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Abstract

PARKASH, VAISHALI Comparing Stellar Populations of Galaxies across

the Hubble Sequence: Reduction of PISCES Near-Infrared Images.

Department of Physics and Astronomy, June 2014

ADVISOR: Catherine Kaleida (Cerro Tololo Inter-American Observatory),

Rolf Jansen (Arizona State University) and Jonathan Marr (Union

College)

To better understand the properties of high redshift galaxies and improve

models of galaxy formation, we are investigating color radial profiles to study

the stellar age, dust and metallicity distribution of galaxies of varying lumi-

nosities and morphological types. Current data obtained in the optical and

UV have shown that early-type galaxies have a flat color profile, or are bluer

at larger radii, while late-type spirals are redder with increasing radius. These

trends are believed to be linked with stellar population ages or dust. To break

the age-dust degeneracy as well as to avoid the metallicity dependence, we have

obtained near-infrared images of Nearby Field Galaxy Survey (NFGS) galax-

ies taken with the PISCES Wide-field Infrared Camera on the 90-inch Bok

Telescope. Combined with the optical and UV data, these new, near-infrared

images will help better constrain these parameters and determine the ages of

the stellar components of the galaxies. We discuss the method used to process

and reduce the data and present the radial profile of the surface brightness and

color of one particular galaxy in the sample, UGC 439.
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1. Introduction

The study of galaxy morphology and classification is an ongoing task. The

current model of galaxy classification originated with the Edwin Hubble classification

system which he published in his book, The Realm of the Nebulae (Carroll & Ostlie

1996). His classification would later be known as the Hubble Sequence or Hubble

Tuning Fork. According to Hubble, there were four types of galaxies: ellipticals

(E’s), lenticulars (S0), spirals (S’s) and irregulars (Irr’s). Elliptical galaxies, which

make up the handle of the fork, are smooth elliptical objects. They are subclassified

by how eccentric they are; E0 galaxies are very circular and E7 galaxies are the most

elongated galaxies. The two prongs of the fork are made up of spiral galaxies. Spiral

galaxies contain spiral-shaped arms that tighten into a bright central bulge. There

are two types of spirals: barred spiral galaxies (SB) and normal spiral galaxies (S).

They are also subclassified according to the tightness of their arms; Sa and SBa have

the most tightly wound arms and large central bulges; Sc and SBc have the most

loosely wound arms and small bulges. Lenticular galaxies, or S0 galaxies, are between

the ellipticals and the spirals; they have a rotating disk with a bulge, but lack any

spiral-like structure. If a galaxy did not have any of the above characteristics, it was

classified as an irregular galaxy. Hubble also defined ellipticals as early type galaxies

and spirals as late type galaxies (The Hubble Tuning Fork n.d.). It was thought

that galaxies evolved from elliptical to spiral galaxies. It is now known that this is

incorrect since elliptical galaxies rotate more slowly than spiral galaxies, therefore

invalidating Hubble’s theory of galaxy evolution.

Modern day updates have been made to the Hubble classification system

including those used in the Third Reference Catalogue of Bright Galaxies by G.

and A. de Vaucouleurs and their collaborators (Sparke & Gallagher 2000). They
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eliminated irregular classes Irr I and Irr II and added spiral classes to the right

of Sc or SBC. Their sequence of the normal late-type galaxies is given as S0, Sa,

Sab, Sb, Sbc, Sc, Scd, Sdm, Sm, Im, Ir (Carroll & Ostlie 1996). Galaxies that are

now considered Sd (SBd), Sm (SBm) or Im galaxies were originally part of the Irr

I classes, where the m stands for Magellanic type. Galaxies in the Irr II are still

considered to be irregular and are classified as IR galaxies (Carroll & Ostlie 1996).

To this day, models of galaxy formation are still being investigated. There are

two basic models, the top-down and bottom-up or hierarchical model. The top-down

model is similar to the solar system formation model in the sense that there was a

dense cloud that began to collapse due to gravity, thus creating a protogalaxy. This

model accurately predicts many of the characteristics of the Milky Way, such as the

existence of the disk and why Population II stars, the older stars, are found in the

halo and Population I stars are found in the disk (Carroll & Ostlie 1996). Some of

the shortcomings of the top-down model are that it does not predict the retrograde

orbits of halo stars that are observed or explain the wide range in ages or the

compositional variation of globular clusters (Carroll & Ostlie 1996). The bottom-up

model states that galaxies were formed from smaller clumps that merged together.

This model can account for metal-rich central bulges and the characteristics observed

of globular clusters(Carroll & Ostlie 1996).

The bottom-up model is currently favored over the top-down model because

of observations of the early universe. In the past decades, deep field images, like

the Hubble Deep Field (HDF) and the Hubble Ultra-Deep Field (HUDF) have

provided a glimpse into the past (Williams et al. 1996; Beckwith et al. 2006). These

images have provided us the tools to study the earliest stages of galaxy evolution to

better our understanding of how present-day galaxies came to be. Many of these
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highly-redshifted galaxies have physical properties similar to local irregular, peculiar,

and merger galaxies, but are also more compact and less massive than similarly

luminous nearby galaxies (Taylor et al. 2005). To gain a better insight in these

high-redshift galaxies, we plan to study the characteristics of nearby, low luminosity,

irregular, peculiar and merger galaxies.

Radial color profiles can provide information about the stellar populations, the

metallicity and the dust distribution in a galaxy (Kaleida 2010; Taylor et al. 2005).

They provide detailed insight into how the above characteristics vary between the

inner and outer parts and between different morphological structures of a galaxy.

Late-type spiral (Sd), irregular and merging galaxies were found to become redder

with increasing radius (Taylor et al. 2005), while studies of the radial color profiles

of nearby early-type field galaxies, including studies by Vader et al. (1988), Franx

et al. (1989), Peletier et al. (1990), and Tamura & Ohta (2003), have shown that

elliptical galaxies and early-type spiral galaxies (SO, Sa, Sb, and Sc) have a flat

color gradient, or become slightly bluer with increasing radius. However, Vader et

al. (1988) studied the color profiles of 35 early type galaxies, including 10 dwarf

elliptical (dE) galaxies and found that dE galaxies become redder at larger radii.

Jansen et al. (2000a) also discusses that galaxies brighter than MB = −17 are found

to be redder in the inner parts, while galaxies fainter than MB = −17 are equally

likely to be red or blue in the inner parts. These color profiles are thought to be due

to the stellar population ages or the dust contained in the galaxy since no practical

galaxy formation theory predicts a positive correlation between metal content and

radius (Vader et al. 1988; Taylor et al. 2005; Kaleida 2010). Jansen (2000) found

strong Hα emission in the bluer regions of galaxies, indicating the presence of current

star-forming regions, which supports the premise that the color profile is due to the

age of the stellar population.
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Near-infrared (NIR) images can also provide insight into the stellar structures of

galaxies by tracing the older stellar population. At red and longer wavelengths the

less massive stars tend to dominate the light output of a galaxy, making it easier to

study the older stellar population (Kaleida 2010). Many structures in a galaxy, like

bars, rings and spiral arms, are gravitationally-induced. Since gravity is dependent

on the mass of the system and the older less massive stars dominate the luminous

mass of the galaxy, the structures of the galaxy are influenced by the older stellar

population. Therefore to better understand these structures it would be productive

to study the stellar distribution in a galaxy using NIR observations.

In particular, observations in J, H and Ks bandpasses can help us break the

age-dust-metallicity degeneracy. A galaxy can become redder through multiple

processes. A galaxy becomes redder as its stellar population becomes older and the

young blue stars die out. Increase in metallicities can also redden the galaxy since

the effective temperature of stars decreases with increasing opacities. The dust in

a galaxy can also redden the color by absorbing the UV emission from young stars

and remitting it in the IR. According to von Braun et al. (1998), the H-K color is

insensitive to metallicity, but the J-K color is sensitive to the metal content. In

addition, the J-K color provides a larger color measure because it spans a wider

range in wavelength(Kaleida 2010).

In this paper we will describe the method used to process and reduce the

PISCES data set and present surface photometry on UGC 439.
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2. Sample Selection

The galaxies for this study were chosen from the 196-galaxy Nearby Field

Galaxy Survey (NFGS) by Jansen (2000). The NFGS galaxies were chosen to

provide a smaller sample of galaxies that are representative of nearby galaxies

as a whole. The galaxies in the NFGS are a subsample of the 2400 galaxies in

the Harvard-Smithsonian Center for Astrophysics Redshift Survey (CfA I) catalog

(Huchra 1983). The CfA I catalog is nearly complete within its selection limits and

contains galaxies that have been morphologically classified and with an absolute

blue photographic magnitude (MZ) from -22 to -13 for H0= 100 km s−1 Mpc−1.

Since the galaxy spectra for NFGS were obtained using the FAST spectrograph

(Fabricant 1998) and the spectrograph had a slit size of about 3 arcmin, Jansen

(2000) did not want to include galaxies that were larger than 3 arcmin. He also

did not want to impose a strict diameter limit since it would introduce bias against

low surface-brightness galaxies. Instead, Jansen imposed a lower limit on the radial

velocity that increases with luminosity. Instead of comparing the size of each galaxy

in the CfA I catalog to the slit size, he assumed that a galaxy with a certain radial

velocity and luminosity would have a certain radius and by the Hubble Law, he

assumed that galaxies with a radial velocity smaller than some limit are closer to

the Earth and would appear larger than the slit size. The lower radial velocity limit

was determined to be

VLGSR(km/s−1) > 10−0.19−0.2MZ , (1)

where VLGSR is the velocity taken with respect to the Local Group standard of rest

and MZ is the absolute blue photographic magnitude. The velocity with respect to
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the Local Group standard of rest is defined as

VLGSR(km/s−1) = VhelioSR + 300 sin(b) cos(l) (2)

where VhelioSR is the velocity relative to the Heliocentric standard of rest, b is the

galactic latitude and l is the galactic longitude (Yahil et al. 1977). The NFGS

also excludes galaxies in the direction of the Virgo Cluster in order to avoid a bias

favoring a cluster population.

After these cuts, 1006 galaxies were left. To obtain a subsample that represents

the full range in Hubble type and absolute magnitudes from the CfA1 galaxy survey,

Jansen (2000) placed all the galaxies in one magnitude wide bins and then within

each bin the galaxies were sorted by their Hubble types. Afterwards, for each bin he

selected every Nth galaxy to get an even distribution of morphological types of the

same magnitude. The value of N was the ratio between the total number of galaxies

in a bin and desired number of galaxies from that bin (Marzke et al. 1994). Through

this process, he created a list of 196 galaxies with a median redshift of 0.01 and a

maximum redshift of 0.07. Since the NFGS contains a small number of galaxies but

represents the wide range in Hubble type and absolute magnitude, it is a perfect

survey for studying the color profile of galaxies.

Data available for the NFGS sample include U, B, and R surface photometry

(Jansen et al. 2000a), nuclear and globally integrated spectra (Jansen et al. 2000b),

and Two Micron All Sky Survey (2MASS) J, H, and Ks infrared images (Kirby et

al. 2008). The 2MASS images of the NFGS sample are not sensitive enough for

our study and the surface brightnesses produced do not extend beyond the central

regions (Kirby et al. 2008). Therefore, we have obtained new NIR data of the NFGS

sample in order to obtain a depth comparable to Jansen et al. (2000a).
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Our goal for this study is to obtain NIR data for many galaxies in the NFGS.

We are currently in the process of observing and obtaining more data. The galaxies

of which we have already obtained data were chosen based on a priority list and

which were visible at the time of the year that the data were taken.

3. Observational Methods

3.1. Observations

In this thesis, we processed NIR images of 11 galaxies, obtained previously by

Jansen and Kaleida using the PISCES Wide-field Infrared Camera on the 90-inch

Bok Telescope. We analyzed and produced radial profiles of one galaxy so far to

determine the contribution of the stellar population, dust, and metal content to

the color gradients, and to trace the older stellar populations for a range of nearby

galaxies. The low-sensitivity data from the 2MASS survey do not constrain well the

extinction by the interstellar dust and the stellar masses in these galaxies. With the

deeper images in J, H and Ks from the PISCES instrument, we aim to put tighter

constraints on these parameters. The PISCES instrument with the 90-inch Bok

Telescope was well suited for this project. The 8.5 x 8.5 arcmin field of view at

f/9 provides us with deep and wide-field near-infrared images that can be used to

study the extinction by interstellar dust and the stellar masses of these galaxies in

combination with the UV and optical data available.

The PISCES instrument is a 1024x1024 pixel HgCdTe camera designed by

McCarthy et al. (2001). It provides a plate scale of 0.5 arcsec /pixel when used on

the 90-inch Bok Telescope. It has a system gain of about 4.55± 0.04 e−/ADU and a

read noise of 5.13 ± 0.04 ADU (McCarthy et al. 2001).
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The observations were taken on 2010 October 28-31. For completeness, Table 1

lists all the galaxies observed during this run, general characteristics and information

about the observations. This paper though, only presents the results of UGC 439.

Column (1) lists the galaxies names. Columns (2) and (3) list their equatorial

coordinates that were measured from the Digital Sky Survey. Column (4) lists the

velocities with respect to the Local Group standard of rest. Column (5) lists their

distances, which was derived from the velocities from column (4) assuming H0=73

km s−1 Mpc−1. Column (6) lists the morphological types according to the Hubble

sequence. Column (7) lists the ellipticity of the galaxy. Columns (8-10) list the

filters, the number of non-photometric and photometric images. Non-photometric

images are used as additional exposures to attain the sensitivity needed to study the

outer regions of the galaxy, while only photometric images are used to obtain the

calibration solutions. Further detail is provided in Section 3.3.

Each galaxy was observed with J, H, and Ks filters (1.275, 1.63 and 2.12 µm,

respectively) and in four dither positions, where the galaxy was imaged in each

quadrant in order to account for bad pixels. Multiple exposures with small dithers

were taken at each large dither position. Images of seven standard stars were also

obtained. The observing conditions of October 31 were photometric and therefore

several Persson et al. (1998) standard stars were observed at low and high air masses

for photometric calibration.
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3.2. Reduction

The data were reduced within the IRAF environment. The steps of the reduction

pipeline were: (1) correct for crosstalk, (2) combine dark frames, (3) subtract dark

current, (4) create flat frame using either science frames or standard star frames,

(5) correct for pixel variation using flat frames, (6) sky subtraction, (7) apply a bad

pixel mask, (8) align images, (9) stack the images, and (10) flatten the background.

The following subsections will provide further information of these processes.

3.2.1. Crosstalk Correction

The first step in the pipeline was to correct for crosstalk using a program called

corquad. Crosstalk between the quadrants causes each pixel in one quadrant to leave

an “echo”, or a negative imprint of about 0.1%, and a tail in the other quadrants.

Corquad can successfully remove the ghost of faint stars, but it leaves minor ghosts

due to saturated stars, which is not a problem for our purposes.

3.2.2. Correction of Dark Current

The next step was to correct for dark current. Even when the detector is not

exposed to light, a signal, or dark current, is still generated due to the temperature

of the detector. In order to eliminate the dark current, dark frames, which are taken

with the shutter closed of the same exposure time, are subtracted from the science

frames.

The number of dark frames and their exposure times varied from night to night

during the run. The dark calibration frames were created by using a median filter

of stacks of dark frames of the same exposure time and night. Also, darks from the
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beginning of the night were combined apart from the dark frames taken at the end

of the night since the darks taken at the beginning of the night show some structure

that may be due to a transient effect of the detector reaching a stable temperature

after the liquid nitrogen coolant was refilled.

Once the combined dark frames were created, the appropriate dark calibration

frames were subtracted from the science and the standard star frames. For a third

of the images of UGC 439, we did not have dark frames of the appropriate exposure

time during a particular night. In consideration of scaling the existing dark frames

to the needed exposure times we tested the linearity of the response of the detector.

For a visible CCDs, we would expect the dark count should increase with time, but

infrared detectors are created using different materials and have a different quantum

behavior than CCDs. In Fig.1, we have plotted the relationship between the mean

count level of a dark and its exposure time. Each color represents a different night

Dark Mean Count of 2009 Run

0 20 40 60 80 100 120
Time (sec)

80

90

100

110

120

130

co
un

ts
 (A

D
U

)

Fig. 1.— Mean count level versus exposure time of dark frames. Each color represents
a different night during the run.
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during the run. As shown, there is no apparent relationship between the count

level and the exposure time. Since the detector is not linear, we were not able to

interpolate the dark frames for those exposure times. Therefore, the median was

taken of all the darks of the same exposure time, but not dependent on the night.

This new median was subtracted from the science frames that did not have dark

frames of the appropriate exposure time.

3.2.3. Flat Frames and Sky Subtraction

Pixels on the detector do not have the same quantum efficiency. Also, the

detector may also have features such as a gradient due to non-uniform illumination

and a cross mark due to separation of the quadrants. These features can be corrected

by dividing the science frame by a flat frame.

Flat field frames were created using either dithered science frames or standard

star frames that were dark-current corrected. In order to create flat fields using

science frames, the images needed to be well dithered; there cannot be repeating

frames where the galaxy occupies the same region on the detector. Standard star

frames that did not have a crowded field were also used. These frames were average

combined and normalized to create one flat field per filter per day.

An average of 10 frames were used to create each flat field frame. It should

be noted that McCarthy et al. (2001) states that J and H flat fields can be created

using science frames, but this method does not work as well when creating a Ks flat

field since Ks is sensitive to the thermal background from the night sky. McCarthy

et al. (2001) recommend taking a sky flat right after sunset and also creating a flat

frame from science frames, and then subtracting the two frames in order to remove

the thermal component and create a proper Ks-band flat field.
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Afterwards, all the dark-subtracted science frames were divided by the

appropriate flat field. Then the science frames were rotated −90◦ and reflected

across the x-axis so the orientation matched the sky. A sky frame was subtracted in

order to remove the thermal noise of the background sky and a bad pixel mask was

applied.

Fig.2 shows a J-band science frame of NGC 439 after several steps in the

processing. The galaxy is encased in a circle with a radius of 70 pixels (35′′). We

show images after: (1) crosstalk correction, (2) dark current correction, (3) flat

fielding and (4) sky subtraction.

Fig. 2.— J-band science frame of NGC 439 after each step in the processing. The
galaxy is encased in a circle with a radius of 70 pixels (35 arcsec). The frames show
images after (1) crosstalk correction, (2) dark current correction, (3) flat fielding and
(4) sky subtraction.
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3.2.4. Alignment and Stacking

Before aligning the images, we first corrected for pin-cushion distortion

demonstrated in Fig. 3. The pin-cushion distortion increases the plate scale with

distance from the center of the image. We first obtained a 17′ × 17′ 2MASS J-band

mosaic image centered on each galaxy which closely matched the pixel scale of the

PISCES using the on-line ‘Montage’ service at IRSA/IPAC. Then, by using the

IRAF task imregister, the science frames were aligned to the 2MASS image and

corrected for distortion by treating the image as if it were a rubber sheet, shifting,

rotating and compressing or stretching the image until the stars in the image match

up with the stars in the 2MASS image.

Before stacking the images, the exposure times were each normalized to one

second.

Pixel Number

T

Pi
xe

l N
um

be
r

Fig. 3.— Sample plot of the pin-cushion distortion of PISCES. The raw points (red)
and the corrected points (blue) show pin-cushion distortion with peak value of about
20 pixels (Guerra et al. 2013).
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Since the images were taken at different airmasses during the non-photometric

and photometric nights, the counts of non-photometric images were scaled to

the counts of the photometric images. This scale factor was determined for each

independent non-photometric image. Aperture photometry was performed on the

galaxy of interest in each image to determine the flux count. Then the average count

of the galaxy in the photometric images was divided by the count of the galaxy

image in a non-photometric night to determine the scale factor. Then each pixel

in an image was multiplied by its scale factor. As a result, when subtracting the

non-photometric scaled image from a photometric image, the galaxy is subtracted

out. Theoretically, scaling the non-photometric images will allow us to apply the

photometric solutions of the photometric images (Jansen et al. 2000a). In the stacked

image, non-photometric images help us gain more depth, while the photometric

images provide the photometric solutions. The images were stacked weighted

according to the inverse of their standard deviation. The standard deviation of each

image was calculated in different patches in the sky of each image and the average

was taken. Twenty-three frames were stacked to create the final J and H images and

twenty-two were stacked to create the final Ks image.

The final step in the pipeline was to flatten the sky background in order to

correct for the gradient in the sky and the “seams” in the checker-board pattern,

which are due to the separation of the quadrants. Fig.4 compares a sky flattened

stacked image to 2MASS images of UGC 439 in each band. The 1st row shows the

images in the J-band, the 2nd row shows the H-band, and the 3rd row shows the

Ks-band.
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Fig. 4.— Left to Right: The final processed science frame, and the 2MASS image.
Top to Bottom: J-band, H-band and Ks-band.
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3.3. Calibration

In order to determine the photometric calibration of our run, we measured the

instrumental magnitudes of multiple Persson et al. (1998) standard stars observed

on the photometric night. We used initial aperture radii of 2, 4, 6, 8,10 and 12 pixels

corresponding to 1”, 2”, 3”, 4”, 5”, and 6” respectively. Then by fitting a curve

of growth to the results of the aperture photometry, we determined the aperture

corrections for each star and airmass and extrapolated their aperture magnitudes.

Table 2 presents a list of standard stars. Column (1) lists the name, columns (2-3)

list the filter and the airmass at which they were observed, and columns (4-6) list

the aperture correction, the instrumental magnitudes and the best aperture radius.
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Table 2. Standard Stars

Object Filter Airmass Aperture Correction Instrumental Magnitudes Aperture radius
(mag) (mag) (pixels)

(1) (2) (3) (4) (5) (6)

P161-D J 1.05 −0.51± 0.04 −9.981± 0.003 10
1.2425 −0.70± 0.05 −9.957± 0.001 6

H 1.05 −0.49± 0.04 −10.038± 0.002 12
1.255 −0.064± 0.004 −10.066± 0.003 12

Ks 1.05 −0.48± 0.03 −9.611± 0.006 8
1.2675 −0.63± 0.05 −9.599± 0.005 10

P530-D J 1.1525 −0.74± 0.05 −10.348± 0.051 10
1.1725 −0.71± 0.05 −10.099± 0.001 6

H 1.16 −0.92± 0.07 −10.499± 0.002 16
1.185 −1.05± 0.08 −10.470± 0.003 8

Ks 1.1675 −0.66± 0.05 −10.059± 0.005 10
1.195 −.071± 0.05 −10.037± 0.004 12

S889-E J 1.21 −1.02± 0.07 −9.642± 0.004 10
1.5775 −0.80± 0.06 −9.584± 0.006 10

H 1.22 −0.99± 0.07 −9.814± 0.003 12
1.605 −0.77± 0.06 −9.799± 0.004 12

Ks 1.225 −0.89± 0.06 −9.346± 0.006 8
1.6375 −0.68± 0.05 −9.313± 0.006 10

P525-E J 1.715 −0.84± 0.06 −9.963± 0.003 14
H 1.6775 −0.89± 0.07 −10.159± 0.004 12
Ks 1.6425 −0.65± 0.05 −9.559± 0.005 6

S840-F J 1.345 −0.57± 0.04 −10.197± 0.002 12
H 1.3325 −0.82± 0.06 −10.322± 0.003 10
Ks 1.33225 −0.46± 0.03 −9.875± 0.004 10
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For each filter, we used an IRAF interactive fitting procedure mkimsets in

determining the zero point, Zλ, extinction value, ελ, and color term, cλ. Eq. 3

summarizes the fits that were applied to extract the photometric calibrations:


J = Ji − ZJ − εJX − cJ(J −Ks),

H = Hi − ZH − εHX − cH(H −Ks),

Ks = Ks,i − ZKs − εKsX − cKs(J −Ks),

(3)

where Ji, Hi and Ks,i are the instrumental magnitudes and X is the average airmass

of the image. We paired J with Ks for both the J and Ks calibration equations

instead of pairing J with H, or Ks with H because for each equation, J paired with

Ks produced a better fit.

We found a discrepancy between our zero points and extinction values, as

summarized in Table 3, and the published values (Guerra et al. 2013). We adopted

the photometric calibration values that we determined, since the residuals of the

calibration fits (Eq. 3) showed an rms of 0.007, 0.001 and 0.01 for a range of

instrumental magnitude in the J, H, and Ks bands respectively, as shown in Fig.5.

Appendix B discusses another method to determine the photometric calibrations

that we considered, but we decided against it due to large errors in the fit.

Using a similar procedure described in Jansen et al. (2000a), we photometrically

calibrated the radial intensity profiles by simultaneously solving for the calibration

Table 3. Photometric Constants

Filter Z σZ ε σε c σc

J -21.78 0.01 0.115 0.008 -0.002 0.005
H -21.518 0.005 0.036 0.003 0.001 0.008
K -21.15 0.02 0.155 0.009 0.001 0.003
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Fig. 5.— From top to bottom: The residuals of the J-band calibration fit versus
the J instrumental magnitudes, the residuals of the H-band calibration fit versus the
H instrumental magnitudes, and residuals of the Ks-band calibration fit versus Ks

instrumental magnitudes. Theoretically, the data should lie on the line y=0 since the
y-axis plots the residuals of each fit.
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equations for J, H and Ks. Similar to Equations 3, Equations 4 summarize the

calibration equations for J, H and Ks intensity profiles:


µJ(r) = µJ,i(r) − ZJ − εJX − cJ(µJ − µKs)(r),

µH(r) = µH,i(r) − ZH − εHX − cH(µH − µKs)(r),

µKs(r) = µKs,i(r) − ZKs − εKsX − cKs(µJ − µKs)(r),

(4)

where µλ,i denotes the surface brightness in instrumental magnitude per square

arcsec. By defining Pλ(r) as µλ,i(r) − Zλ − ελX, we can rewrite Equations 4 as:


(1 + cJ)µJ(r) = PJ(r) + cJµKs(r),

(1 + cH)µH(r) = PH(r) + cHµKs(r),

(1 − cKs)µKs(r) = PKs(r) − cKsµJ(r).

(5)

Then by substituting each equation into each other, we find that the solutions

for the surface brightnesses are:

µJ(r) =
PJ(r)(1 − cKs) + cJPKs(r)

1 + cJ − cKs
,

µKs(r) =
PKs(r)(1 + cJ) − cKsPJ(r)

1 + cJ − cKs

and

µH(r) =
PH(r)(1 + cJ − cKs) + cH(PKs(r)(1 + cJ) − cKsPJ(r))

1 + cJ + cH − cKs + cJcH − cHcKs
.

(6)
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Assuming that the individual errors, σµλ(r), in the color terms are Gaussian in

nature and uncorrelated, the random errors of the surface brightnesses are:



σµJ (r) =
1

nm

√
(1 − cKs)

2σ2
PJ

+ c2Jσ
2
PKs

+ [µ2
J(r) + P 2

J ]σ2
cKs

+ [µ2
J(r) + P 2

Ks
]σ2
cJ

σµKs(r) =
1

nm

√
(1 + cJ)2σ2

PKs
+ c2Ksσ

2
PJ

+ [µ2
Ks

(r) + P 2
J ]σ2

cKs
+ [µ2

Ks
(r) + P 2

Ks
]σ2
cJ

σµH =
1

nm(1 + cH)

√
((1 + cJ)cH)2σ2

PKs
+ c2Hc

2
Ks
σ2
PJ

+ nm2σ2
PH

+ [µ2
H(r) + P 2

H ]σ2
cKs

+[µ2
H(r) + P 2

H ]σ2
cJ

+ [µ2
H(r) + P 2

Ks
]σ2
cH
,

(7)

where nm = 1 + cJ − cKs .

The radial surface brightness profiles are also corrected for Galactic extinction

as given by Schlafly & Finbeiner (2011). These corrections in J, H, and Ks are 0.016,

0.010 and 0.007 magnitudes, respectively.

3.4. Photometry

In order to perform aperture photometry of UGC 439, circular annuli were

fitted to the galaxy. The width of the fitted circular annuli grew by a factor of 1.1

to maintain a nearly constant signal-to-noise ratio to compensate for the decline in

surface brightness with radius. The light was measured in annuli from 0.1951” to

62.3”. Fig.6 displays the J-band stacked image of UGC 439 showing the outermost

annulus edge in red and the inner and outer radii of the sky annulus in blue.
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Fig. 6.— The final J-band image of UGC 439. The red circle represents the outer
most annulus boundary at a radius of 124.6 pixels (62.3”) from the center of the
galaxy. The blue circles represents the inner and outer radii of the sky annulus at a
radius of 110 to 130 pixels (55” to 65”).

4. Results

In Fig. 7 we present the infrared surface brightness and color radial profiles of

UGC 439. The colors seem to become redder with radius, but within the errors,

the color profile may be flat. Fig. 8 presents the R band image, the U, B and R

surface brightness radial profiles and B-R and U-B color radial profiles for UGC 439

reported by Jansen et al. (2000a). As expected for an Sa galaxy, the color profiles

of UGC 439 are flat in the visible and infrared wavelength regime. The visible data

of Jansen et al. (2000a) have much smaller errors than our infrared data because

the noise in the infrared is much greater than in the visible. We overlapped both

wavelength regimes in Fig. 9. The infrared surface brightness decreases as a function

of radius just as the visible surface brightness does.
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Fig. 7.— The radial dependence of the surface brightness in J, H and Ks(top panel)
and corresponding colors (bottom panel) are presented for UGC 439.
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Fig. 8.— The R band image and the radial profiles of UGC 439. The radial depen-
dence of the surface brightness in U, B and R (top panel) and corresponding colors
(bottom panel) (Jansen et al. 2000a).
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with R, B, and U surface brightness from Jansen et al. (2000a)(top panel) and corre-
sponding colors (bottom panel) are presented for UGC 439.
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5. Discussion

In order to determine the stellar age and the dust component of UGC 439, we

plan to combine the already available UV and visible data with our infrared data

to create and fit a spectral energy distribution (SED). An SED can separate the

stellar and dust components of the color radial profiles and help us determine which

component affects the color profile of the galaxy the most.

We also plan to extract radial profiles from the other 11 galaxies in the PISCES

data set. Since these galaxies have a non-zero ellipticity, we need to develop code

for performing aperture photometry with elliptical annuli. Once we extract radial

profiles of these other 11 galaxies, we will also fit an SED to each galaxy.

5.1. Infrared Side Port Imager (ISPI)

We also plan to expand our data set and take observations of more NFGS

galaxies in the NIR. Since the PISCES instrument has been decommissioned, we

have proposed for observing time using Infrared Sideport Imager (ISPI) on the 4

meter Blanco Telescope on Cerro Tololo. ISPI is a 2048x2048 pixel array detector

with 0.303 arcsec/pixel resolution and a 10.25x10.25 arcmin field of view.

We have received one night of observing during April 2014 and half a night

during the a re-commissioning night in late 2013. Shane Loeffler from the University

of Minnesota, Duluth was able to to fully process the images of IC 1639 taken on

the re-commissioning night during CTIO REU program. Fig 10 presents the R band

image and radial profiles of the U, B and R bands (Jansen et al. 2000a) and Fig.

5.1 presents the ISPI J band image processed by Loeffler and the radial profiles

of the J, H and Ks bands of IC 1639. In Fig. 12 we show the profile in the two

wavelength regimes. Photometric calibrations for ISPI were determined using the
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2MASS stars in the images as described in Appendix B. The radial profiles were

extracted using the code developed in this thesis and aperture photometry was

performed using circular annuli. To obtain a more accurate radial profiles, elliptical

annuli will be used in the future. The infrared color profiles closely correspond with

the optical profile and are flat as a function of radius. The surface brightness in

both wavelength regimes drop smoothly as expected from an elliptical galaxy due to

their homogeneous stellar population. Comparing the error in the infrared colors to

the optical colors, we have concluded that the current dataset of ISPI data are not

sufficient to study IC 1639 at radii as large as Jansen et al. (2000a). As we obtain

more observing nights and data, we will greatly increase the depth of our infrared

images.
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Fig. 10.— The R band image and the ra-
dial profiles of UGC 439. The top panel
shows the radial dependence of the surface
brightness in U, B and R and the bot-
tom panel shows the radial dependence
of the corresponding colors (Jansen et al.
2000a).
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6. Conclusions

We successfully developed a pipeline to process PISCES infrared images and

an IDL code to reduce and perform aperture photometry on galaxies with zero

ellipticity such as UGC 439. The PISCES J, H and Ks band images are deeper than

the 2MASS images of UGC 439 enabling us to studying the outer regions of the

galaxy. The color radial profile that we present show that UGC 439 has a flat color

profile in the infrared.
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A. Derivation of Calibration Equations 6 and 7

We present the algebra to find the solutions for the surface brightnesses and

the random errors associated with each solution. Equation A1 summarizes the

calibration equations for J, H and Ks intensity profiles:


µJ(r) = µJ,i(r) − ZJ − εJX − cJ(µJ − µKs)(r),

µH(r) = µH,i(r) − ZH − εHX − cH(µH − µKs)(r),

µKs(r) = µKs,i(r) − ZKs − εKsX − cKs(µJ − µKs)(r).

(A1)

In order to solve for the each surface brightnesses solution, we define


PJ(r) = µJ,i(r) − ZJ − εJX,

PH(r) = µH,i(r) − ZH − εHX,

PKs(r) = µKs,i(r) − ZKs − εKsX.

(A2)

By substituting Equations A2 into Equations A1, we can rewrite Equations A1 as:

(1 + cJ)µJ(r) = PJ(r) + cJµKs(r), (A3)

(1 + cH)µH(r) = PH(r) + cHµKs(r), (A4)

(1 − cKs)µKs(r) = PKs(r) − cKsµJ(r). (A5)

We first find the solution for the surface brightness of J by substituting Equation

A5 into Equation A3:

(1 + cJ)µJ(r) = PJ(r) + cJ

(
PKs(r) − cKsµJ(r)

1 − cKs

)
. (A6)
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Multiplying both sides by 1 − cKs yields:

(1 + cJ)(1 − cKs)µJ(r) = PJ(r)(1 − cKs) + cJPKs(r) − cJcKsµJ(r). (A7)

Adding cJcKsµJ(r) to both sides and expanding the left side yields:

(1 + cJ − cKs − cJcKs)µJ(r) + cJcKsµJ(r) = PJ((r)1 − cKs) + cJPKs(r). (A8)

By factoring µJ(r), we can rewrite Equation A8 as

(1 + cJ − cKs − cJcKs + cJcKs)µJ(r) = PJ(r)(1 − cKs) + cJPKs(r). (A9)

The solution for the surface brightness of J is

µJ(r) =
PJ(r)(1 − cKs) + cJPKs(r)

1 + cJ − cKs
. (A10)

We can find the solution for the surface brightness of Ks by substituting

Equation A3 into Equation A5 and following the method described above:

(1 − cKs)µKs(r) = PKs(r) − cKs

(
PJ(r) + cJµKs(r)

1 + cJ

)
, (A11)

(1 + cJ)(1 − cKs)µKs(r) = PKs(r)(1 + cJ) − cKsPJ(r) − cKscJµKs(r), (A12)

(1 + cJ − cKs − cJcKs)µKs(r) + cKscJµKs(r) = PKs(r)(1 + cJ) − cKsPJ(r), (A13)

(1 + cJ − cKs − cJcKs + cJcKs)µKs(r) = PKs(r)(1 + cJ) − cKsPJ(r), (A14)

µKs(r) =
PKs(r)(1 + cJ) − cKsPJ(r)

1 + cJ − cKs
. (A15)

34



In order to solve for the surface brightness of H, we substitute Equation A15

into Equation 4:

(1 + cH)µH(r) = PH(r) + cH

(
PKs(r)(1 + cJ) − cKsPJ(r)

1 + cJ − cKs

)
. (A16)

Then by following similar algebraic steps, the surface brightness of H is:

(1 + cH)µH(r) =
PH(r)(1 + cJ − cKs) + cH(PKs(r)(1 + cJ) − cKsPJ(r))

1 + cJ − cKs
, (A17)

(1 + cH)(1 + cJ − cKs)µH(r) =

PH(r)(1 + cJ − cKs) + cH(PKs(r)(1 + cJ) − cKsPJ(r)),

(A18)

(1 + cJ + cH − cKs + cJcH − cHcKs)µH(r) =

PH(r)(1 + cJ − cKs) + cH(PKs(r)(1 + cJ) − cKsPJ(r)),

(A19)

µH(r) =
PH(r)(1 + cJ − cKs) + cH(PKs(r)(1 + cJ) − cKsPJ(r))

1 + cJ + cH − cKs + cJcH − cHcKs
. (A20)

In order to find the random error in the surface brightness of J, we solved the

following equation:

σµJ (r) =

√(
∂µJ(r)

∂PJ(r)

)2

σ2
PJ (r)

+

(
∂µJ(r)

∂PKs(r)

)2

σ2
PKs (r)

+

(
∂µJ(r)

∂cKs

)2

σ2
cKs

+

(
∂µJ(r)

∂cJ

)2

σ2
cJ
.

(A21)
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By algebra, Equation A21 yields.

σµJ (r) =

√(
1 − cKs

1 + cJ − cKs

)2

σ2
PJ (r)

+

(
cJ

1 + cJ − cKs

)2

σ2
PKs (r)

+

(
−PJ(r)(1 + cJ − cKs) + (PJ(r)(1 − cKs) + cJPKs(r))

(1 + cJ − cKs)
2

)2

σ2
cKs

+

(
PKs(r)(1 + cJ − cKs) + (PJ(r)(1 − cKs) + cJPKs(r))

(1 + cJ − cKs)
2

)2

σ2
cJ
.

(A22)

By substituting Equation A3 into the 3rd and 4th term, we can rewrite Equation A22

as;

σµJ (r) =

√(
1 − cKs

1 + cJ − cKs

)2

σ2
PJ (r)

+

(
cJ

1 + cJ − cKs

)2

σ2
PKs (r)

+

(
−PJ(r)(1 + cJ − cKs) + µJ(r)(1 + cJ − cKs)

(1 + cJ − cKs)
2

)2

σ2
cKs

+

(
PKs(r)(1 + cJ − cKs) + µJ(r)(1 + cJ − cKs)

(1 + cJ − cKs)
2

)2

σ2
cJ
.

(A23)

Simplifying the 3rd and 4th term of Equation A23 yields:

σµJ (r) =

√(
1 − cKs

1 + cJ − cKs

)2

σ2
PJ (r)

+

(
cJ

1 + cJ − cKs

)2

σ2
PKs (r)

+

(
−PJ(r) + µJ(r)

1 + cJ − cKs

)2

σ2
cKs

+

(
PKs(r) + µJ(r)

1 + cJ − cKs

)2

σ2
cJ
.

(A24)

By factoring the denominator out and expanding the 3rd and 4th term yields:

σµJ (r) =

√(
1

1 + cJ − cKs

)2√
(1 − cKs)

2σ2
PJ (r)

+ c2Jσ
2
PKs (r)

+[P 2
J (r) + 2µJ(r)PJ + µ2

J(r)]σ2
cKs

+[P 2
Ks

(r) + 2µJ(r)PKs + µ2
J(r)]σ2

cJ
.

(A25)
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By assuming the individual errors in the color terms are Gaussian in nature and

uncorrelated the random error in the surface brightness of J is

σµJ (r) =
1

1 + cJ − cKs

√
(1 − cKs)

2σ2
PJ (r)

+ c2Jσ
2
PKs (r)

+ [P 2
J (r) + µ2

J(r)]σ2
cKs

+[P 2
Ks

(r) + µ2
J(r)]σ2

cJ
.

(A26)

By following the same algebraic steps, the random error in the surface brightness

of Ks is:

σµKs (r) =

√(
∂µKs(r)

∂PKs(r)

)2

σ2
PKs (r)

+

(
∂µKs(r)

∂PJ(r)

)2

σ2
PJ (r)

+

(
∂µKs(r)

∂cKs

)2

σ2
cKs

+

(
∂µKs(r)

∂cJ

)2

σ2
cJ
,

(A27)

σµKs (r) =

√(
1 + cJ

1 + cJ − cKs

)2

σ2
PKs (r)

+

(
−cKs

1 + cJ − cKs

)2

σ2
PJ (r)

+

(
−PJ(r)(1 + cJ − cKs) + (PKs(r)(1 + cJ) − cKsPJ(r))

(1 + cJ − cKs)
2

)2

σ2
cKs

+

(
PKs(r)(1 + cJ − cKs) − (PKs(r)(1 + cJ) − cKsPJ(r))

(1 + cJ − cKs)
2

)2

σ2
cJ
.

(A28)

By substituting Equation A5 into the 3rd and 4th term, we can rewrite Equation A28

as;

σµKs (r) =

√(
1 + cJ

1 + cJ − cKs

)2

σ2
PKs (r)

+

(
−cKs

1 + cJ − cKs

)2

σ2
PJ (r)

+

(
−PJ(r)(1 + cJ − cKs) + µKs(r)(1 + cJ − cKs)

(1 + cJ − cKs)
2

)2

σ2
cKs

+

(
PKs(r)(1 + cJ − cKs) + µKs(r)(1 + cJ − cKs)

(1 + cJ − cKs)
2

)2

σ2
cJ
,

(A29)
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σµKs (r) =

√(
1 + cJ

1 + cJ − cKs

)2

σ2
PKs (r)

+

(
−cKs

1 + cJ − cKs

)2

σ2
PJ (r)

+

(
−PJ(r) + µKs(r)

1 + cJ − cKs

)2

σ2
cKs

+

(
PKs(r) + µKs(r)

1 + cJ − cKs

)2

σ2
cJ
,

(A30)

σµKs (r) =

√(
1

1 + cJ − cKs

)2√
(1 + cJ)2σ2

PKs (r)
+ c2Ksσ

2
PJ (r)

+[P 2
J (r) + 2PJ(r)µKs(r) + µ2

Ks
(r)]σ2

cKs

+[P 2
Ks

(r) + 2PKs(r)µKs(r) + µ2
Ks

(r)]σ2
cJ
.

(A31)

By assuming the individual errors in the color terms are Gaussian in nature and

uncorrelated the random error in the surface brightness of Ks is:

σµKs (r) =
1

1 + cJ − cKs

√
(1 + cJ)2σ2

PKs (r)
+ c2Ksσ

2
PJ (r)

+ [P 2
J (r) + µ2

Ks
(r)]σ2

cKs

+[P 2
Ks

(r) + µ2
Ks

(r)]σ2
cJ
.

(A32)

In order to find the random error in the surface brightness of H, we solved the

following equation:

σµH (r) =

√(
∂µH(r)

∂PJ(r)

)2

σ2
PJ (r)

+

(
∂µH(r)

∂PKs(r)

)2

σ2
PKs (r)

+

(
∂µH(r)

∂PH(r)

)2

σ2
PH(r)

+

(
∂µH(r)

∂cKs

)2

σ2
cKs

+

(
∂µH(r)

∂cJ

)2

σ2
cJ

+

(
∂µH(r)

∂cH

)2

σ2
cH

(A33)

By taking the partial derivative of Equation A20 and defining ε as 1 + cJ + cH −
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cKs + cJcH − cHcKs and nm as (1 + cJ − cKsE, we can rewrite Equation A33 as:

σµH (r) =

√(
−cHcKs

ε

)2

σ2
PJ (r)

+

(
cH(1 + cJ)

ε

)2

σ2
PKs (r)

+

(
1 + cJ − cKs

ε

)2

σ2
PH(r)

+

(
(−PH(r) − cHPJ(r))ε+ (PH(r)nm+ cH(PKs(r)(1 + cJ)))(1 + cH)

ε2

)2

σ2
cKs

+

(
(PH(r) + cHPKs(r))ε− (PH(r)nm+ cH(PKs(r)(nmPJ(r)))(1 + cH)

ε2

)2

σ2
cJ

+

(
PKs(r)nmPJ(r)ε− (PH(r)nm+ cH(PKs(r)(1 + cJ) − cKsPJ(r)))nm

ε2

)2

σ2
cH
.

(A34)

Substituting Equation A4 into the 3rd and 4th term, Equation A34 can be

rewritten as

σµH (r) =

√(
−cHcKs

ε

)2

σ2
PJ (r)

+

(
cH(1 + cJ)

ε

)2

σ2
PKs (r)

+

(
1 + cJ − cKs

ε

)2

σ2
PH(r)

+

(
(−PH(r) − cHPJ(r))ε+ µH(r)ε(1 + cH)

ε2

)2

σ2
cKs

+

(
(PH(r) + cHPKs(r))ε− µH(r)ε(1 + cH)

ε2

)2

σ2
cJ

+

(
(PKs(r)nmPJ(r))ε− µH(r)εnm

ε2

)2

σ2
cH
.

(A35)
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By simplifying, substituting ε and nm and expanding the 3rd and 4th term yields:

σµH (r) =

√(
−cHcKs

1 + cJ + cH − cKs + cJcH − cHcKs

)2

σ2
PJ (r)

+

(
cH(1 + cJ)

1 + cJ + cH − cKs + cJcH − cHcKs

)2

σ2
PKs (r)

+

(
1 + cJ − cKs

1 + cJ + cH − cKs + cJcH − cHcKs

)2

σ2
PH(r)

+

(
−PH(r) − cHPJ(r) + µH(r)cH + µH(r)

(1 + cJ + cH − cKs + cJcH − cHcKs)

)2

σ2
cKs

+

(
PH(r) + cHPKs(r) − µH(r)cH − µH(r)

1 + cJ + cH − cKs + cJcH − cHcKs

)2

σ2
cJ

+

(
PKs(r) + PKscJ − cKsPJ(r) − µH(r)cJ + µH(r)cKs − µH(r)

1 + cJ + cH − cKs + cJcH − cHcKs

)2

σ2
cH
.

(A36)

By assuming the individual errors in the color terms are Gaussian in nature and

uncorrelated the random error in the surface brightness of H is:

σµH (r) =

√
1

1 + cJ + cH − cKs + cJcH − cHcKs

√
c2Hc

2
Ks
σ2
PJ (r)

+ (cH(1 + cJ))2σ2
PKs (r)

+(1 + cJ − cKs)
2σ2

PH(r)

+[P 2
H(r) + µ2

H(r)]σ2
cKs

+[P 2
H(r) + µ2

H(r)]σ2
cJ

+[P 2
Ks

(r) + µ2
H(r)]σ2

cH
,

(A37)
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σµH (r) =
1

(1 + cJ − cKs)(1 + cH)

√
c2Hc

2
Ks
σ2
PJ (r)

+ (cH(1 + cJ))2σ2
PKs (r)

+(1 + cJ − cKs)
2σ2

PH(r) + [P 2
H(r) + µ2

H(r)]σ2
cKs

+[P 2
H(r) + µ2

H(r)]σ2
cJ

+ [P 2
Ks

(r) + µ2
H(r)]σ2

cH
.

(A38)

B. Alternative Calibration Method

We also tried to determine the photometric calibration of the images of UGC

439 by measuring the instrumental magnitudes of multiple 2MASS AAA stars in the

field of the image. Table 4 presents a list of the 2MASS stars. Column (1) lists the

name and Columns (2-7) list the 2MASS and instrumental magnitudes for J, H and

Ks bands. Fig.13 is the J-band stacked images of UGC 349 with the 2MASS stars

indicated by blue circles.

Since the 2MASS stars are in the same field of view of the images and were

taken at the same airmass, we do not fit for the extinction value and therefore the

Table 4. PHOTOMETRIC CONSTANTS

Star J (2MASS)a Ji H (2MASS)a HI Ks (2MASS)a Ks,i

(mag) (mag) (mag) (mag) (mag) (mag)

1 12.49±0.02 -6.10±0.03 12.02±0.05 -6.38±0.02 11.97±0.07 -6.09±0.02
2 15.51±0.06 -5.69±0.05 15.14±0.06 -6.05±0.06 14.91±0.08 -5.82±0.06
3 15.04±0.04 -6.25±0.03 14.30±0.05 -6.38±0.04 14.14±0.08 -6.08±0.04
4 14.80±0.04 -5.16±0.05 14.30±0.09 -5.29±0.04 14.04±0.09 -5.09±0.04

aRetrieved from Smithsonian Institution.
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fit applied to extract the photometric calibrations are


J − Ji = −ZJ − cJ(J −Ks),

H −Hi = −ZH − cH(H −Ks),

Ks −Ks,i = −ZKs − cKs(J −Ks).

(B1)

Fig.14 shows the fit for all three bands. From the slope and the y-intercept

of each fit, the color term and the zero point can be extracted for the respected

filters. The correlation coefficient from these particular fits are 0.643, 0.679 and

0.448 for the J, H and Ks bands respectively. Thus, we determined the photometric

calibrations extracted using the Persson standard stars are more trustworthy than

the values extracted from the 2MASS stars.

Fig. 13.— The J-band stacked image of UGC 349. The AAA 2MASS stars are
enclosed in blue circles.
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Fig. 14.— The difference between the 2mass magnitude and instrumental magnitude
versus a 2mass color. From top to bottom: J-Jin vs. J-Ks, H-Hin vs. H-Ks, and Ks-
Ks in vs J-Ks.
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