
 

 

Modeling Biofuel Production in Southern Pine  

Forests: The Effects on Soil Properties 

 

 

 

 

 

By  

Brittany L. Oakes 

* * * * * * * * * * * * * * * * * * * 

 

Submitted in partial fulfillment  

for the requirements for  

Honors in the Department of Environmental Science, Policy, and Engineering 

 

 

UNION COLLEGE 

June, 2012 

 

 

 

 

 



2 
 

Introduction 

 It is no longer a debate that the anthropogenic combustion of fossil fuels is increasing 

atmospheric CO2, which was recorded at 393 ppm (parts per million) for the month of January in 

2012 (Tans and Keeling, 2012). According to many climate professionals, scientists, and 

developing national governments, CO2 in our atmosphere needs to be below 350 ppm in order to 

impede devastating impacts from climate change (IPCC, 2007; Hansen et al., 2008; Rockström et 

al., 2009). For over a decade, the United States has funded research and development in 

alternative, renewable energy sources that are low in carbon emissions to ultimately reduce our 

nation’s carbon footprint.  

 From consuming energy alone in 2009, the United States ranked second as a carbon 

emitter at 5,425 million metric tons annually; China was the leader at 7,706 million metric tons 

and India placed third at 1,591 million metric tons (EIA, 2010). Yet in 2009, the U.S. consumed 

more electricity than both China and India and was the leading importer of electricity (EIA, 

2010). Incorporating more domestic sources of renewable energy can simultaneously alleviate 

two issues: mitigating climate change catastrophes and significantly reduce our dependence on 

foreign markets for electricity and other forms of energy. Additionally, evidence of dwindling 

international oil reserves (i.e., the main energy source used to generate electricity) further 

support that we need to act urgently and decisively to develop alternatives that are sustainable, 

clean and affordable renewable energy sources to enhance our future energy security (Owen et 

al., 2010; EIA, 2011).   

 Pressures to develop alternative energy sources with low carbon emissions have steered 

significant attention to increasing cellulosic biofuel production from current domestic resources. 

Contemporary projections estimate that by 2035 electricity generated by renewables will account 
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for 26% of the total U.S. generation (EIA, 2011). More specifically, domestic energy obtained 

from liquid biofuels is expected to increase from 5% in 2009 to 15% in 2035, with particular 

attention paid to the growth of cellulosic biofuels (EIA, 2011). Considering that the 

transportation sector accounted for nearly a third (29%) of total U.S. energy consumption in 

2009, liquid cellulosic biofuel is the leading candidate as a renewable energy source in that it is 

currently the only available transportation liquid substitute (EIA, 2011). The future of biofuels 

may be promising in some sectors, however incorporating multiple sources of alternative and 

renewable energies will be necessary to replace petroleum completely.  

 Forest biomass doubles as an alternative, renewable source of energy and as a mechanism 

to sequester and store carbon in soil and vegetation pools. Biomass is characterized as ‘carbon-

neutral’ in the sense that the amount of CO2 released during combustion is equivalent to the 

amount removed from the atmosphere during photosynthesis (Johnsen et al., 2001a). There is 

currently 504 million acres of U.S. land identified as timberland that serves as the primary source 

of all current forest-derived bioenergy consumption; 72% of this national timberland is located 

along the eastern United States (Smith et al., 2009). In most areas, the infrastructure and 

technology to harvest wood already exists making forest biofuels more attractive than other 

developing renewable sources.  

 Extracting more energy from cellulosic biofuels will likely lead to land use changes and 

intensified harvesting techniques. Timber companies may now have more of an incentive to 

harvest more trees in a given area and to collect more logging residue that would normally be left 

on site. Additional energy could be harnessed without expanding the land area dedicated to 

timber management by increasing the frequency of conventional techniques, and by harvesting 

waste products, specifically logging residue. In 2006, 15 billion cubic feet of timber was 
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harvested for industrial products and fuel, but an additional 4.5 billion cubic feet of unused 

logging residue was left unused (Smith et al., 2009). 

 Logging residue is commonly defined as the unused portion of timber (i.e., branches, 

bark, needles) that is killed and left on the forest floor after harvesting. Curtis et al. (2003) 

estimated that up to 15% of each individual tree is left behind as logging residue following a 

timber harvest. There are several economic advantages and disadvantages in collecting this 

logging residue for increased bioenergy production. Transitioning to a primarily biobased 

economy will augment growth in the forest equipment manufacturing, construction and 

biotechnology industries by creating a market for nonmerchantable wood, while also 

ameliorating rural economies and creating local jobs. Additionally, current estimates suggest that 

harvesting logging residues could save timber companies up to $200-250 ha-1 in site preparation 

costs, such as managed thinning and fertilizer applications (Gan and Smith, 2007). On the other 

hand, harvesting, collecting, processing, and transporting residues presents timber companies 

with an additional cost and is not viewed as economically profitable or attractive, especially 

when producing or importing petroleum to generate electricity is significantly less expensive in 

comparison (SSEB, 2006). The disadvantages stemming from financial burdens could be 

reduced, or even eliminated, if future biomass facilities were established in areas with high forest 

biomass density, thus reducing transportation costs and fuel.  

 Concerns also exist among the scientific community regarding the sustainability of 

collecting logging residues, or harvesting the whole tree, and the overall impacts this 

management practice may have on site productivity and soil properties. Forest biodiversity is 

also another issue of concern (Rosenvald and Lõhmus, 2008). Several studies have evaluated 

effects on subsequent tree regeneration (Proe and Dutch, 1994; Dutch 1995), total ecosystem 
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nutrient capital (Barrett et al., 2009; Devine et al., 2012), N leaching and soil C storage (Nave et 

al., 2009;	
  Devine et al., 2012), and soil compaction, siltation, and erosion affects on local water 

quality and fish populations (Neal et al., 1992; Nisbet et al., 1997). When left on site, logging 

residue functions as a protective cover on the forest soil; the removal of this layer exposes the 

soil to the elements and may increase erosion. Some observations describe a short-term increase 

in soil C and N following harvest regimes that leave logging residue (i.e., conventional sawlog) 

to decompose on site (Harvey, 1982; Knoepp and Swank, 1997; Hart, 1999). However, other 

research has found that whole-tree harvesting removed three times as much	
  C and N from the 

soil than in conventional sawlog (Phillips and Van Lear, 1984; Johnson et al., 1982; Alban et al., 

1978), while concentrations of N, P, and K decreased in forest vegetation up to three or four 

times greater from whole-tree harvest techniques (Walmsley et al., 2008). In addition, tree 

regrowth data from various sites located throughout the U.S. revealed that stands subjected to 

conventional sawlog treatments were greater in biomass volume following harvest than in whole-

tree harvest experiments (Mann et al., 1988).  

 Loblolly pine plantations in the southeastern United States are a significant source of 

forest-based products, so it is not surpising that logging residue generated from these forests are 

a particularly attractive source of bioenergy (Scott and Dean, 2006; Fox et al., 2007). Although, 

an additional 16 to 22% of biomass can be obtained by implementing whole-tree harvest regimes 

in southern pine plantations, the adverse effects of removing residue are not completely 

understood and necessitate further analysis (Phillips and Van Lear, 1984). Phillips and Van Lear 

(1984) found that whole-tree harvests doubled the amount of C and N removed from the soil than 

in conventional harvests, while Pye and Vitousek (1985) found an increase in soil erosion. On 

the other hand, some studies have reported that there was no measureable effects on soil carbon 
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and nitrogen supply from intensifying harvest in pine stands (Carter et al., 2002; Westbrook et 

al., 2007; Eisenbies et al., 2009); however, nearly all of these conclusions were based on field 

experiments that analyzed short-term ecosystem data and observations. It is extremely important 

that we analyze and attempt to understand the long-term effects from whole-tree harvesting on 

loblolly pine ecosystems. Ultimately, it needs to be determined whether this intensified timber 

management practice is sustainable, or if it leads to the degradation of forest productivity over a 

longer period. Additionally, understanding the long-term effects is especially important if this 

potential source of bioenergy begins to be widely implemented in the southern U.S.  

 Field investigations analyzing the long-term effects of harvest intensity on loblolly pine 

stands take time and money and could be too slow to warn policy makers of any adverse effects. 

Rather, computer models can be used to simulate different harvest regimes over short and long 

periods, and analyze the effects of whole-tree harvest on components of the ecosystem (i.e., soil 

pool, forest floor, vegetation, etc.) (Johnsen et al., 2001b; Peng et al. 2002). Using an ecosystem 

model called DailyDAYCENT, I evaluated the C and N dynamics throughout the ecosystem in 

response to conventional sawlog and whole-tree harvest practices in Duke Forest, North 

Carolina. I hypothesized that C and N in the soil, forest floor, and vegetation components would 

decline, leading to a reduction in the amount of C and N in the entire forest systeml. I also 

theorized that differences between the two harvesting regimes would become more prevalent 

with more crop rotations and lengthened time, suggesting that this practice may lead to degraded 

forest productivity and is unsustainable.  

 

Methods and Materials 

Model Description 
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 DailyDAYCENT is a daily time step version of the biogeochemical model CENTURY 

developed by Parton et al. (1994). DailyDAYCENT simulates fluxes of carbon, nitrogen, 

phosphorus, and sulfur between the atmosphere, vegetation, and soil for a variety of ecosystem 

types (Del Grosso et al., 2001; Parton et al., 1998). C and N dynamics among the different pools 

are dependent on pool size, material lignin content, and temperature and abiotic water effects. 

Plant production is a function of nutrient and water availability, and temperature, whereas 

available nutrient stock is controlled by decomposing soil organic matter (SOM), substrate 

availability and quality (lignin content, C and N ratio), and temperature and water stress (Del 

Grosso et al., 2006). Fundamental sub-models include soil water and temperature dynamics 

specific to soil layer, plant productivity and allocation of net primary productivity (NPP), 

decomposition of plant litter and SOM, nutrient mineralization, and trace gas fluxes. The 

allocation of NPP to particular vegetative components depends on vegetation type, phenology, 

and water/nutrient stress. DailyDAYCENT is capable of simulating ecosystem disturbances and 

events such as fire, forest harvest, irrigation, cultivation, grazing, and organic matter or fertilizer 

additions.  

 

Site Description 

 The six divisions of Duke Forest span 7,060 acres (2,860 ha) in Durham, Orange, and 

Alamance Counties of North Carolina. Since 1931, this forest has been managed and maintained 

by Duke University, providing research, teaching, and recreational opportunities (Parashkevov, 

2008). Meticulous data recording began during the 1930s and 1940s and provide a long-term 

scientific record that exemplifies forest ecosystem changes. In this study, we focus on the 

Blackwood Division (Orange County) which has remained relatively undisturbed since 1983 
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when the whole division was clear-cut and burned, and planted with loblolly pine (Pinus taeda 

L.) (Parashkevov, 2008). This division is characterized by rolling terrain (<5% slopes) and low-

fertility Hapludalf soils in the Enon Series (clayey loam and fine-textured clay), typical of upland 

regions in the southeastern United States. This site experiences a moderate climate with 

precipitation usually well distributed throughout the year at approximately 44 in. The forest 

cover is composed of over 100 species of trees and is categorized by four major types: pine, 

pine-hardwood, upland hardwood, and bottomland hardwood. The most common tree 

characterizing the Blackwood Division is loblolly pine, followed by shortleaf and Virginia pine 

(Parashkevov, 2008).  

 

Simulating Harvest Management Strategies 

 We utilized DailyDAYCENT to simulate five timber management strategies in Duke 

Forest. Before management strategies were instituted, we ran the model using pre-existing 

schedule files (i.e., spin.sch, base.sch, and amb.sch) as extensions that simulate historical events 

from 1750 to 1983 in Duke Forest; in the year 1983, the forest was planted with loblolly pine 

(Duke FACE Site). This step was necessary to allow all variables to reach values (i.e., 

concentrations) that accurately reflect the forest ecosystem that existed in 1983. For this 

experiment, we modified input variables that determine the fraction of timber to be harvested 

(only altered for managed thinning) and quantity of logging residue removed from the site (Table 

1). In the trem.100 file – a key file defining particular treatments such as timber cuts and forest 

fires – we altered the input parameters remf(1-3) and retf(1-3). Remf(1-3) describes the fraction 

of live leaves, fine branches, and large wood harvested and removed from the forest system, 

whereas retf(1-3) delineates the fraction of C, N,  P, and S that is returned to the system in dead 
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leaves, fine branches, and large wood. These input parameters must range from 0 to 1 (0% to 

100%), so a higher value simulates an increased percentage of harvested timber for remf(1-3) 

and a larger fraction of logging residue left to decompose on site for retf(1-3) (Table 1).  

 

Treatment Descriptions 

 We simulated five distinctive treatments; undisturbed forest (the control), sawlog, whole 

tree harvest (WTH), sawlog with thinning, and WTH with thinning (Table 1). The uncut forest 

illustrates dynamics in C and N pools that would occur if managed timber harvesting never 

occurred and no biomass was removed from the site. Southeastern loblolly plantations 

commonly clearcut (cut 100% of the trees) when harvesting timber, and is why all four 

treatments are characterized by 100% harvests (Table 1). The WTH treatment differed from the 

sawlog simulation in that all dead leaves, fine branches, and large wood residues were harvested 

and removed from the site (Table 1). We defined this treatment to demonstrate more intense 

management strategies in southern loblolly pine plantations intended to increase forest biofuel 

production. 

 The other two harvesting management treatments simulated pre-treatment thinning half 

way through a full 35-year crop rotation, followed by either sawlog or WTH at the end of the 

rotation (Table 1). Several studies suggest that managed thinning reduces species competition 

and yields higher forest productivity in a shorter time period; the more managed thinning (up to 2 

or 3 thins, but no more), the faster the forest will grow (Cunningham et al., 2008). Thinning 

management values are specific to the sawlog and WTH treatment definitions (Table 1). 

 All five treatments simulated forest growth from 1983 to 2053 – a total of 70 years. 

Loblolly pine plantations often rotate the trees every 35 years, which is why we choose tree age 
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to be 35 at harvest and 17 for pre-treatment thinning (Nebeker et al., 1985; TMMC, 2003). Our 

143-year simulation encompasses three harvest events – in 2018, 2053, and 2087 plus thinning in 

appropriate treatments in 2000, 2036, and 2072. For both the 70- and 143-year simulations, all 

final harvest and pre-treatment thinning events were instituted on day 30 of the month of June.  

 

Evaluation of Model Outputs 

 For the purpose of this study, we evaluated changes in 13 output variables over time, 

including cproda, fsysc, fsyse(1), somtc, somte(1), strucc(1), struce(1,1), som1c(1), som2c(1), 

som1e(1,1), som2e(1,1), metabc(1), and metabe(1,1) (Table 2). The first variable, cproda, was 

targeted for evaluation considering it directly measures net primary productivity (NPP) of the 

entire loblolly pine ecosystem (Table 2). The other 12 output variables investigate changes in 

carbon and nitrogen concentrations, and were grouped to represent four fundamental components 

of the forest ecosystem: the total forest system, vegetation pool, soil pool, and forest floor. This 

method allowed us to focus on trends in each ecosystem component, and to observe changes in 

minerals that are essential for forest productivity. The vegetation pool represents living coarse 

and fine roots, fine branches, large wood, and leaves (Table 2). By combining the output values 

of strucc(1), som1c(1), som2c(1), and metabc(1), we were able to analyze total C on the forest 

floor (Table 2). Likewise, struce(1,1), som1e(1,1), som2e(1,1), and metabe(1,1), calculated total 

N on the forest floor.  

 We analyzed all variables during the month of June because this month represents a 

period of active growth, and so therefore is likely a time of maximum biomass and vegetation 

nutrient content during the year. 
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Results 

The Undisturbed Forest 

 For the undisturbed forest simulation, two general trends were evident in the graphical 

representations, and allowed the variables to be grouped by similar trends. As the undisturbed 

forest grew, the concentrations of C and N continuously increased and showed little to no sign of 

stabilizing in the vegetation and forest floor components (Fig. 1-4). Total forest floor C 

experienced a slight cyclic decrease every 15- 20 years and appeared to be reaching a state of 

stabilization near the end of the 143-year period (Fig. 3). Total C and N in the soil pool followed 

a very different pattern, in that they rapidly declined when the forest grew initially, and began to 

gradually increase around year 2030 (Fig. 5, 6). Additionally, we see that total N in the soil 

increased more rapidly than soil C when evaluated over a longer period (Fig. 5, 6).  

 Quantitatively speaking, most C within the ecosystem was allocated to the vegetation and 

soil pools; with time, C was increasingly allocated to forest vegetation and while it declined in 

the soil (Table 3). On the other hand, almost all the N was distributed to the soil, but decreased 

slightly as N increased in the vegetation and forest floor components (Table 3). The difference in 

NPP between the 70- and 143-year simulations was minute, and thus negligible (Table 4).  

 

WTH vs. Sawlog Management 

 Total C and N concentrations in the forest vegetation pool dropped sharply after each 

harvesting event (Fig. 1 & 2). The decline was higher in magnitude in the WTH treatments than 

the sawlog treatments (Table 5). This slight difference in magnitude was apparent in the soil and 

forest floor components also. We observed an initial spike in total soil C and N concentrations 

following sawlog treatments (Fig. 3-6). Following a harvest, both soil and forest floor C and N 
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declined compared to pre-harvest values, and evidently declined the farthest in response to the 

WTH treatment (Table 5; Fig. 3-6). In general, all forest system components experienced the 

greatest impacts from the WTH treatment.  

 The distribution of C and N in the various forest system components changed in response 

to sawlog and WTH treatments (Table 3). Half of the C in the total system was distributed to the 

soil pool after both harvesting strategies were implemented (Table 3). Likewise, nearly all of the 

N (>90%) was allocated to the soil pool (Table 3). Overall, observed differences in the allocation 

of C and N that correspond to the sawlog and WTH treatments were small.  

 

Pre-treatment Thinning vs. No Thinning 

 Seeing that managed thinning is a widely used technique in the southeastern U.S., we 

simulated sawlog and WTH strategies that incorporated pre-treatment thinning half way through 

a full 35-year crop rotation. All scheduled thinning events had less of an impact on forest system 

components compared to the full clearcut harvest, and when the full harvest was implemented 

pre-treatment thinning effects were minimal (Fig. 1-6). 

 

One Harvest vs. Three Consecutive Harvests 

 The general patterns observed in response to three consecutive harvesting events (i.e., the 

143-year simulation) initially mirrored the trends detected from one harvest event (i.e., the 70-

year simulation). Soil and vegetation C and N concentrations accrued over the three harvests for 

both the thinned and not thinned sawlog treatments (Fig. 1-4). This trend is also evident in total 

forest floor N, but is less apparent in forest floor C (Fig. 3, 4). On the other hand, we observed 

the opposite trend in all system components in response to the thinned and not thinned WTH 
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treatments. The concentrations that C and N in the soil, vegetation, and forest floor pools  

reached immediately before harvesting slightly decreased with time and was enhanced with each 

harvest that followed (Fig. 1-6). For both the sawlog and WTH treatments, the effects of varying 

harvesting intensity appeared to be additive when analyzed over a longer period with three 

consecutive harvests. 

 The differences in final concentrations of C and N between the sawlog and WTH 

treatments (with thinning) virtually doubled from those detected in the simulation with one 

harvest event (Table 5). However, the distribution of C and N in the various ecosystem pools was 

strikingly similar for both harvest management scenarios (Table 3). When compared to the 

distribution of C and N after a 143-year period of undisturbed forest growth, we see that the 

fraction of C allocated to the vegetation and soil is affected substantially (Table 3). The percent 

of C allocated to the vegetation declined by almost half, whereas the soil contained twice as 

much C than observed in the undisturbed forest (Table 3). This notion is supported by the 8% 

decline from the sawlog NPP to the WTH treatment’s NPP value (Table 4). Overall, we observed 

that both of the WTH treatments (i.e., with thinning and without thinning) had an additive affect 

on C and N concentrations in all forest components that caused levels to consistently decrease 

with each harvest. 

 

Discussion 

 The quantity and distribution of C and N in the simulated loblolly pine plantation  

changed in response to conventional sawlog and whole-tree harvest management. As expected, 

the removal of logging residue with WTH operations resulted in reduced C and N concentrations 

in the soil, forest floor, and vegetation components in comparison to sawlog strategies. The 
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largest impacts were observed in vegetation and forest floor pools, while changes in soil 

concentrations were small and essentially negligible. Laiho and others (2003) observed similar 

results in a different NC loblolly pine plantation: WTH led to slight but significant reductions in 

forest floor, and vegetation C levels. However, C and N losses in this study were minor in 

comparison to previous research where WTH either doubled or tripled the amount of nutrients 

removed from the system (Johnson et al., 1982; Phillips and Van Lear, 1984).  

 Following the institution of a harvest, vegetation C and N experienced an immediate 

decline across all harvest regimes, representing the effects of simulating clearcut harvesting 

when all trees are cut down. Although all above ground vegetative material was removed, the 

incorporation and rapid decomposition of remaining root systems signaled an initial spike in soil 

C and N concentrations right after harvests; this trend has been observed in previous research 

(Powers et al., 2005; Butnor et al., 2006). The magnitude of this spike was larger in sawlog 

simulations in comparison to WTH, and was evident in forest floor N signals as well. The larger 

magnitude spike from sawlog harvesting has often been attributed to the incorporation of logging 

residue nutrients into the soil component (Johnson and Curtis, 2001; Johnson et al., 2002). 

 The concentrations of C and N in the entire loblolly pine system were lower with the 

removal of logging residue in WTH practices than with the return of this residue in sawlog 

strategies. The removal of logging residue – a rich source of essential nutrients – prevented this 

source of C and N from re-entering the system that conventional techniques returned (Eisenbies 

et al, 2009). This missing flux of C and N from decomposing residue ultimately degraded and 

detracted slightly from forest productivity (NPP). Pye and Vitousek (1985) inferred that greater 

soil losses with whole-tree harvesting compared to conventional regimes on loblolly pine sites 

may result in degraded forest productivity over the long-term. 
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 The differences in C and N levels between the two simulated harvesting regimes became 

more prominent and actually doubled with a longer experimental period and more crop rotations 

(i.e., 70 vs. 143 yrs and 1 vs. 3 final cuts). In fact, the results suggest that leaving logging residue 

on site augments a slight accumulation of C and N in almost all ecosystem components: soil C 

and N are the exceptions. This is based on the observed increase in the concentrations preceding 

harvest from the first, to the second, and finally to the third harvest values. When the whole 

loblolly pine tree was harvested and the logging residue was no longer contributing to the 

ecosystem, C and N in the soil diminished with each harvest, revealing an overall additive effect 

on concentrations. Specifically analyzing soil nutrient processes in TX and LA pine stands, 

Carter and colleagues (2002) found no measurable difference after two rotations, although, their 

research contests that later rotations may show larger differences between WTH and sawlog 

treatments similar to the results presented in this study.  

 In particular components of the system, especially the vegetation and soil, timber 

management practices dramatically altered the distribution of C. Consistent with previous 

research conducted in a loblolly pine plantation in SC, these results show that more than half of 

the C was found in the vegetation and over a quarter in the soil and forest floor after 143 years of 

undisturbed forest growth (Johnson et al, 2002). Regardless of the harvesting regime, the 

distribution of C in the system was affected by timber management and was mostly located in the 

soil rather than the vegetation following three crop rotations, which makes sense since there is an 

overall reduction in NPP. Nearly all of the N in the forest ecosystem was distributed to the soil 

also, regardless of the type of management strategy utilized. The allocation of N changed in the 

soil and vegetation pools, but to a much lesser degree than C.  
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 Ultimately, the trends observed in this experiment suggest that whole-tree harvesting 

practices may be sustainable in the long run, since effects on C and N concentrations in various 

components of the ecosystem were minor. The C and N in the vegetation declined the most from 

WTH, and is most likely due to the decrease in total nutrient capital and reduced availability of 

these nutrients for loblolly pine growth and production. Soil N is primarily made available for 

vegetation uptake through decomposition and microbial processes (i.e., the nitrification of 

ammonium to nitrites and finally nitrates), which are relatively slow in nature and often 

determine the rate of tree growth (Schlesinger, 1997). Moreover, these processes also affect the 

amount of C and N distributed to the vegetation: if tree growth is slowed by soil N availability, 

then the vegetation will slow down the rate at which C is extracted from the atmosphere and less 

C and N will be stored in the vegetation. I argue that decreased soil and forest floor N may be 

limiting vegetationg growth. It is possible that the mobile species of N is not in great abundance 

and is causing reduced concentrations of C and N in the vegetation. Conversely, Sanchez and 

colleagues (2006) found that removing logging residue on NC and LA sites reduced P 

availability and supply, and adverse effects on tree regrowth could be counteracted with the use 

of fertilizers. Many policy makers and researchers suggest that fertilizer application is a 

sufficient way in replenishing nutrient stocks and enhancing availability; however, this strategy 

has its drawbacks and should also be simulated to analyze how effective this practice might 

actually be (Johnson et al., 2003; Sanchez et al., 2006). Other researchers argue that small 

nutrient losses in pine plantations can be replaced by annual atmospheric deposition, rather than 

with the use of fertilizers (Westbrook et al., 2007). 

 Many scientists argue that site quality is one of the main factors determining the 

resilience of that site to timber management practices (Carey, 1980; Chapin, 1980; Mroz et al., 
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1985; Burger, 2002; Sanchez et al., 2006; Scott and Dean, 2006). Already P deficient loblolly 

pine stands could potentially translate to the long-term degradation of forest productivity 

(Sanchez et al., 2006). Carey (1980) suggests that sites with acid soils of inherently low fertility 

are especially sensitive to whole-tree harvesting practices, and could lose the ability to sustain 

forest productivity in the long-term. Eisenbies and others (2009) concluded that although field 

experiments show that removing logging residue does not negatively impact forest productivity, 

short-rotation tree species need to be analyzed more closely over longer periods, especially if 

there are sites low in quality that are particularly sensitive to this management practice. 

 

Conclusion 

 Model simulations executed in this experiement strongly suggest that ecosystem effects 

from WTH techniques are small and potentially negligible, and that biofuel production could be 

practiced sustainably in the southeastern United States. Although net primary productivity 

degraded slightly in this experiment, the application of fertilizers is often used to maximize 

productivity by enhancing tree growth and turnover rates, and could mitigate minor nutrient 

losses from removing residue. However, the effectiveness of fertilizers may be dependent on 

local characteristics that define the quality of a specific site. Additionally, fertilizer application is 

a short-term solution to a potentially long-term problem; they do not prevent soil erosion, and the 

addition of N or P can negatively affect the surrounding water bodies and municipal drinking 

supplies if leaching occurs. In this case, future research and modeling needs to integrate 

fertilization and analyze the effects of applying fertilizers on forest productivity and the 

surrounding ecosystem before forest biofuel management becomes a widespread practice in the 

southern U.S. forests.  
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Tables and Figures 

 
Table 1 

The four treatments used to simulate different harvest intensities by running DailyDAYCENT and 
manipulating the quantity of trees and logging residue collected during a harvest event. 

 

Simulated 
Harvest Type

Description leaves: 
remf(1)

fine 
branches: 

remf(2)

large 
wood: 

remf(3)

leaves: 
retf(1)

fine 
branches: 

retf(2)

large 
wood: 
retf(3)

Uncut undisturbed forest 0 0 0 0 0 0

Sawlog conventional harvest 100 100 100 100 100 0

Whole tree 
harvest (WTH) potential biofuel harvest 100 100 100 0 0 0

managed thinning for sawlog 
harvest

50 50 50 0 0 0

managed thinning for WTH 50 50 50 0 0 0
Thinning

Fraction of Live Tree Removed (%): 
remf (1-3) 

Fraction of Debris Left on Site 
(%): retf(1-3)
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Table 2 
The DailyDAYCENT output variables utilized to evaluate C and N dynamics in response to varying 

harvest intensities in five major components of the loblolly pine ecosystem. 

 

Ecosystem 
Components

DailyDAYCENT 
Output Variable Definition

fsysc total C in the forest system (i.e., sum of organic matter, trees, dead 
wood, forest litter) (g/m2)

fsyse(1) total N in the forest system (i.e., sum of organic matter, trees, dead 
wood, forest litter) (g/m2)

frstc sum of C in the living forest components (g/m2)

frste(1) sum of N in the living forest components (g/m2)

somtc total C, including belowground structural and metabolic C (g/m2)

somte(1) total N, including belowground structural and metabolic N (g/m2)

strucc(1) structural C in forest litter on the forest floor surface (g/m2)

struce(1,1) structural N in forest litter on the forest floor surface (g/m2)

som1c(1) C in the active surface soil organic matter (g/m2)

som2c(1) surficial slow pool C organic matter (g/m2)

som1e(1,1) N in the active surface soil organic matter (g/m2)
som2e(1,1) surficial slow pool N organic matter (g/m2)
metabc(1) metabolic C in surficial litter (g/m2)

metabe(1,1) metabolic N in surficial litter (g/m2)
Net Primary 
Productivity 

(NPP)
cproda annual accumulator of C production in forest (i.e., NPP) (g/m2/year)

Total Forest 
System

Vegetation Pool

Soil Pool

Forest Floor
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Table 3 
The percentage of C and N allocated to each component of the forest system after a 70- and 143-year 

period of undisturbed new forest growth and disturbed forest growth comparing one and three consecutive 
harvest events (month of June values are reported).  

	
  
	
  

Table 4 
The differences in net primary productivity (i.e., cproda) (g/m2/yr) during the last month of June, in the 

one cut and three cut simulations, for the undisturbed and harvest treatments with pre-treatment thinning. 
Percent differences were calculated between the sawlog and WTH strategies. 

	
  
	
  

Table 5 
The differences between final concentrations of C and N in four components of the forest system after 70- 
and 143-year simulations of the uncut and thinned harvest management treatments (month of June values 

are reported). Percent differences were calculated between the sawlog and WTH strategies.  

Uncut Sawlog WTH Uncut Sawlog WTH
Vegetation 45.58 33.53 32.20 64.16 35.77 32.93
Soil 40.45 51.82 53.29 25.34 49.30 52.31
Forest Floor 13.66 13.78 13.66 10.26 14.00 13.91
Dead Biomass 0.31 0.88 0.86 0.24 0.93 0.85
Vegetation 4.93 3.47 3.28 9.01 3.74 3.31
Soil 88.42 91.20 91.69 82.77 90.51 91.49
Forest Floor 6.60 5.23 4.94 8.14 5.63 5.11
Dead Biomass 0.06 0.10 0.09 0.09 0.12 0.09

C

N

Forest 
Component

70 Years 143 Years
% of Total Forest System

Duration 
of 

Simulation 
(# of yrs)

Uncut Sawlog WTH
% Difference 

Between Sawlog 
& WTH

70 176.96 153.73 147.64 3.96
143 180.21 135.27 124.47 7.99
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Figure 1. Month of June concentrations of C in forest vegetation from 1983 to 2126, during which four 
treatments were harvested at differing intensities in 2018, 2053, and 2087, and two were thinned in 2000, 
2036, and 2072. The undisturbed values continuously increased, while all harvest treatments caused total 

Sawlog WTH % 
Difference

Sawlog WTH % 
Difference

Vegetation 5779.21 5373.13 7.03 6524.58 5592.91 14.28
Soil 8931.64 8893.21 0.43 8994.04 8885.02 1.21
Forest Floor 2374.67 2278.86 4.03 2553.17 2362.91 7.45
Total System 17236.37 16688.02 3.18 18241.90 16985.07 6.89
Vegetation 29.91 28.04 6.25 32.62 28.39 12.97
Soil 786.12 784.15 0.25 789.31 784.00 0.67
Forest Floor 45.05 42.25 6.21 49.10 43.77 10.86
Total System 861.95 855.24 0.78 872.03 856.96 1.73

N

Forest 
Component

One Harvest (70 years) Three Harvests (143 years)

C
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C to decrease to zero. C levels were able to increase back to pre-treatment concentrations for all harvest 
simulations, and C actually accumulated slowly in the sawlog treatments. 

	
  

Total N in Living Components vs. Harvest Intensity
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Figure 2. Month of June concentrations of N in forest vegetation from 1983 to 2126, during which four 
treatments were harvested at differing intensities in 2018, 2053, and 2087, and two were thinned in 2000, 
2036, and 2072. The undisturbed values continuously increased, while all harvest treatments caused total 

N to decrease to zero. N levels were able to increase back to pre-treatment concentrations for all 
treatments except WTH with thinning, and N actually accumulated slowly in the sawlog treatments. The 
second harvest in the WTH with thinning strategy really affected the ecosystems ability to allocate N to 
the vegetation, seeing that the amount of N in the vegetation just before the third harvest was lower than 

that before the second.	
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Total Forest Floor C vs. Harvest Intensity
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Figure 3. Month of June concentrations of C in forest vegetation from 1983 to 2126, during which four 
treatments were harvested at differing intensities in 2018, 2053, and 2087, and two were thinned in 2000, 
2036, and 2072. The undisturbed values continuously increased, while all harvest treatments caused total 
C to decrease. C levels were able to increase back to pre-treatment concentrations for all treatments, and 

actually accumulated slowly in the forest floor over three harvests.  
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Figure 4. Month of June concentrations of N in forest vegetation from 1983 to 2126, during which four 
treatments were harvested at differing intensities in 2018, 2053, and 2087, and two were thinned in 2000, 
2036, and 2072. The undisturbed values continuously increased, while all harvest treatments caused total 

N to decrease to zero. N levels were able to increase back to pre-treatment concentrations for all 
treatments, and actually accumulated slowly in all harvest strategy trends. Leaving the logging residue on 

the site caused N concentrations to spike in response to harvesting.  
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Total Soil C vs. Harvest Intensity
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Figure 5. Month of June concentrations of soil C from 1983 to 2126, during which four treatments were 
harvested at differing intensities in 2018, 2053, and 2087, and two were thinned in 2000, 2036, and 2072. 

The undisturbed values gradually decreased until about 2020, followed by a continuously increasing 
trend. All harvest treatments caused total C to spike and then decline rapidly. After the first harvest, C 

was able to accumulate under all treatment conditions, except WTH with thinning. However, the second 
harvest affected this accumulation trend, and in all treatments the magnitude of the spike in response to 

harvesting decreased.  
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Figure 6. Month of June concentrations of soil N from 1983 to 2126, during which four treatments were 
harvested at differing intensities in 2018, 2053, and 2087, and two were thinned in 2000, 2036, and 2072. 
The undisturbed values gradually decreased until about 2020, followed by a continuously increasing trend 

in N concentrations. N accumulates in the soil over three harvests for both sawlog treatments, but the 
magnitude of the responsive spike continued to decrease when the WTH scenario was simulated.  
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