modified BSD license). This project

must be well enough documented so that potential users will be able to quickly and easily

fabricate and assemble their own robot while also having the ability to easily modify the

design to suit their own particular requirements. As part of this open source design,

modifications and improvements by other end users can be contributed back to the

project and used to continually improve the design for all users.

12

Design Alternatives

Existing Literature

 Very little literature exists on the topic of educational robotics, and the small amount that

does is limited almost exclusively to the topic of using robots in education. The overwhelming

consensus from the literature is that robots provide an ideal hands-on environment for teaching

computer science concepts, however, there is little focus on the robots themselves. [6][7][8] The

little available work that focuses on the robotics platforms themselves is entirely focused on

standard commercial platforms such as LEGO NXT or Parallax Scribbler. [6][8] The previously

mentioned work of Overcast and Weiss is unique in that it discusses the necessary characteristics

of educational robots that we have incorporated into our design requirements. [6] They are:

 Platform flexibility and extensibility

 Quality and durability of hardware

 Quality of documentation and teaching resources

 Availability of sample code

 Continuing developer activity

 Total system cost, SDKs available

 Available programming languages

Existing Designs

 A variety of open source robotics projects exist, however, they are usually limited to

specific pieces of hardware (arms, grippers, sensors, etc.) designed for use on commercial

platforms. However, there is virtually no existing work on open source educational robotics

platform development aside from CMU’s legged ‘Chiara’. [10] Chiara has impressive

maneuverability but lacks powerful onboard processing and payload capability. In contrast,

‘affordable’ available commercial platforms like Mobile Robot’s Pioneer series can be equipped

13

with powerful computers but are extremely simple robots (standard differential drive) that trade

maneuverability and features for ruggedness. Simpler still is the iRobot Create, widely used for

its payload flexibility despite its few sensors and limited performance. In short, there are no

affordable robots that combine payload flexibility and innovative features such as higher

maneuverability.

Alternatives

 The distinct lack of existing designs means that our project is driven almost entirely by

the requirements of the customers: flexibility, maneuverability, robustness and ease-of-use. As

expected, there are a variety of means of implementing each of these, and a variety of alternatives

were examined for the core systems of the robot. In particular, the areas examined were: drive

system, sensor suite, and software stack.

1. Drive System

 As human level maneuverability is a basic design requirement, drive systems were

 limited to those systems capable of holonomic motion:

a. Omni wheels

i. Simple, cheap, widely used

ii. Mechanically simple

iii. Low performance, hard to find at larger sizes

iv. Complicated control

b. Mecanum wheels

i. Available for larger robots (≥6” diameter)

ii. Complicated control

iii. Mechanically simple

c. Omni-directional steering

i. High performance

14

ii. Comparatively simple control

iii. Mechanically complex

iv. Expensive to implement

 Omni-directional steering was quickly eliminated as an option due to the expense

and complexity of building multiple steering drive wheels. Such complexity not only

increases costs, but also adds new components to fail. In particular, as the drive system of

the robot is likely the primary source of hardware failures (there being no other major

mechanical system onboard), it is in our interest to use as simple a mechanical design as

possible to improve reliability. The choice between Omni wheels and Mecanum wheels

was made based on the commercial availability of 6” Mecanum wheels with sufficient

load capacity for use on our robot and the lack thereof of similarly suitable Omni wheels.

 In addition, the chassis designed for use with Mecanum wheels could, in the

event it was necessary, be fitted with conventional tires or tracks and continue to function

(albeit without the holonomic drive capability), which could not be done with a chassis

designed for Omni wheels. While this compatibility will likely never be used at Union, it

provides a method for modifying the design for use on unprepared surfaces (off road,

snow, etc.) for which Mecanum wheels are less suitable. This design flexibility is an

important part of designing the robot to be used and improved by multiple users.

15

2. Sensor Suite

 As noted in the customers’ requirements, the robot must be capable of self-contained

indoor autonomous navigation. Only a few technologies are usable for this:

a. Dead reckoning

i. Simple

ii. Cheap

iii. Poor accuracy

iv. Requires no external data

b. Inertial Measurement

i. Complex software

ii. Fairly accurate

iii. Requires no external data

iv. Requires special sensors

c. Ultrasonic sensors

i. Cheap

ii. Easy to use

iii. Poor accuracy

d. Infrared sensors

i. Cheap

ii. Easy to use

iii. Poor accuracy

iv. Limited range

e. LIDAR

i. Accurate

ii. Long range

iii. Easy to use

16

iv. Extremely expensive

f. Microsoft Kinect

i. Medium range

ii. Reasonably accurate

iii. Requires a fairly powerful computer

iv. Reasonably affordable ($150 US)

 Ultrasonic and Infrared sensors were, quickly eliminated due to poor

performance. Given the size and speed of the robot, more accuracy is required than these

sensors could easily provide. LIDAR, while ideal for indoor navigation tasks, was ruled

out due to costs. The simplest LIDAR unit on the market is available for $400 US as a

part in a robotic vacuum; the cheapest standalone LIDARs retail above $2000 US. As

minimizing total cost is an important part of the project, it is simply unacceptable to use a

sensor that costs as much as the entire rest of the robot.

 By process of elimination, our sensor suite is based on the Microsoft Kinect and

 an Inertial Measurement Unit (IMU). The IMU is necessary for gross navigational

tasks, while the Kinect is necessary for precise tasks, like handling doorways,

localization to update the IMU, and object avoidance. Of note is that both systems are

reliant on substantial software processing of data; like the choice of Mecanum wheels,

we have accepted increased software complexity to improve other aspects of the design.

17

3. Software Stack

 Few software stacks exist for robotics programming, and fewer still are easy to extend

 to support a completely new robot:

a. Robotic Operating System (ROS)

i. Open source

ii. Code in Python, Java, C++

iii. Recently released

iv. Provides concurrency & communications primitives

v. Linux/UNIX only

b. Microsoft Robotics Developer Studio (MRDS)

i. Proprietary

ii. Fairly widely used

iii. Code in C#, VB.net, C++, other CLR languages

iv. Provides concurrency & communications primitives

v. Windows only

 Neither platform has clear technical superiority, although MRDS has the benefit

of extensive use in major robotics projects (DARPA Grand Challenge, among others) and

 established user base. However, the Windows-only compatibility and closed-source

nature of MRDS, along with growing user base of ROS make ROS the better choice for

this project. Ideally, if time permits, we also intend provide support for MRDS, as broader

compatibility makes it easier for other users to use our design.

 After considering all available alternatives, our design consists of Mecanum wheels for

the drive system, Microsoft Kinect and Inertial Measurement Unit for navigation, and the Robotic

Operating System running on Ubuntu Linux computers for the software stack. All of these

choices are the result of maximizing performance while minimizing monetary costs; this means

18

other costs, like the computational complexity of some operations, are increased. This is

particularly true for the drive and sensor systems; both were explicitly chosen to improve

performance at the cost of increased software complexity. This is an acceptable choice for this

project because software can be comparatively easily rebuilt or replaced whereas complex, hard-

to-maintain hardware is often abandoned or broken. By keeping mechanical complexity and costs

down, we make it easier for others to build and maintain their own robots and we increase the

reliability of the design.

19

Component Overview

 Onboard Computer: Necessary to provide high-level control of the robot, video and

image processing, and SLAM (Simultaneous Localization And Mapping) using the

Kinect sensor and ultrasonic sensors. Additionally provides the computational resources

for Human-Computer Interaction (HCI) payloads. The computer chosen and purchased is

an ASRock CoreHT 231D with a ‘Sandy Bridge’ Intel Core i3 2310M processor.

 Mbed Microcontrollers: Controls the robot’s motors and receives sensor information

from all sensors except for the Kinect. One microcontroller (an ARM Cortex-M3 design)

handles communication with the serial motor controllers and processes the outputs of the

Hall-effect quadrature encoders attached to the motors to provide speed feedback

information. The other microcontroller (an ARM Cortex-M0 design) reads data from the

analog accelerometer, analog gyroscope, and the eight bumper impact sensors.

 Kinect: Extremely low cost color and depth sensor necessary for affordably

implementing Simultaneous Localization And Mapping (SLAM). Kinect offers similar

performance to LIDAR sensors at an order of magnitude lower cost ($150 versus $4000).

 Accelerometer, Gyroscope & Impact Sensors: Sensors necessary to provide accurate

motion control, dead-reckoning navigation, collision avoidance and allow the robot to

operate safely and successfully in an indoor environment.

 Mecanum Wheels: Necessary to provide the mechanically simplest drive system with

human-level mobility which is necessary for HCI research work. Human-level mobility

means the ability to drive in all directions (forwards, backwards, left and right) without

turning, and the ability to turn in place. Mecanum wheels allow such motion with the

minimum of moving parts, which provides for a more reliable and robust robot.

 Motors, Motor Mounts & Motor Controllers: Used to control the motors and move the

robot. Due to the design of the Mecanum wheels, one motor is needed per wheel. The

20

selected motor mounts allow easy attachment of the motors and wheels to the 80/20

structural frame.

 Batteries, Charger & Power Converter: Provides reliable and constant power to all

electrical system on the robot, ranging from the drive system to the sensors. The use of

multiple batteries allows longer runtime, while the use of the DC-DC power converter

provides the stable voltage needed by the onboard computers to operate. Additionally, the

onboard 15V DC power supply provides a self-contained charging system, which allows

future users to implement an automatic charging system without need for an external

charging station.

 80/20 Aluminum, Aluminum Structure, Fasteners & Polycarbonate Sheet: Structural

components for building the robot. The use of standard 80/20 components provides for

easy assembly and disassembly, repair, and modifications. This flexibility is important

for a robot designed to be used for research and teaching over multiple years.

21

Final Design

 In contrast to our early experimental designs, our last major design had the wheels

situated underneath the robot with the axle supported on both sides. The vertical components of

the body stretched downwards to form the outside support of each while an additional support

was added in on the inside of the robot for the other side of the axle. The motors would be

mounted on a horizontal support member connected to the two vertical pieces. This would

eliminate the stress on the motor bracket and motor as well as reduce the stress on the axle.

Bearings for the axle would be inserted inside the 80/20.

 In addition, a bumper system was added. This would alleviate the delicate nature off the

electronics, giving the robot additional survivability. In addition, the dimensions of the body of

the robot were reduced to 18” by 18” by 8”, in comparison to earlier dimensions of 24” by 24” by

12”. This, coupled with a 3” buffer on each side of, brings the ground footprint of the robot to 24”

by 24”. The batteries would be situated side-by-side in the rear of the robot, with the

accelerometer situated in the very center and the computers in the front.

 Even given the newly shrunk dimensions of the robot, it is still a little too big to easily fit

through doorways. In addition, the batteries, which are the heaviest part of the electronics, would

Figure 1 - 3rd design, looking at front left quarter. Note the two batteries in
the rear and the new structure of the bumpers.

22

cause the pressure on the rear wheels to be greater than the front wheels. This would cause

difficulties when the robot was attempting to drive sideways, as a difference in pressure could

lead to a difference in thrust between the two sets of wheels, causing the robot to twist

unexpectedly. While not necessarily a problem with a conventional drivetrain, existing work with

Mecanum wheels demonstrated better performance when weight was evenly distributed among

all four wheels.

 The final revised design we settled on for the Advanced Educational Robot consists of a

body with dimensions 18” by 18” by 6” constructed out of 80/20 and aluminum plating with

Mecanum wheels below and underneath the body supported by 80/20 on either side. The design

also includes bumpers set 3 inches in front and behind the body of the robot and 1.5 inches to

either side of the robot. The batteries are mounted below the body in the middle of each side.

 Figure 2 - Rendering of final design, exterior sensors not shown. Note batteries
 underneath the body.

23

 As previously described, the axles for the wheels are mounted to both the main vertical

corner pieces and to short vertical members on the inside, as shown in Figure 3 below.

 Similarly, the bumper system is the same as described previously, comprised of the

aluminum bumper itself, shock absorbing blocks, and touch sensors. Shown below in Figure 4 is

a corner of the robot, illustrating the differences between the front/rear bumpers and the side

bumpers.

Figure 3 - Annotated diagram of the drive system for each wheel.

Figure 4 - Front and side bumper layout.

24

 The final assembled robot is shown below in Figure 5. Note the Kinect sensor atop the

robot and the red emergency stop button at the rear.

Figure 5 – Completed Robot

25

Design Details

Motors

 In order to achieve the desired maximum velocity in the desired time (1.5 m/s in 3

seconds), the robot must accelerate at a rate of 0.5 m/s
2
. The predicted maximum payload of the

robot is 40 kg. Using the equation Force = mass*acceleration, we find that the motors must

provide a total of 0.5*40 = 20 N of force. As there will be 4 motors, each motor must produce 5

N of force. The wheels will have a radius of 3” (0.0768 m). Thus, the required torque =

force*distance = 5* 0.0768 = 0.3846 N*m. The Pololu 37D mm Metal Gearmotor with a gear

ratio of 67:1 has a listed stall torque of 200 oz-in. This is equal to 1.412 N*m. Thus, the stall

torque of the motor is 3.76 times the desired torque, ensuring that the chosen motor can achieve

the required acceleration.

Axles

 The axles would bear the weight of the entire robot during its normal operations and also

need to be strong enough to maintain structural integrity in the event the robot was dropped into

its wheels. To confirm that the chosen axles could support the weight of the robot, we reduced the

axle system to a beam supported on both sides with a point load in the center. This is a

simplification of the actual system, but it is useful for a conservative estimate. The robot will

weight around 100 lbs. which under normal circumstances will be spread evenly on each of the 4

axles, meaning that each one must support 25 lbs.

 Using the equation for the maximum moment in a simply supported beam with a load in

the center Mmax = P/2*L/2 where P is the load and L is the distance between the two supports. In

this instance, the distance between the two axle supports is 3 inches, meaning that Mmax =

25/2*3/2 = 18.75 lb*in. Using the equation for maximum stress caused by a applied moment σm=

M*c/I where M is the moment, c is the distance away from the neutral axis, and I is the moment

of inertia of the beam. In this case where the beam is a circular, I = 1/4*pi*r
4
 and c = r where r is

26

the radius of the beam cross-section (0.125”). Thus σm = 18.75/(.25*pi*.125
3
) = 12.2 ksi. The

steel used in the axle (1035) has a yield strength of 70 ksi, giving the axles a factor of safety of

5.7. This shows that the axles chosen have enough strength to endure any but the most sudden of

drops.

Bearings

 The bearings were chosen from McMaster-Carr with the requirement that the inner

diameter be the same as the axle diameter and that the outer diameter be small enough to fit in a

support bracket without reducing its structural integrity. In addition, it was made to be double

shielded to not require maintenance and lubrication. Each of these bearings has a Dynamic Radial

Load Capacity of 243 lbs., giving a single bearing a factor of safety of 2.4 for the entire robot, so

as a whole each bearing will have a FOS of 19.44. This ensures that the bearings will not fail

under the expected operating conditions.

Use of 80/20

 We chose 80/20 because of its availability, flexibility, and ease of use. 80/20 consists of

T-Slotted Extruded Aluminum beams which allow for the attachment of bolts at any point along

all four of their faces. This allows us to construct the frame of the robot with a minimum of

machining, allowing institutions without the same caliber of machine shop as Union to construct

it as well. In addition, the slotted nature of the 80/20 allows for the inclusion of additional

attachments after the design and construction process has been completed, increasing the

adaptability of the final product to suit the needs of our customers.

Plating Material

 We chose the material for the top and bottom places to be aluminum because the bottom

plate needed to be strong to support the batteries and the computer and the top plate needed to be

27

strong in order to accommodate the possible attachments our customers wanted. For instance, in

order to be used for human-robot interaction, a torso would need to be mounted on the robot that

would stretch to approaching human height. This would have to be steady, and a light, strong

metal was the best choice for the mounting plate.

 Though the side plates do not serve any structural purpose, we decided to keep them as

aluminum for the sake of simplicity. It reduces the number and variety of metals we would need

to deal with, and the additional strength aluminum siding would provide would help protect the

electronic components in case of a collision with an object that missed the bumper. In addition,

the use of aluminum only adds approximately 2 pounds to the final weight of the robot, which is a

minor increase in weight compared to the fully loaded weight of almost 100 pounds.

28

Control System

 An overall diagram of the control system of the robot is shown below in Figure 6. As one

can see, the control system uses the two microcontrollers to handle all communication with the

drive system and the vehicle’s sensors. Additionally, one of the two DC-DC converters is

connected to the control computer to provide information about the robot’s battery voltage.

Figure 6 – Control System

 This control architecture provides nearly complete abstraction of the hardware

implementation details of the robot; the microcontroller that handles motor control provides a

standard interface that masks the complexity of communication with the motor controllers or the

encoders, while the microcontroller that handles communication with the sensors does the

necessary A/D conversion and control of the analog and digital sensors connected to it.

29

 Maintaining this level of abstraction is important to the robot’s design because it lets

users dramatically change certain parts of the robot without having to replace the entire control

system. For example, future users who may design and build a suspension system may find that

they need an entirely different motor control system. Since that system is completely abstracted

away from the control PC and the software running on it, there will be no need for them to change

the existing driver software.

 We have included the full code for both microcontrollers in Appendix B.

30

ROS Driver

 To illustrate the power of the control system’s hardware abstraction, we have included

the entire code of the three main ROS nodes that make up the ROS driver in Appendix A. ROS is

a node-based system that uses TCP and UDP to handle communication between nodes from

different packages. ROS provides basic tools to build asynchronous and distributed software

without the complexity of directly manipulating threads and inter-process communication.

 The ROS driver for our robot is extremely simple yet powerful. It consists of three main

nodes, with one node handling motor control, one node handling sensor data, and one node

handling the voltage monitoring. This structure is shown below in the diagram produced by the

built-in ROS tool rxgraph, Figure 7.

Figure 7 – ROS Driver Nodes

 The code for each of these nodes can be found in Appendix A. In the interest of space, we

have not included in Appendix A the Python classes that directly handle communication with the

31

microcontrollers or the Python class that provides the Mecanum wheel drive algorithm. These

classes continue the system of abstraction used with the microcontrollers by providing a simple

consistent object interface to the ROS nodes. Thus, if a future user wished to completely redesign

the underlying control implementation, they could reuse the existing ROS driver nodes provided

they maintained the current object interfaces.

 In addition to the core nodes of the ROS driver, we have also provided a Teleoperation

node designed to control the robot using a USB game controller (currently tuned to an Xbox 360

controller, but the button and axis mappings can be easily changed), a Kinect navigation node that

provides basic hallway-following navigation, and number of visualization tools that let users see

the outputs of the robot’s sensors and the commands being sent to the robot’s motors.

Additionally, we have provided a number of shell scripts to quickly run a variety of driver

configurations.

32

Performance

 The robot largely meets or exceeds the design requirements set forth. (See the Design

Requirements section for more details) In terms of vehicle performance and maneuverability, it

exceeds the 1.5 m/s forwards velocity goal and provides all the expected maneuverability of a

vehicle with holonomic drive. However, the drive system is very sensitive to irregularities in

flooring and changes in floor material. These changes and irregularity almost always result in

wheel slippage, which causes severe performance problems. Most importantly, wheel slippage

results in unexpected rotation or sideways drift that is difficult to correct for.

 We have found that the onboard sensors are not accurate enough to provide data for an

effective closed-loop control system that would mitigate these problems; in particular, while we

can detect wheel slippage fairly easily using the encoders, we cannot correct for this wheel

slippage. This is largely because there is no clear answer as to the proper correction for wheel

slippage; increasing speed is likely to increase wheel slippage without increasing traction, while

decreasing speed is likely to increase the deviation from the expected direction of movement.

33

Production Schedule

 The construction of the robot consisted of four main phases: hardware design, hardware

construction, software design, and software implementation.

 Hardware design of the entire vehicle was largely completed during the fall term so that

all parts could be fabricated by the early part of winter term. This phase should have been

completed earlier in the term so that all parts could be completely fabricated and the robot

assembled before the beginning of winter term. This would have provided more time for software

and hardware testing. Hardware construction was largely completed in the first half of winter

term, with some minor parts, like the bumpers and top plate, being assembled near the end of

winter term. As mentioned already, this should have been completed in the fall term to provide

more time for testing.

 Software design proceeded concurrently with the hardware assembly in the first half of

winter term, followed by the implementation of the ROS driver, which was complete shortly after

the sixth week of the term. These phases of the project were significantly faster than expected,

which suggests that they could have been accomplished earlier in the project. This would have

been possible due to the system of abstraction in the control system that lets major parts be

designed and implemented before the completion of other parts.

 Due to the longer-than-expected hardware construction phase of the robot, less time was

available for testing than we had expected. In light of the previous suggested changes to the

schedule, completing them major phases of construction earlier would have provided the

necessary time to complete more rigorous testing than we were able to complete in the final

weeks of winter term. This increased testing would have allowed us to better characterize the

problem of wheel slippage and evaluate methods of mitigating it.

34

Cost Analysis

Our project has been completed under budget and significantly under the cost of

competing commercial equivalents. Our design requires no special tools to assemble, and requires

relatively little complex component fabrication, which helps reduce the effective cost to an end

user. Similarly, the actual assembly stage of the fabricated parts is fairly short, with assembly

being easily completed in a day. This too contributes to a low effective cost for end users. In fact,

our design can be easily fabricated with the resources available to any standard undergraduate or

graduate machine shop, and can be assembled by users with no particular experience in building

robots.

Equivalent commercially available robotics platforms, like Mobile Robot’s Pioneer 3

series, cost well over $1000 US more than our robot in the most basic configuration, and well

over $3000 US more when equipped with comparable computers and sensors. This increase in

cost does not come hand in hand with better performance; our robot offers better maneuverability,

greater size, and significantly enhanced expansion options. In addition, our ROS driver and

software support is significantly easier to use than either of the existing ROS drivers for the

Pioneer 3 series.

Future users or those who want to build their own version of our robot can reduce the

cost of construction by fabricating more of the materials for the robot themselves instead of

purchasing commercially available equivalents. In particular, the angle brackets used to connect

the 80/20 frame could easily be replaced with brackets made from angle stock aluminum.

Similarly, users with particular computing needs can build their own computers instead of

purchasing complete systems (any small Mini-ITX form-factor computer should fit the chassis) to

reduce cost and improve performance.

For those users constrained by fabrication and labor costs, the most complex parts of

fabrication, namely the bent bottom plate and the bent motor brackets, can be replaced with

simpler multi-part designs with only a slight increase in weight. Likewise, users with limited

35

access to water-jet cutters or similar equipment can replace many of the large aluminum plates of

our design with equivalent components fabricated from acrylic or polycarbonate plastic. Acrylic

plastic, in particular, can be cut using commonly available laser-cutters. As few of these plates are

structural, they can be replaced with lighter and cheaper material without reducing performance.

As already noted, the actual assembly of the robot requires no specialized tools, and so users

could have all parts fabricated externally and then assemble their robot onsite with a minimum of

equipment.

A complete budget for the robot can be found in Appendix C, note that while we initially

purchased a Pandaboard ARM Single-Board-Computer, we chose not to use it in our control

system so this cost is not represented in the complete budget for the robot.

36

Conclusions

We have successfully designed and built an open-source robotics platform for education

and research use that provides greater functionality at a lower cost than competing commercial

alternatives. Our platform provides greater maneuverability, expansion capability, and onboard

processing power than commercial systems, yet can be easily fabricated using the resources

available to any undergraduate or graduate institution’s machine shop. In particular, we have used

off-the-shelf components wherever possible to minimize the need for component fabrication and

ease assembly. As already noted, the cost of our robot could be reduced by fabricating more of

the parts specifically, which future users may find to be more cost-effective.

Our robot largely meets or exceeds the design requirements:

 The robot must be capable of autonomous indoor navigation and movement, and must be

able to easily pass through doorways. Met – Our robot, through its robust ROS driver and

high maneuverability, can be easily controlled both directly and autonomously to

navigate in indoor environments including a wide variety of floor conditions, doorways,

and hallways.

 The robot must be able to use modern high-performance sensors like the Microsoft

Kinect in concert with computationally intensive navigation and localization software.

Met – Our robot provides plentiful processing power, dedicated ports for a Kinect sensor,

and runs the necessary software drivers for navigation using these high-performance

sensors.

 The robot must have an equivalent level of maneuverability as an adult human (2 degrees

of linear freedom, 1 degree of angular freedom, speed of 1.5 m/s) without incurring

undue mechanical complexity. Exceeded – Our robot provides >1.5 m/s linear

maneuverability in all directions on ideal flooring and >1.5 m/s forwards and backwards

37

on less-than-ideal flooring environments with reduced traction. Our robot is easily

capable of matching the maneuverability of an adult human in an indoor environment.

 The robot must be capable of carrying a meaningful payload (~10 kg) and supporting it

with the necessary power, data connections, and processing power. Met – Our robot

provides all necessary power and data connections (USB, Kinect, 12V DC) to user

payloads and additionally provides the necessary emergency stop control to these

payloads.

 The robot must be extremely robust; it must be able to survive collisions, protect its

electronic equipment from damage, and maintain performance during extended

unsupervised operation. Exceeded – By virtue of its aluminum frame and body, our robot

is extremely resistant to damage from impacts. This has been verified in testing through

repeated test collisions with the testing enclosure. Through several levels of shock

isolating foam and mountings, our robot protect the onboard electronics from damage due

to impacts or drops.

 The robot must provide an accessible software platform that is both accessible and

powerful, posing limited obstacles to use by novice student users without limiting the

capabilities available to more advanced users. Exceeded – The software for our robot

provides simple yet powerful tools to novice and experienced users, both through ROS

using the provided ROS driver, and through their own code using the provided Python

classes (which are used by the ROS driver).

 The robot’s software platform must abstract away any and all complexities of low-level

hardware control in favor of simple yet powerful high-level control interfaces. Exceeded

– The control system and software for our robot maintains simple and consistent levels of

abstraction that completely separate the complexities of hardware and software

implementation at every level, allowing easy modification and replacement of every stage

38

of the control system. Through the use of standard ROS ‘best practices’ we have made

using our robot at a high level easier than that of existing commercial robots.

 The robot must be as inexpensive and flexible as possible, using off-the-shelf

components whenever possible to limit costs and ease fabrication. In addition, it must be

easy to modify without the need of special tools. Exceeded – Our robot has been

complete under budget and is significantly more cost-effective than commercial

platforms. Our robot is easy to assemble and requires no tools for regular maintenance

other that standard screwdrivers.

39

Future Work

In light of problems we encountered with wheel slippage and traction, future users are

strongly recommended to evaluate the possibility of designing and implementing a suspension

system. Adding a suspension system to the robot will ensure that all wheels maintain constant

contact with the ground, which should dramatically reduce the occurrence of wheel slippage. As

wheel slip is currently the primary cause for performance problems, reducing wheel slippage will

allow for significant improvements to vehicle performance. Reducing wheel slip will also

improve vehicle performance on different flooring surfaces and conditions, something that has

been a problem in some of our tests. Future users are advised to consider the driving surfaces and

traction available to their robot before using our design, since mecanum wheels are not

necessarily appropriate for all conditions and environments. For users who are interested in

operating our robot in an outdoor environment, we strongly suggest replacing the mecanum

wheels with standard pneumatic tires and using the alternative drive control algorithms we have

provided specifically for this purpose.

In addition to drive train improvements, future work on our robot can include the

development of an accurate indoor navigation system. The accelerometer and gyroscope we used

on the robot are not accurate enough or resistant enough to vehicle vibration to provide for an

accurate navigation system. However, development of an indoor navigation system using the

Kinect sensor and other methods of tracking external references is certainly possible and would

improve vehicle usability. In particular, a system capable of accurate navigation in constrained

hallway spaces and classrooms would be ideal, as such performance would allow for extended

autonomous operation in human environments without continuous human supervision. Achieving

this level of performance would allow the robot to be used for extended human-machine-

interaction studies while critically providing for the safety of both the robot and human

participants.

40

User’s Manual

The user’s manual is included in the ROS Package, both as a PDF “Manual.pdf” and as a raw

text file “README.txt”

41

Appendix A – ROS Driver Code (Selected Components)

AER_Driver.py

#!/usr/bin/python

from PlatformComponents import *
from DriveControllers import *
from TestComponents import *

import roslib; roslib.load_manifest('AER')
import rospy

from AER.msg import Motor
from geometry_msgs.msg import Twist
from std_msgs.msg import String

class AERdriver:
 def __init__(self, real):
 rospy.init_node('AER_Driver')
 if real:
 port = rospy.get_param('AER_Driver/control_port')
 self.robot = AERplatform(port, 115200, 'platform')
 else:
 self.robot = EMUplatform("/dev/emulator", 230400, 'emulator')

 self.controller = MecanumDrive()

 rospy.Subscriber("cmd_vel", Twist, self.callback)
 self.state_pub = rospy.Publisher("aer_motors", Motor)
 rate = rospy.Rate(rospy.get_param('~hz', 60))

 while not rospy.is_shutdown():
 rate.sleep()
 latest_state = self.robot.GetState()
 motor_message = Motor()
 motor_message.front.M0 = latest_state.LF
 motor_message.front.M1 = latest_state.RF
 motor_message.rear.M0 = latest_state.LR
 motor_message.rear.M1 = latest_state.RR
 self.state_pub.publish(motor_message)

 def callback(self, data):
 """Send Twist commands to the robot"""
 X = data.linear.x
 Y = data.linear.y
 Z = data.angular.z
 #print "X : " + str(X) + " Y : " + str(Y) + " Z : " + str(Z)
 commands = self.controller.Compute(X, Y, Z)
 self.robot.Go(commands[0], commands[1], commands[2], commands[3])

if __name__ == "__main__":
 AERdriver(True)

Power_Monitor.py

#!/usr/bin/python

from DCDC_USB_Monitor import *

import roslib; roslib.load_manifest('AER')
import rospy

from AER.msg import Power

42

class PowerMonitor():

 def __init__(self):
 rospy.init_node('AER_Power_Monitor')
 self.dcdc = DCDC_USB()
 self.power_pub = rospy.Publisher("aer_power", Power)
 rate = rospy.Rate(rospy.get_param('~hz', 1))

 while not rospy.is_shutdown():
 rate.sleep()
 power_message = Power()
 power_dict = self.dcdc.GetVoltages()
 power_message.input = power_dict["input"]
 power_message.ignition = power_dict["ignition"]
 power_message.output = power_dict["output"]
 self.power_pub.publish(power_message)

if __name__ == "__main__":
 PowerMonitor()

Sensor_Monitor.py

#!/usr/bin/python

from PlatformComponents import *

import roslib; roslib.load_manifest('AER')
import rospy

from AER.msg import Sensor
from AER.msg import Bumper

class SensorMonitor():

 def __init__(self):
 rospy.init_node('Sensor_Monitor')
 port = rospy.get_param('Sensor_Monitor/sensor_port')
 self.micro = AERsensor(port, 115200, "Sensor platform")
 self.bumper_pub = rospy.Publisher("aer_bumpers", Bumper)
 self.sensor_pub = rospy.Publisher("aer_sensors", Sensor)
 rate = rospy.Rate(rospy.get_param('~hz', 60))

 while not rospy.is_shutdown():
 rate.sleep()
 sensor_message = Sensor()
 bumper_message = Bumper()
 sensor_state = self.micro.GetState()
 bumper_message.bumper1 = sensor_state[1].RFF
 bumper_message.bumper2 = sensor_state[1].RFS
 bumper_message.bumper3 = sensor_state[1].RRS
 bumper_message.bumper4 = sensor_state[1].RRB
 bumper_message.bumper5 = sensor_state[1].LRB
 bumper_message.bumper6 = sensor_state[1].LRS
 bumper_message.bumper7 = sensor_state[1].LFS
 bumper_message.bumper8 = sensor_state[1].LFF
 sensor_message.accelerometer.x = sensor_state[0].X_A
 sensor_message.accelerometer.y = sensor_state[0].Y_A
 sensor_message.accelerometer.z = sensor_state[0].Z_A
 sensor_message.gyroscope.z = sensor_state[0].Z_R
 self.bumper_pub.publish(bumper_message)
 self.sensor_pub.publish(sensor_message)

if __name__ == "__main__":
 SensorMonitor()

43

Appendix B – Microcontroller Code

Motor Control Microcontroller (ARM Cortex-M3)

#include "mbed.h"
#include "QEI.h"

Serial pc(USBTX, USBRX);
Serial qik1(p9, p10);
Serial qik2(p13, p14);

DigitalOut led1(LED1);
DigitalOut led2(LED2);
DigitalOut led3(LED3);
DigitalOut led4(LED4);

float LF_speed = 0.0;
float RF_speed = 0.0;
float LR_speed = 0.0;
float RR_speed = 0.0;

char commands[8];

Timeout autostop;
Ticker execute;
// Wheel encoders
QEI LF(p29, p30, NC, 1, QEI::X4_ENCODING);
QEI RF(p27, p28, NC, 1, QEI::X4_ENCODING);
QEI LR(p25, p26, NC, 1, QEI::X4_ENCODING);
QEI RR(p23, p24, NC, 1, QEI::X4_ENCODING);
// Ticker to repeatedly call the speed calculation function
Ticker SpeedTicker;
// Constants
float max_rpm = 150.0;
int cpr = 4288;
float threshold = 0.01; //threshold below which speed differences won't be corrected
float K = 0.5; //control variable for automatic speed control
// state variables
float LF_percent = 0.0;
float RF_percent = 0.0;
float LR_percent = 0.0;
float RR_percent = 0.0;
int lf_pulses = 0;
int rf_pulses = 0;
int lr_pulses = 0;
int rr_pulses = 0;
float correctedSpeeds[4]; //Storage for corrected speed commands
char MODE = 'M';
char CurrentError1 = 'N';
char CurrentError2 = 'N';
// Functions for checking speed:
void CalcSpeed();
float PulsesToPercent(int pulseCount);
void AutoStop();
void Brake();
void CommandLoop();
void Correct();
float AutoCorrect(float intended, float real);
void FloatsToBytes(float lf, float rf, float lr, float rr);
char GetErrorCode(Serial qik);

int main()
{
 pc.baud(115200);
 SpeedTicker.attach(&CalcSpeed, 0.01); //Call the speed calculation code 100 times a second
[should be fast enough?]
 execute.attach(&CommandLoop, 0.1);

44

 qik1.baud(38400);
 qik2.baud(38400);
 while(1)
 {
 char command = pc.getc();
 if (command == 'G')
 {
 pc.printf("%f|%f|%f|%f|%c|%c\n", LF_percent, RF_percent, LR_percent, RR_percent,
CurrentError1, CurrentError2);
 }
 else if (command == 'C')
 {
 //Get command values
 float temp_lf = 0.0;
 float temp_rf = 0.0;
 float temp_lr = 0.0;
 float temp_rr = 0.0;
 pc.scanf("%f|%f|%f|%f\n", &temp_lf, &temp_rf, &temp_lr, &temp_rr);
 LF_speed = temp_lf;
 RF_speed = temp_rf;
 LR_speed = temp_lr;
 RR_speed = temp_rr;
 led4 = 1;
 autostop.attach(&AutoStop, 1.0);
 }
 else if (command == 'B')
 {
 Brake();
 }
 else if (command == 'S')
 {
 AutoStop();
 }
 else if (command == 'R')
 {
 pc.printf("Ready!\n");
 AutoStop();
 }
 else if (command == 'A')
 {
 MODE = 'A';
 }
 else if (command == 'M')
 {
 MODE = 'M';
 }
 if (command == 'I')
 {
 pc.printf("M3\n");
 }
 }
}

void CalcSpeed()
{
 lf_pulses = LF.getPulses();
 LF.reset();
 rf_pulses = RF.getPulses();
 RF.reset();
 lr_pulses = LR.getPulses();
 LR.reset();
 rr_pulses = RR.getPulses();
 RR.reset();
 float temp_lf = PulsesToPercent(lf_pulses);
 float temp_rf = PulsesToPercent(rf_pulses);
 float temp_lr = PulsesToPercent(lr_pulses);
 float temp_rr = PulsesToPercent(rr_pulses);
 LF_percent = temp_lf;
 RF_percent = temp_rf;

45

 LR_percent = temp_lr;
 RR_percent = temp_rr;
}

float PulsesToPercent(int pulseCount)
{
 float pulses_per_min = (((float) pulseCount) / .01) * 60.0;
 float rpm = pulses_per_min / cpr;
 float percent = (rpm / max_rpm);
 return percent;
}

void AutoStop()
{
 //pc.printf("Autostopping NOW!\n");
 correctedSpeeds[0] = 0.0;
 correctedSpeeds[1] = 0.0;
 correctedSpeeds[2] = 0.0;
 correctedSpeeds[3] = 0.0;
 LF_speed = 0.0;
 RF_speed = 0.0;
 LR_speed = 0.0;
 RR_speed = 0.0;
 led4 = 0;
}

void FloatsToBytes(float lf, float rf, float lr, float rr)
{
 if (lf >= 0.0)
 {
 commands[0] = 0x88;
 }
 else
 {
 commands[0] = 0x8a;
 }
 commands[1] = (char) (abs(127 * lf));
 if (rf >= 0.0)
 {
 commands[2] = 0x8c;
 }
 else
 {
 commands[2] = 0x8e;
 }
 commands[3] = (char) (abs(127 * rf));
 if (lr >= 0.0)
 {
 commands[4] = 0x88;
 }
 else
 {
 commands[4] = 0x8a;
 }
 commands[5] = (char) (abs(127 * lr));
 if (rr >= 0.0)
 {
 commands[6] = 0x8c;
 }
 else
 {
 commands[6] = 0x8e;
 }
 commands[7] = (char) (abs(127 * rr));
}

void Brake()
{
 qik1.putc(0x86);

46

 qik1.putc(0x7f);
 qik1.putc(0x87);
 qik1.putc(0x7f);
 qik2.putc(0x86);
 qik2.putc(0x7f);
 qik2.putc(0x87);
 qik2.putc(0x7f);
}

void Correct()
{
 // This is where actual speed control of the wheels is managed!
 led2 = 0;
 led3 = 0;
 if (MODE == 'M')
 {
 //manual mode with no automatic corrections
 correctedSpeeds[0] = LF_speed;
 correctedSpeeds[1] = RF_speed;
 correctedSpeeds[2] = LR_speed;
 correctedSpeeds[3] = RR_speed;
 }
 else if (MODE == 'A')
 {
 //automatic mode with corrections
 correctedSpeeds[0] = AutoCorrect(LF_speed, LF_percent);
 correctedSpeeds[1] = AutoCorrect(RF_speed, RF_percent);
 correctedSpeeds[2] = AutoCorrect(LR_speed, LR_percent);
 correctedSpeeds[3] = AutoCorrect(RR_speed, RR_percent);
 }
}

float AutoCorrect(float intended, float real)
{
 //Compute a corrected command value based on the intended speed of a wheel and the real speed
of the wheel
 if (intended == 0.0)
 {
 return 0.0;
 }
 else if (abs(intended - real) < threshold)
 {
 //if we're close enough, we don't want to continuously correct and stress the motors/motor
controllers/power system
 return intended;
 }
 else if (intended > real)
 {
 //otherwise, we need to correct up
 float error = abs(intended - real);
 float corrected = intended + (error * K);
 if (corrected > 1.0)
 {
 //if we're trying to drive out of bounds, flash the LEDs and drive to maximum
 corrected = 1.0;
 led2 = 1;
 led3 = 1;
 }
 return corrected;
 }
 else if (intended < real)
 {
 //otherwise, we need to correct down
 float error = abs(intended - real);
 float corrected = intended + (error * K);
 if (corrected < -1.0)
 {
 //if we're trying to drive out of bounds, flash the LEDs and drive to maximum
 corrected = -1.0;

47

 led2 = 1;
 led3 = 1;
 }
 return corrected;
 }
 return intended;
}

char GetErrorCode(Serial qik)
{
 //Gets the error code from the provided motor controller
 qik.putc(0x82);
 char error = qik.getc();
 char error_code = 'N';
 if (error & 0x01 > 0)
 {
 error_code = 'M';
 }
 if (error & 0x02 > 0)
 {
 error_code = 'M';
 }
 if (error & 0x04 > 0)
 {
 error_code = 'O';
 }
 if (error & 0x08 > 0)
 {
 error_code = 'O';
 }
 if (error & 0x10 > 0)
 {
 error_code = 'S';
 }
 if (error & 0x20 > 0)
 {
 error_code = 'C';
 }
 if (error & 0x40 > 0)
 {
 error_code = 'F';
 }
 if (error & 0x80 > 0)
 {
 error_code = 'T';
 }
 return error_code;
}

void CommandLoop()
{
 led1 = !led1;
 Correct();
 FloatsToBytes(correctedSpeeds[0], correctedSpeeds[1], correctedSpeeds[2], correctedSpeeds[3]);
 //CurrentError1 = GetErrorCode(qik1);
 //CurrentError2 = GetErrorCode(qik2);
 qik1.putc(commands[0]);
 qik1.putc(commands[1]);
 qik1.putc(commands[2]);
 qik1.putc(commands[3]);
 qik2.putc(commands[4]);
 qik2.putc(commands[5]);
 qik2.putc(commands[6]);
 qik2.putc(commands[7]);
}

48

Sensor Control Microcontroller (ARM Cortex-M0)

#include "mbed.h"

//LEDs for visual debugging
DigitalOut led1(LED1);
DigitalOut led2(LED2);
DigitalOut led3(LED3);
DigitalOut led4(LED4);
//Serial Port for connection to host PC
Serial pc(USBTX, USBRX);
//analog 3-axis Accelerometer Pins
DigitalOut accel_self_test(p21);
AnalogIn accel_X(p18);
AnalogIn accel_Y(p19);
AnalogIn accel_Z(p20);
//analog 1-axis Gyroscope pins
DigitalOut gyro_high_pass_filter_reset(p23);
DigitalOut gyro_power_down(p24);
DigitalOut gyro_self_test(p22);
AnalogIn gyro_Z(p17);
//Bumper sensor pins
DigitalIn LFF(p5);
DigitalIn LFS(p6);
DigitalIn LRS(p7);
DigitalIn LRB(p8);
DigitalIn RFF(p9);
DigitalIn RFS(p10);
DigitalIn RRS(p11);
DigitalIn RRB(p12);
//Value storage
char bumpers[8];
//Functions
float sample_X_accel();
float sample_Y_accel();
float sample_Z_accel();
float sample_Z_gyro();
void GetBumpers();
void Publish();

int main()
{
 LFF.mode(PullDown);
 LFS.mode(PullDown);
 LRS.mode(PullDown);
 LRB.mode(PullDown);
 RFF.mode(PullDown);
 RFS.mode(PullDown);
 RRS.mode(PullDown);
 RRB.mode(PullDown);
 pc.baud(115200);
 while(1)
 {
 char command = pc.getc();
 if (command == 'G')
 {
 Publish();
 }
 if (command == 'I')
 {
 pc.printf("M0\n");
 }
 }
}

void Publish()
{
 float temp_X_A = sample_X_accel();

49

 float temp_Y_A = sample_Y_accel();
 float temp_Z_A = sample_Z_accel();
 float temp_Z_R = sample_Z_gyro();
 GetBumpers();
 pc.printf("%f|%f|%f|%f$%c|%c|%c|%c|%c|%c|%c|%c\n", temp_X_A, temp_Y_A, temp_Z_A, temp_Z_R,
bumpers[0], bumpers[1], bumpers[2], bumpers[3], bumpers[4], bumpers[5], bumpers[6], bumpers[7]);
}

void GetBumpers()
{
 bumpers[0] = LFF.read();
 bumpers[1] = LFS.read();
 bumpers[2] = LRS.read();
 bumpers[3] = LRB.read();
 bumpers[4] = RFF.read();
 bumpers[5] = RFS.read();
 bumpers[6] = RRS.read();
 bumpers[7] = RRB.read();
}

float sample_X_accel()
{
 return accel_X.read();
}

float sample_Y_accel()
{
 return accel_Y.read();
}

float sample_Z_accel()
{
 return accel_Z.read();
}

float sample_Z_gyro()
{
 return gyro_Z.read();
}

50

Appendix C – Final Design Budget

Item Source Cost
Onboard Computer
(High-level control & data processing)

Model currently unknown,

dependent on CS funding
$700

Kinect Sensor
(Primary imaging & depth sensor)

Newegg
Item # N82E16874103199

$150

4x Mecanum Wheels (allow for

movement in all directions)
AndyMark
Part # AM-0137

$260

Mbed microcontroller (Cortex-M3)
(control microcontroller)

Sparkfun
SKU # DEV-09564

$60

Mbed microcontroller (Cortex-M0)
(sensor microcontroller)

Sparkfun
SKU # DEV-11045

$45

1 Axis Gyroscope
(Inertial measurement & wheel-slip

detection)

Sparkfun
SKU # SEN-10100

$20

3 Axis Accelerometer
(Inertial measurement & wheel-slip

detection)

Sparkfun
SKU # SEN-09269

$25

Bumper Sensors (4) Vex Robotics
P/N: 276-2159

Total $52:
$13 (4)

2x Pololu Dual 10A 12V Motor

Controllers
Pololu
Part # 1112

$150

4x Pololu 12V Motors with encoders Pololu
Part # 1446

$160

80/20 Extruded Aluminum
1” x 1” x 72” Lightweight (5)

Drillspot
Model # 1010

$250

80/20 Mounting Hardware
Corner Bracket (28)
Fasteners 15-pack (8)

Drillspot
Model # 40CB4801
Model # 3320-15

Total $160:
$50
$110

Aluminum Sheet
1/8”Thick 24” x 48” Plate (2)

Drillspot
Model # 3DRZ9

$271

2x 18Ah 12V Batteries
Sealed Lead-Acid Battery

Interstate Batteries
Item # BSL1116

$190

Battery Charger & Power Converter
Intelligent DC-DC Converter (2)
PicoUPS-120-ATV Charger (2)

Mini-Box
Item # DCDC-USB
Item # picoUPS-120

Total $190:
$60 ($120)
$35 ($70)

Power Cables & Power Supply
P4-P4 12V Power Cable (6)

Mini-Box
Item # P4-12V

Total $12:
$12

15V Power Supply (320W) TRC Electronics
Part # SP-320-15

$61.32

Miscellaneous Connectors & Cables Various $60

Helical Beam Shaft Couplings (4) McMaster-Carr
 Item # 9861T529

$120

Double Shielded Ball Bearing (8) McMaster-Carr
Item # 57155K376

$40

Aluminum (Alloy 6061) 3/16" by 2" by

3'
McMaster-Carr
Item # 8975K533

$13

51

Total $2990

52

Resources

1. Cousins, S.; Gerkey, B.; Conley, K.; Garage, W.; , "Sharing Software with ROS [ROS

Topics]," Robotics & Automation Magazine, IEEE , vol.17, no.2, pp.12-14, June 2010

 doi: 10.1109/MRA.2010.936956

 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5480439&isnumber=5480272

2. Kyung-Lyong Han; Oh-Kyu Choi; Jinwook Kim; Hyosin Kim; Lee, J.S.; , "Design and

control of mobile robot with Mecanum wheel," ICCAS-SICE, 2009 , vol., no., pp.2932-

2937, 18-21 Aug. 2009

 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5333831&isnumber=5332438

3. Jianqiang Jia; Weidong Chen; Yugeng Xi; , "Design and implementation of an open

autonomous mobile robot system," Robotics and Automation, 2004. Proceedings. ICRA

'04. 2004 IEEE International Conference on , vol.2, no., pp. 1726- 1731 Vol.2, April 26-

May 1, 2004

 doi: 10.1109/ROBOT.2004.1308073

 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1308073&isnumber=29025

4. El-Medany, W.M.; Abuaesh, A.M.; Abuaesh, N.M.; , "An efficient car like-mobile robot

design," EUROCON 2009, EUROCON '09. IEEE , vol., no., pp.996-1001, 18-23 May

2009

 doi: 10.1109/EURCON.2009.5167756

 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5167756&isnumber=5167592

5. do Nascimento, T.P.; da Costa, A.L.; Paim, C.C.; , "AxeBot Robot the Mechanical

Design for an Autonomous Omnidirectional Mobile Robot," Electronics, Robotics and

Automotive Mechanics Conference, 2009. CERMA '09. , vol., no., pp.187-192, 22-25

Sept. 2009

 doi: 10.1109/CERMA.2009.77

 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5341992&isnumber=5341933

6. Richard Weiss and Isaac Overcast. 2008. Finding your bot-mate: criteria for evaluating

robot kits for use in undergraduate computer science education. J. Comput. Small Coll.

24, 2 (December 2008), 43-49.

7. Jennifer S. Kay. 2010. Robots in the classroom ... and the dorm room. J. Comput. Small

Coll. 25, 3 (January 2010), 128-133.

8. Anne-Marie Eubanks, Robert G. Strader, and Deborah L. Dunn. 2011. A comparison of

compact robotics platforms for model teaching. J. Comput. Small Coll. 26, 4 (April

2011), 35-40.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5480439&isnumber=5480272
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5333831&isnumber=5332438
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1308073&isnumber=29025
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5167756&isnumber=5167592
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5341992&isnumber=5341933

53

9. Arnaud Ramey, Victor Gonzalez-Pacheco, and Miguel A. Salichs. 2011. Integration of a

low-cost RGB-D sensor in a social robot for gesture recognition. In Proceedings of the

6th international conference on Human-robot interaction (HRI '11). ACM, New York,

NY, USA, 229-230. DOI=10.1145/1957656.1957745

http://doi.acm.org/10.1145/1957656.1957745

10. Dave Touretzky - chiara-robot.org, www.chiara-robot.org, 2011.

http://doi.acm.org/10.1145/1957656.1957745
http://www.chiara-robot.org/

