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Figure 7. Vector Scene of the Velocity Flow Field around the Solid Sphere 

 

 
Figure 8. Scalar Scene of the Velocity Values around the Solid Sphere 

 
This simulation also included a scalar plot of the pressure distribution along the solid sphere, which is shown in 

Figure 9. The results of this pressure distribution showed an area of low pressure around the outside curvature of 

the sphere and an area of high pressure where the airflow makes initial contact with the sphere. 
 

 
Figure 9. Pressure Distribution along the Solid Sphere 
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3.2.5 comparison to known results 
 
Based upon the known response of a spherical object in a steady flow, the results of the verification case show a 

positive qualitative agreement. Shown in Figure 1 in Attachment A are the laminar vs. turbulent trends for flows 

over a cylinder, a similar case, at different Reynolds numbers. Even with a coarse mesh, Figure 8 shows the clear 

stagnation point at the front of the droplet and wake at the back, both in shades of blue. There is also an increased 

velocity around the center axis of the droplet, as expected. Figure 9 shows a high pressure area at the stagnation 

point followed by low pressure around the center of the droplet, also as expected. With a qualitative match, it is 

evident that the physical situation that was modeled in the verification case is accurate. 
 

4. Computational Model 
 
A final computational model was created and tested for use with steady flow and periodic flow simulations. The 

geometry, meshing, and physical model choices are outlined in more detail in this section. 
 
4.1 Geometry 
 
For the computation, a SolidWorks file was created of the appropriate geometry and saved as an .STL file so that 

it could be imported as a surface mesh into STAR CCM+. Similar to the verification case, the geometry was 

modeled as a quarter cylinder piece with a length of 1 m and a radius of 0.25 m. Unlike in the verification case 

(section 3.2 above), this model did not include a spherical cutout to represent a solid object in the center, as the 

water and air are both modeled as fluids. A screenshot of the geometry can be found in Figure 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Computational Model Geometry in SolidWorks 
 
4.1.1 boundary conditions 
 
The geometry, when imported into STAR CCM+ as a surface mesh, was split from a single region into five 

boundaries by an angle of 45 degrees. The boundaries were labeled as a velocity inlet on the left side of the 
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cylinder, a pressure outlet on the right side of the cylinder, symmetry planes on both the top and front boundaries 

of the cylinder, and a wall on the outside curvature of the model. 
 
4.1.2 orientation 
 
For later steps during the meshing and simulation, it was important to reorient the model based upon a laboratory 

coordinate system. Region 1 was transformed first by scaling of a uniform 0.001 value, in order to relate the 

model lengths directly to the given geometry length. The model was also translated and rotated until the axis was 

located on the corner of the symmetry planes and the inlet, as shown in Figure 11. Finally, a translation in the 

positive x-direction at a value of 0.001 is necessary to allow for the axisymmetric model to be chosen. Without 

this small translation, an error stating that all values must be at or above the axis of rotation, or the x-axis, will 

occur. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Appropriate Orientation of the Geometry 
 
4.2 Meshing 
 
For the production of a reliable simulation, it was important to assign a well-refined mesh to the geometry. The 

“Surface Remesher”, “Polyhedral Mesher”, and “Prism Layer Mesher” were each chosen for the model. For these 

meshing models, the base size was set to 0.001 m, the prism layer thickness was assigned to 100%, the relative 

minimum surface size was set to 100%, and the relative target surface size was set to 500%, with all percentages 

relative to the base size. All other meshing values were left at the defaults.  

 In order to create a well-refined area near the drop location in the center of the geometry, it was necessary 

to employ a volumetric control. A new volume shape was created from tools and a sphere was “snapped to the 

part” with an origin of [0.5,0,0] and a radius of 0.025 m. Then a new volumetric control in the meshing models 

was created using the new sphere. Each check box to customize the three meshing models was selected for the 

volumetric control and the custom size was changed to 20% of the base size. This custom size generated 

considerably smaller grid size around the spherical shape in the center of the geometry. A surface mesh and a 

volume mesh were both generated using these values.  
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 To shorten the overall simulation time, the 3D volumetric mesh was converted into a 2D axisymmetric 

mesh. With this action the regions and continua relating to the 3D model were deleted. The 2D mesh can be seen 

in both Figure 12 and Figure 13. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. 2D Mesh of the Computational Model 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Close-up View of the 2D Mesh 
 
4.3 Physical Models 
 
For the purpose of accurately modeling a water droplet in a wind tunnel, several physical models were chosen. 

With the use of a 2D mesh, the “Axisymmetric” model was selected, with the x-axis as the axis of symmetry. This 

allowed, again, a reduction in simulation time, by cutting down the model number of nodes. With a non-spherical 

initial droplet, this case would not be applicable.  Also any non-axisymmetric effects are lost from the simulation. 

The “Implicit Unsteady” model was chosen based upon the unsteady nature of the breakup situation. The 

“Multiphase Mixture” model, followed by the “Volume of Fluid” model, was chosen in order to allow a 

separation between water and air to be defined. The “Segregated Flow” model was chosen rather than the 

“Coupled Flow” model based upon limited computational capabilities and compressibility of the flow. The 

Reynolds number for the various flow velocities was calculated to range from 6330 to 53800, allowing the 

laminar physical model to be chosen. As shown by the graph in Figure 2 in Attachment A, the maximum 

Reynolds number in the calculated range is approaching turbulent flow; however, this high velocity case was 

modeled as laminar. “Surface Tension”, which is a very important aspect of droplet-air interaction, was chosen 
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from the optional models along with the segregated fluid isothermal model. It is also important to note that the 

“Gravity” model was not chosen for this simulation, in order to restrict the forces on the droplet to just one 

coordinate direction, the x-direction. The y-component of the physical force on the droplet is simple to remove in 

a computational simulation, but would be inevitable in an experimental situation. With each of these chosen, the 

physical situation of the model was established. 

 To create the desired fluid situation, two new Eulerian phases were created under the “Eulerian 

Multiphase” tab. It is important that water was created first, modeled as a constant density liquid, and air was 

created second, modeled as an ideal gas. All of the default values for water and air given by STAR CCM+ were 

left unchanged. Under the physics initial conditions, the constant pressure was left at 0 Pa, the static temperature 

was left at 300 K and the constant velocity was kept at 0 m/s. Under the volume fraction initial condition, the 

method was changed to composite, as a combination of water first and air second. In order to define the size and 

location of the water droplet, a field function was created from the tools menu. The function, labeled ‘drop’, was 

created using the coding method of STAR CCM+. The ‘drop’ code is read as follows: 

 

($$Centroid[1]<=(sqrt(0.0001-pow(($$Centroid[0]-0.5),2))))&&($$Position[1]>0)?1:0 

 

The code utilizes the known functions of Centroid and Position, as well as the coordinates of [0,1,2] equating 

[x,y,z]. The code also uses the equation of a circle to define the location of the water. Verbally, the code reads: if 

the y value of the geometry is less than or equal to �0.0001 − (𝑥 − 0.5)2 and the position is above the x-axis, 

then the value is 1, else the value is zero. When placed as the field function value for the volume fraction of water, 

this states that water exists within the two defined boundaries, when the value is 1. The volume fraction initial 

condition of air was left at 0, and therefore it was assumed that air was located in all areas not defined as water. 

Also, the surface tension between the water and air was left at a standard default value of 0.074 N/m.  
 
3.4.1 volume of fluid model 
 
The volume of fluid (VOF) physics model is a simple multiphase model that is often used to simulate two-fluid 

flows. The basic equations of the model, as given by the STAR CCM+ Training Guide, can be found in 

Attachment B. The model is well suited for flows where each phase is a large structure and there is small contact 

area between phases. For example, the VOF model is better suited for a single droplet in steady flow as compared 

to many droplets in steady flow, which proves the applicability for the current study. It is noted, however, that 

water droplets in air require a mesh of at least three cells across each droplet in order to produce a reasonable 

result.   

In this model, the value C is used to represent the fraction of the reference phase that is present in each 

grid cell, called the volume fraction. The value of C can vary from 0 to 1 in empty and full cells, respectively. The 
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model proceeds by reconstructing the shape of the fluid interface and determining the amount of reference phase 

volume that is exchanged across the boundaries of neighboring cells. The volume of fluid model works by 

advecting a marker function to identify fluids, and the boundaries between them, directly. 
 
3.4.2 solvers and stopping time 
 
Solvers are an important aspect of simulations, which can cause large changes in simulation results with only 

small changes in values. For the implicit unsteady solver, a time step of 0.001seconds was chosen for all of the 

simulations. Also, 2nd-order temporal discretization was used, in order to help control the diffusion of the water 

droplet. For the segregated VOF solver, the under-relaxation factor was changed from 0.9 to 0.5. Changing this 

value was able to help with convergence and overall accuracy of the model. 

 In regards to stopping criteria for the model, the number of inner iterations was left at the default value of 

20. The inner iterations determine how many iterations will be completed during each time step. To determine the 

effect of the inner iterations on the computational model, test cases were run by changing only that variable, as 

shown in Figure 14 through Figure 17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both water droplets were simulated for the same amount of physical time with a different number of iterations. 

When the results are compared there is not a significant difference in either the diffusion or the residuals to 

Figure 14. Water Droplet with Zero Flow after 0.1 s Figure 16. Water Droplet with Zero Flow after 0.1s 

Figure 15. Residuals from the Simulation Shown in Figure 14 Figure 17. Residuals from the Simulation Shown in Figure 16 
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warrant the extended simulation time necessary for more inner iterations to be used. The maximum physical time 

was changed depending on each individual simulation and the maximum steps option was deselected for all 

simulations.  

 During each solution, it was also important to be aware of the trend of the residuals. In a reliable 

simulation, the residuals decrease and level off to a low value, usually below 0.01 in these cases. For some 

simulations, depending on the flow situation, the residuals had a significant amount of oscillation, which could 

equate to a less reliable result. 
 
3.4.3 scenes 
 
As a way to view the model during simulations, two different scalar scenes were created. A scalar scene for both 

velocity and the volume fraction of water exist for each simulation. For these scenes, the update policy was 

assigned by time-step and an annotation was added to print the physical solution time on the screen. Also, the 

scalar field of the variable color bar was changed according to the minimum and maximum values of each 

simulation and the automatic update option was deselected to keep the color scale the same as the simulations 

were completed. The scenes were saved to files as .jpg and used to view and compare the simulation results. 

 
5. Results 
 
As a validation of the model, both the zero flow case and steady flow cases at various Weber numbers were 

completed. The cases were refined to follow known results and physical trends of droplet breakup. Once the cases 

were compared and validated, preparations for periodic flow cases at various Weber numbers and frequencies 

were completed. 
 
5.1 Zero Flow 
 
As a test, a case with a We = 0, or zero velocity, was simulated using the current computational model. In this 

case, run for 0.25 s, the droplet was expected to show no movement or changes in shape. Originally, this case 

experienced some unphysical deformation, creating bumps at the interface between the droplet and the air. This 

was corrected with a reduction in time step from 0.005 to 0.001 s and a change in the VOF under-relaxation 

factor. As shown in Figure 18, the final results show the expected behavior, with only a small amount of 

(undesirable) numerical diffusion at the interface between the water and air. If run for a longer period of time, this 

diffusion is likely to increase. For the purposes of this study, however, the results produce a sufficient level of 

qualitative agreement with the known physical case.  
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Figure 18. Volume Fraction of Water at t=0.25 s for a Zero Velocity Case 
 

5.2 Steady Flow 
 
As easily comparable cases to known experimental results, steady flow cases at various Weber numbers were 

simulated. Although droplet breakup is a naturally transient process, the terminology “steady flow cases” refers to 

a simulation that is run using the “Implicit Unsteady” physical model. For each of these “steady flow cases” a 

constant velocity is provided at the inlet and remains unchanged throughout the simulation , thereby naming it 

steady. Weber numbers of 6, 12, 100 and 450 were chosen based upon the values given in Figure 1, in order to 

model vibrational, bag, shear, and catastrophic breakup, respectively. In order to vary the Weber number, the 

required inlet velocity was calculated and set for each case. Each case is shown below, in Figures 19 through 22, 

at various time steps to illustrate the sequence of breakup. As a result of choosing different time steps to 

demonstrate each simulation, the cases cannot be compared in vertical columns except for the initial point. It 

should be noted that when the drop begins to move in the positive x-direction with the flow it is eventually no 

longer located within the highly refined sub region of the mesh.  That is the droplet advects into the coarse mesh 

region, and the simulation looses significant spatial resolution. The boundary between the highly refined and 

coarse mesh sections that are described is shown clearly in Figure 13, with the surface growth factor resulting in 

the rapidly changing grid size when moving from the center. The net effect of this change is that some of the later 

time steps in each simulation experience considerably more diffusion and sometimes unlikely shapes result.  

However, these simulations do demonstrate that as long as the mesh has sufficient spatial resolution the models 

chosen produce good qualitative agreement with droplet breakup behavior observed experimentally.   

 When compared to the diagrams of known breakup regimes in Figure 1, the simulations of the steady 

flow match the physical trends well. Figures 19 through 22 were created as a compilation of saved scene views 

that demonstrate the transitional shapes of the droplet during each simulation. Each simulation produced one 

scene file for each time step, which the views below were chosen from. Each of the simulations in Figures 19 

through 22 was created using the volume fraction scale in Figure 23. 
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Figure 19. Steady Flow Case with We=6 and Vibrational Breakup 

 

 
Figure 20. Steady Flow Case with We=12 and Bag Breakup 

 

 
Figure 21. Steady Flow Case with We=100 and Shear Breakup 

 

 
Figure 22. Steady Flow Case with We=450 and Catastrophic Breakup 

 

 
Figure 23. Volume Fraction of Water Scale for All Steady Simulations 

 
5.3 Periodic Flow 
 
Periodic flow cases, unlike the steady cases that were completed, are characterized by the droplet experiencing an 

oscillating, or sinusoidal, velocity. Every water droplet naturally oscillates with a period of oscillation given by 

Equation 31, 

𝑇𝑁𝐹 = 2𝜋�𝜌𝑑𝑑𝑑
3

64𝜎
                                                                                  (3)  

where 𝜌𝑑 is the density of the droplet, 𝑑𝑑 is the diameter of the droplet, and 𝜎 is the surface tension between the 

fluids. This oscillation period can be converted to a frequency and then to an angular frequency using both 

Equation 4 and Equation 5 in sequence. 
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 𝑓𝑛 = 1
𝑇𝑁𝐹

                                                                                        (4) 

𝜔 = 2𝜋𝑓𝑛                                                                                       (5) 

For the droplet size created in this simulation, a natural frequency of 3.877 hz was calculated. The interest of this 

study lies in the effect of sinusoidal flows at different ratios of acoustic frequency to droplet natural frequency, 

given by 𝑓𝑎/𝑓𝑛. In order to input the oscillating velocity as the inlet velocity, a field function was created from the 

tools menu. The function was created using the coding method of STAR CCM+ and is read as follows: 

 

($Time>0)?[A*sin(ω*$Time+φ),0,0]:[0,0,0] 

 

The code utilizes the known Time function, as well as the coordinates of [0,1,2] equating [x,y,z]. During a 

simulation, the amplitude, A, the angular frequency, ω, and the phase, φ, would be defined as numerical values to 

describe a Weber number, frequency ratio, and phase respectively. Verbally, the code reads: if the time is greater 

than zero, the x-value of the velocity is equal to Asin(ωt), else the velocity in all directions is zero. This code, 

once refined, will be used to study the periodic flow situation on the droplet using the computational model 

created. 

 
5. Future Work 
 
Next term, as time allows, corrections to current simulations and additions of new simulations will be made to 

improve the quality of this study.  

 First, corrections to the current steady flow cases will be made. Test cases will be run to qualitatively 

measure the effect of the “Sharpening Factor” as compared to the “Under-Relaxation Factor” on droplet diffusion, 

and changes to the model will be made accordingly. Also, the mesh may be refined further in the horizontal 

direction to allow a smaller chance that the spatial resolution of the simulation is lost due to mesh growth. Finally, 

a transitional Weber number value between each significant breakup regime will be determined specifically for 

this computational model.  Although a general separation between breakup regimes is established in Figure 1, a 

different model can cause the already vague lines between regimes to shift slightly. 

 Once transitional Weber number values are determined, a series of simulations will be completed that 

model the periodic flow situation. There are four different variables that can be altered to change the flow 

situation for different simulation cases, namely amplitude, offset, frequency, and phase. Amplitude is determined 

by the desired weber number and is the maximum flow velocity magnitude that will be reached during a 

simulation. Offset, which will be disregarded in this study, is a locational value that changes where the sinusoidal 

wave axis is in comparison to the droplet location. This value has applications in an actual engine with the 

location of the acoustic waves in comparison to the fuel injection location. The frequency value will be altered to 
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change the ratio 𝑓𝑎/𝑓𝑛. Special interest exists in the results for high frequency ratios, over 1, due to the strong lack 

of experimental results at these values. The phase, the last variable, is equivalent to the point along the sine wave 

that the droplet is exposed to first. This value affects whether the flow is accelerating or decelerating at initial 

contact, which could significantly alter the droplet response to the flow. 

In order to implement the field function code for the sinusoidal flow properly, it must be determined 

through test cases whether STAR CCM+ expects a value in degrees or radians as the input to the sine function. 

With transitional Weber numbers between droplet breakup regimes determined, amplitude values will be chosen 

very carefully to control the Weber numbers. There are predictions that exist for high frequency oscillating flows 

that state if the frequency of the flow is much higher than the natural frequency of the droplet, the droplet will 

respond to the average velocity magnitude. In order to test this prediction, Weber numbers must be chosen very 

close to the breakup regime boundaries so that the average velocity magnitude creates a Weber number that is in a 

regime below that originally inputted.  

 Once simulations are produced for the different Weber number cases, a way to strengthen the case of the 

results is to demonstrate similar results for different Ohnesorge numbers. Ohnesorge number is a dimensionless 

number that relates the viscous force to inertial and surface tension forces and is given by Equation 6, 

𝑂ℎ =
𝜇

�𝜌𝜎𝑑𝑑
                                                                                      (6) 

where 𝜇 is the viscosity of the liquid, 𝜌 is the density of the liquid, 𝜎 is the surface tension, 𝑑𝑑 is the diameter of 

the droplet. As shown on page 33 of Secondary Droplet Breakup in Periodic Aerodynamic Flows, there is a 

change in the relationship of Weber number to breakup regime as Ohnesorge number increases. The recreation of 

this figure using computer simulations as data points would further prove the validity of my model. 

 Overall, there are several tests and simulations that must be run to improve the current results and to 

create new results and fundamentally new knowledge in the world of secondary droplet breakup. 
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Attachment A.8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Flow Types Over a Cylinder 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Drag on a Sphere vs. Reynolds Number, with Flow Types Corresponding to Figure 1 
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Attachment B.7 
 

 
 
 
 


