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ABSTRACT 

NORBU, JIGME. Incentive to Innovate: Dynamic Optimization Strategy in the Case of a 

Symmetric Duopoly. 

 

Technological dominance and spillovers play important roles in a firm’s decision to 

investment in innovated products. It is intuitive to think that a firm which is technologically 

ahead will dominate the market for innovated products. However, the question of the spillover 

advantage a firm gets when they are technologically behind makes the decision to invest in new 

technology more complex. Therefore, in this paper, I consider the investment in new product and 

cost of doing research, along with capital and level of technology, to be primary factors affecting 

a firm’s profit. I ask, when is it a good time to invest in new product and when is it appropriate 

for a firm to allocate more funding for research? I find that firms tend to do more research when 

they have more market share and invest less when the total capital in the market increases. They 

tend to invest more when they are technologically ahead and do more research when they are 

behind.  This is a dynamic game because a firm’s decision to invest depends not only on its own 

level of technology but also on the rival firm’s level of technology and market share. The 

presence of technological spillovers also adds onto the dynamics of the game since it discourages 

the firm, which is technologically ahead, from investing in technological advances. 
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CHAPTER ONE 

INTRODUCTION 

 

In this project, I am asking, what is the optimal dynamic
1
 strategy to maximize profit 

when firms decide to innovate? I am primarily interested in investigating this in the context of 

symmetric duopoly where there are two main firms selling identical products and there are many 

buyers in the market. One good example of firms in such market structure is Airbus and Boeing. 

I use their product timeline to get a sense of the pattern that my model has to fit. We can observe 

that Boeing and Airbus introduces new aircraft model in response to the rival firm. My structural 

model tries to replicate the patterns that are similar to their behaviors. It is common to see 

Boeing and Airbus introducing new products in the market. Since this is a duopoly, firms 

compete for the market share of their products. So then, what are the factors that affect the 

investment decisions? What happens when the firms collude and/or compete?  

Technological dominance and spillovers also play important roles in the investment 

decision of a firm. It is intuitive to think that a firm which is technologically ahead will dominate 

the market for innovated products, like in the case of Boeing and Airbus. However, the question 

of spillover advantage that a firm gets when they are technologically behind makes the decision 

to invest in new technology more complex. Thus, in this paper I consider the investment in new 

productive capacity and cost of doing research, along with capital and level of technology, to be 

primary factors affecting a firm’s profit. In their paper, Dawid et al. (2010) present their model in 

the form of two firms producing homogeneous goods with one of the firms having the option to 

innovate (i.e. to introduce a new product) which is differentiated vertically and horizontally from 

                                                 
1
 Dynamic optimization refers to the process of minimizing or maximizing some objective function over a period of 

time. 
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the previous products. Building onto their paper, I test if the outcome differs when we give both 

firms the option to innovate.  

I am mainly interested in identifying the optimal level of investment in new productive 

capacity and the optimal level of research that determines the optimal level of capital and 

technology that will maximize profit. This is a dynamic game because a firm’s decision to invest 

depends not only on its level own level of technology but also on the rival firm’s level of 

technology and market share. The presence of technological spillovers also adds onto the 

dynamics of the game since it discourages the firm that is technologically ahead from investing 

in the new products.  

I find that firms tend to do more research when they have more market share and invest 

less when the total capital in the market increases. They tend to invest more when they are 

technologically ahead and do more research when they are behind. This is most probably 

because when the rival firm is dominating the market and has superior technology, a firm would 

want to increase research to catch up. In doing so, they can also reduce the cost of doing research 

since they can take advantage of reduced research cost due to technological spillover. This 

enables the firm that is technologically behind to invest in production when they are trying to 

catch up technologically as well.  

My paper is organized as follow. Chapter 2 provides insight to the pattern of innovation 

of Boeing and Airbus and the background information on how Boeing and Airbus came to be a 

duopoly. The second part of chapter 2 introduces the mathematical tools (Calculus of Variations 

and Optimal Control Theory) that I use for solving the equations. Full excerpts from the sources 

of these topics are provided in the appendices as well. This chapter also provides a brief history 
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on the evolution of dynamic optimization theory. Finally, in the last part, I provide an example of 

dynamic optimization problem and a walk through of the process involved in solving the 

problem using optimal control. 

After that, chapter 3 discusses the literatures on various topics and researches in the field 

of dynamic optimization in a duopoly setting. In addition, it also covers papers on the effect of 

R&D spillovers and product innovation.  Then, first part of chapter 4 covers the setting up the 

model and the objective functions for the firms. Then the later part provides conjectures and 

proofs based on the optimal solution paths of the state and control variables. Finally, chapter 5 

concludes the paper.  
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CHAPTER TWO 

BACKGROUND 

2.1. Market Structure 

Past few decades has been a period of constant innovation and competition between 

Boeing and Airbus. Both firms consistently introduced new models in the market and made new 

modifications to the old ones in order to stay ahead of the game.  Table 1 shows the list of all the 

family of commercial aircraft that Boeing and Airbus introduced so far.  

Boeing Co. Airbus 

Year Introduced Aircraft Model Year Introduced Aircraft Model 

1968 737 1972 A300 

1970 747 1983 A310 

1982 767 1988 A320 

1983 757 1993 A330 

1995 777 1994 A340 

2011 787 2007 A380 

Table 1. Year of commercial aircraft models introduced by Boeing and Airbus. Data collected 

from the company websites: www.boeing.com and www.airbus.com .  

 

We can observe that the timing of most of the models introduced were close to the rival 

firm’s timing. By illustrating the information in a timeline format, it is easy to see the pattern in 

Boeing and Airbus’ behavior in introducing new aircraft models. Figure 1 illustrates the 

information in Table 1 as a timeline. There is a pattern in the timing of innovation by both firms: 

whenever one firm innovates, the other one does so within a year or two, and then there are no 

new innovations for a long time. For instance, Airbus entered the market in 1972 with A300 in 

order to challenge and compete with Boeing’s 747 (1970). Then the next technological 

http://www.boeing.com/
http://www.airbus.com/
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breakthrough does not occur until 1982 when Boeing introduced the 767. A year later, in 1983, 

Airbus introduced A310. After that, there is no innovation for next five years and then Airbus 

introduced A320 in 1988, A330 in 1993 and A340 in 1994. To follow up, Boeing introduced 777 

in 1995. Once again, there was no innovation for a long time after that. Finally, in 2007, Airbus 

introduced A380 in the market followed up by Boeing with 787 (Dreamliner) in 2011.  

 

Figure 1. Timeline of  commercial aircraft models introduced by Boeing and Airbus. Data 

collected from the company websites: www.boeing.com and www.airbus.com 

 

Boeing and Airbus are in duopoly market structure. So we need some model of duopoly 

to reflect the competition. However, the model evolves over time so we need a dynamic model. 

First we will explore how these firms came to be a duopoly. Since late 1960s, there have been 

only two big names in the commercial aircraft industry: Boeing and Airbus. Series of events 

resulted in a duopoly in the global market between Airbus and Boeing.  
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Named after its founder, William Boeing, Boeing Co. (BA) is one of the oldest aircraft 

manufacturing company which dates back to 1916.
2
 It has seen the rise and fall of many partner 

and rival firms alike and matured as a company over the years. For instance, Douglas Aircraft Co. 

(another successful aircraft manufacturer) was one of Boeing’s biggest rivals in the 1960s. 

Douglas Aircraft was best known for “DC” (Douglas Commercial) commercial aircraft series. 

However after the end of World War II, the company was struggling to expand its production 

and eventually went through a merger with McDonnell Aircraft Corp. (another key producer of 

military aircraft) to form the McDonnell Douglas Corp.
3
 McDonnell Douglas struggled to 

maintain the profitability of its commercial aircraft division (Olienyk et al., 2011) which then on 

August 1, 1997, lead to merger with Boeing to form the present day Boeing Company. 
4
 As for 

Lockheed (another big rival firm), the company was unable to realize profitability in the 

commercial aircraft production and had to withdraw from the business in the early 1980s. Thus 

this marked the end of an era of competition on the home ground making Boeing a monopoly in 

the U.S. Since then, Boeing has managed to dominate the aircraft market and create barriers to 

entry (especially in the U.S. market).  

However, the competition from the outside was just on the rise with the agreement of 

French, German and British governments on plans to build European aircraft.  

“...A joint statement states the governments have agreed “for the purpose of strengthening 

European co-operation in the field of aviation technology and thereby promoting economic and 

                                                 
2
 Details available on company website: www.boeing.com  

3
The Boeing Logbook: 1964 – 1970, http://www.boeing.com/boeing/history/chronology/chron10.page? . retrieved 

on 11/11/2013. 
4
 
4
The Boeing Logbook: 1997 – 2001, http://www.boeing.com/boeing/history/chronology/chron16.page#97; 

retrieved on 11/11/2013. 

http://www.boeing.com/
http://www.boeing.com/boeing/history/chronology/chron10.page?
http://www.boeing.com/boeing/history/chronology/chron16.page#97
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technological progress in Europe, to take appropriate measures for the joint development and 

production of an Airbus”. The aim is also to challenge American domination.”
5
 

Airbus was founded as a consortium in December, 1970, when Airbus Industry was 

formally established as a Groupement d'Interet Économique (Economic Interest Group or GIE). 

This comprised of France’s Aerospatiale (a merger of Sud Aviation, SEREB and Nord Aviation) 

with 50% ownership and Germany’s Deutsche Airbus (a group of four firms, 

Messerschmittwerke, Hamburger Flugzeugbau, VFW GmbH and Siebelwerke ATG) with the 

other 50% stake. At the time when Airbus was established, the global market for commercial 

aircraft was dominated by American firms such as Boeing, Douglas Aircraft and Lockheed with 

90% market share. With the commitment from British, German, French and Spanish 

governments to provide financial support (in the form of loans with low interest rates) Airbus 

was able to survive and expand its market share in the commercial aircraft industry.  

2.2. Dynamic Optimization Theory  

Airbus and Boeing are playing a dynamic game (evolving over time) against one another, 

so we need to understand how to solve dynamic optimization problems to explain their behavior. 

Following are some of the terminologies and definitions that will help understand the 

background on the type of game and mathematical tools that are used in this paper. First, let us 

look at the mathematical tools that are frequently used in economics to solve a dynamic 

optimization problem. Then we will look into a brief history of evolution of dynamic 

optimization theory in economics. 

 

                                                 
5
 The Timeline: July 1967, http://www.airbus.com/company/history/the-timeline/ retrieved on 11/11/2013 

http://www.airbus.com/company/history/the-timeline/
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2.2.1. Mathematical Tools 

We look at the dynamic optimization techniques of the calculus of variations and of optimal 

control theory as analytic methods for solving planning problems in continuous time. Likewise, 

these tools are used by economists to solve problems involving duopoly models like mine.  

a) Calculus of Variation
6
 

The origin of calculus of variations can be traced back to the posing of the 

brachistochrone problem
7
 by John Bernoulli in 1696 and its solution by him and independently 

by his brother James in 1697.  Other specific problems were solved and a general mathematical 

theory was developed by Euler and Lagrange.  

 The modern era began in the early 1960s with a resurgence of interest by mathematicians 

and groups of economists and management scientists in certain dynamic problems.  The optimal 

control theory was developed in Russia by Pontryagin and his co-workers in the late 1950s. It 

was then translated into English in 1962. The theory generalizes the calculus of variations by 

extending its range of applicability. Functional optimization (Appendix.1) using Gateaux 

Variation allows us to derive the Euler-Lagrange equation. We are then able to use the equation 

to solve calculus of variation problems. 

b) Optimal Control  

The maximum principle for optimal control was developed in the late 1950’s by L. S. 

Pontryagin and his co-workers. The maximum principle applies to all calculus of variations 

problems as optimal control gives equivalent results. However, the two approaches differ and 

                                                 
6
 The definitions and history are derived from Kamien and Schwartz (1991).  

7
 The brachistrochrone problem posed by John Bernoulli was, “Given two points A and B in a vertical plane, what is 

the curve traced out by a point acted on only by gravity, which starts at A and reaches B in the shortest time.” 
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sometimes optimal control approach gives insights into a problem that might be less readily 

apparent through the calculus of variations.  

 Optimal control (see Appendix. 2) also applies to problems for which the calculus of 

variations is not convenient, especially the ones that involve constraints on the derivatives of 

functions sought.  In optimal control problems, variables are divided into two classes, state 

variables and control variables. The movement of state variables is governed by first order 

differential equations.  

2.2.2. Brief History
8
 

Frank Ramsey’s (1928) paper on the optimum rate of savings of a nation is largely 

known as the paper which introduces the application of dynamic optimization in economic 

problems. He analyzed a continuous-time dynamic optimization model, and developed a 

modification of the standard calculus of variations method to show the existence of an optimum 

savings rate, when all generations over an infinite time horizon are to be treated equally in the 

objective function (Majumdar et al., 2000). Over the last forty years, there has been fast growth 

in the field of industrial economics involving both theoretical and empirical (George et al, 1992). 

Economists and management scientists alike have attempted to generalize the theory of firm and 

find simplified applications in the field of industrial economics. Almost after thirty years since 

Ramsey, the method of optimal control devised by Pontryagin et al. (1962) lead to a renewed 

interest in the field of dynamic optimization. Number of papers studied Ramsey’s problem in 

depth including Cass (1965), Srinivasan (1964) and Koopmans (1965). 

                                                 
8
 excerpts from Majumdar et al. (2000), Chapter 2 of the book 



10 

 

The 1950’s and early 60’s  gave rise to a literature on finite-horizon pure capital 

accumulation oriented dynamic optimization exercises, where optimality was defined in terms of 

only the state of the economy at the end of the horizon. The dynamic optimization problems of 

the Ramsey-type were viewed differently after the shift in emphasis of many economies away 

from planning at the national level.  The problem being solved was now viewed as a descriptive 

problem that a typical representative agent solves rather than a normative problem the “social 

planner” ought to solve. The Ramsey objection to discounting future utilities as “ethically 

indefensible” on the part of the social planner was no longer relevant. Thus, the problem to be 

solved in describing an agent’s behavior would now be a discounted dynamic optimization 

problem of the Ramsey-type. This reformulation of the subject had two important outcomes: the 

issue of the existence of an optimal program, which had occupied center-stage for undiscounted 

dynamic optimization models, became a relatively unimportant aspect of the theory for 

discounted model; and description of dynamic behavior of optimal programs became 

considerably more difficult.  

In this project, we are mainly concerned about the oligopolistic market structure and the 

behaviors of firms in such market. Every dynamic optimization problems have a time horizon. It 

can be discrete or continuous or infinite. For many problems in economic interest, future values 

are discounted. In infinite horizon problems, a transversality condition needed to provide a 

boundary condition is usually replaced by the assumption that the optimal solution approaches a 

steady state. It is a reasonable assumption since in the long run the optimal solution would tend 
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to stabilize as the environment is stationary by hypothesis.
9
 Let us look at an example of a 

dynamic optimization problem in economics and the method used to solve it. 

Example 2. 
10

Let P(x) be the profit rate that can be earned with a stock of productive capital x, 

where P’(0) > 0 and  P” < 0. The capital stock decays at a constant proportionate rate      

Investment cost is an increasing convex function of the gross investment rate u, with   ( )  

  and C” > 0. We seek the investment rate u(t) that maximizes the present value of the profit 

stream over infinite time horizon. 

   ∫     , ( )   ( )-
 

 

                                                                          

                      subject to                     ( )          
                                                            
 

We use the current value Hamiltonian (Appendix 2) to characterize the solution. Since it is 

typically convenient for us to analyze and discuss in terms of current values, rather than present 

value (i.e. values at time t rather than their equivalent at time zero). In addition, the differential 

equations describing an optimum solution will be autonomous when the multiplier is given in its 

current value form if the state and the control variables do not depend on t explicitly (see 

Appendix 2).  

The current value Hamiltonian is  

   ( )   ( )   (    ) 

If the optimal investment rate is positive, it satisfies 

  ( )    

                                                 
9
 Page 174, Kamien and Schwartz (1991) 

10
 Page 140 and 166, Kamien and Schwartz (1991). 
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where the current value multiplier
11

 obeys 

   (   )    ( ) 

The solution x, u, m must satisfy the forgoing conditions (if it involves u > 0). We cannot find 

the solution explicitly without specification of P and C. Nevertheless, we can qualitatively 

characterize the solution by sketching paths compatible with the conditions for either the x-m 

plane or the x-u plane. For the detailed solution on this example problem, refer to page 166 of 

Kamien and Schwartz (1991). This technique is useful for analyzing dynamic behavior of firms 

and we shall explore some of the papers that make use of such technique to solve dynamic 

problems in the next chapter.  

 

 

 

 

 

 

 

 

 

                                                 
11

 The current value multiplier, m(t), gives the marginal value of the state variable (i.e. P(x) ) at time t in terms of 

values at t. 
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CHAPTER THREE 

LITERATURE REVIEW 

 This topic is related to the literature on accumulation games, where capacity investments 

of single product firms engaged in oligopolistic competition have been characterized both in the 

framework of open-loop Nash equilibria and Markov-perfect Nash equilibria (Dawid et al., 

2010). This section also examines some of the existing literature on innovation investment and as 

well as on dynamic competition in duopoly. It also includes literatures on games with (and 

without) product differentiation, symmetric and asymmetric market structure and finally on 

competition and cooperation between firms. 

As defined by Dockner et al. (1999), a capital accumulation game follows as a result of 

the case where capital serves as a strategic variable in production decisions. Dockner et al. 

(1999) put together a set of dynamic investment games consisting of capital accumulation games 

and study existence and qualitative properties of Markov Perfect Equilibria (MPE). A Markov 

Perfect Equilibrium is a pair of reaction functions that form a perfect equilibrium. A Markov 

strategy is a strategy that only depends on the payoff-relevant state variables and a state 

transition equation of some kind that affects the profit function (Maskin et al., 1987). In their 

paper, Dockner et al. consider a firm that invests in a capital stock. They formulate a discrete-

time dynamic game that fits into the class of capital accumulation games. There are two firms, 

each investing in a capital stock with linear investment costs. Like my paper, their paper 

considers a constant depreciation rate of capital stock and on the capital stock of the rival firm. 

They are able to characterize two different types of MPE in their result. One is a degenerate but 

strict equilibrium that results in constant investment over time and the other one is the indifferent 

MPE which is not strict and has the property that for a given equilibrium strategy of one player, 
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every response of the opponent is the best response. Similarly, Fershtman and Muller (1983) 

look into capital accumulation games of infinite duration by considering a market in which firms 

accumulate capital according to Nerlove-Arrow capital accumulation equation. They formulate 

an open loop solution
12

 and provide a proof for the existence to the infinite horizon case of open-

loop, nonzero sum, differential games. They are also able to show the convergence to a 

stationary equilibrium regardless of the initial stocks of capital. 

In relation to investment in innovation and capital accumulation game, we need to 

consider the inventory capacity and productive capacity for the new products. For instance, Berg 

et al. (2012) studies the case of duopoly with intertemporal capacity constraints where producers 

have limited number of products for two consecutive periods. They do this in the context of 

dynamic Cournot duopoly
13

 with and without commitment and find that flexible supply contracts 

can adversely affect welfare when production precedes sales and firms face an intertemporal 

capacity constraint. They find that there is a unique pure strategy Nash equilibrium for any 

allocation of initial supplies under commitment, whereas under non-commitment it is possible 

that a subgame perfect Nash equilibrium in pure strategies may not exist. With commitment, 

prices slowly increase over time and an increase in stocks (assuming all else being equal) results 

in high profits. In contrast, they find that, prices may decline and increasing stocks may lead to 

lower profits absent commitment. Although larger firms typically prefer not to commit, 

commitment is beneficial for smaller firms, society at large and for buyers.  

Like my paper, a number of papers explore topics in R&D spillovers and incentives to 

innovate. For example, Cellini and Lambertini (2009) study the dynamic R&D for innovation in 

                                                 
12

 Open loop solution is a solution in which the strategy of the opponent does not affect the decision (strategy) of a  

player as he cannot observe the strategy used by his opponent 
13

 In a Cournot competition, firms compete on the quantity of output they produce. Their decisions to produce are 

simultaneous and independent from each other. 
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a Cournot duopoly under two different settings: competition and cooperation. They consider a 

duopoly with homogeneous goods over continuous time. Likewise, I also set up my model in a 

continuous time horizon even though the goods need not necessarily be homogeneous. In their 

paper, Cellini et al. adopt an explicitly dynamic approach to describe the R&D activity meant for 

process innovation, modeled as a differential game. They limit themselves to the cases where 

firms either play a non-corporative game or form a R&D cartel. They then compare the steady 

state profits and social welfare at the subgame perfect equilibria of each case. They find that 

regardless of the level of spillover, firms prefer R&D cooperation to non-cooperative behavior 

from both private and social point of view. Their analysis shows that a unique stable (in the sense 

of saddle point) equilibrium exists in each case. The analysis of the model shows that higher the 

level of technological spillover, the larger the present value of investment efforts over time, 

under both non-cooperative and cartel. Similarly, Narajabad and Watson (2011) try to include 

the dynamics of horizontal differentiation (Hotelling competition of product location) in the 

context of innovation and competition.  They compute Markov-perfect equilibria and analyze the 

effects of changes in transportation costs and product relocation cost on long-run innovation. 

They find that innovation tends to increase when firms are located near each other than when 

they are separated.  

Also, Femminis and Martini (2010) study the incentive to be first mover in the game of 

innovation. Their intuition is that, in an oligopoly, the first mover can possibly have a 

competitive advantage such as higher quality products and lower cost of production. However, 

being ahead of everyone entails high R&D costs and the risk of takeovers by competitor in 

subsequent improvements. Furthermore, they also point out that there are chances that the new 

technology may fail to generate profits or provide undesired knowledge spillovers to rival firms. 
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My paper is also motivated by similar intuitions. They consider a process innovation framework 

in which the R&D activity of the firm that is ahead generates a technological spillover. The new 

information is disclosed after a time period that name “disclosure lag”. In the presence of 

disclosure lags, being ahead has two offsetting effects on profitability: the leader enjoys 

temporary competitive advantage (for the duration of the disclosure lag) but also pays higher 

R&D costs. The technologically inferior firm makes lower profits while catching up to the 

leader’s technological level, but benefits from new information through the spillover. They 

identify a new type of equilibrium in the presence of technological spillovers and of a disclosure 

lag. The pioneer firm delays investment until the R&D cost is low enough that the follower will 

find it optimal to invest as soon as he benefits from the spillover (i.e. immediately after the 

disclosure lag).   

Femminis and Martini (2011) extend on their previous paper and examine the advantage 

of being a second (or later) mover when there are R&D spillovers. Their model belongs to the 

category of symmetric stopping time game, which can be sub-categorized depending on the 

presence of a first-mover or a second-mover advantage. They show that spillovers substantially 

affect the equilibrium of dynamic game. They identify an equilibrium in which the firms’ 

behavior is different from that of the previous papers. Even for low level spillovers, the leader 

delays investment until the stochastic fundamental is high enough that the follower finds it 

optimal to invest as soon as he obtains the spillover. In this equilibrium, the existence of the 

spillover determines the length of the leader’s cost-advantage period. It is in the leader’s best 

interest to wait until the market condition makes their investment worthwhile the limited cost-

advantage period. To follow suit, it is in the best interest of the follower to invest as soon as he 

benefits from the information spillover because his fixed costs are lower (owing to the spillover).  



17 

 

The behavior of the follower depends on the information available about the new technology. If 

the follower has access to the relevant information; the follower finds it optimal to wait and 

delay his investment when the demand is low; while he finds it optimal to invest right away 

when the demand is high.  When there is no spillover, the follower finds it optimal to invest and 

pay the full cost only when demand has reached high values. On the other hand, the follower 

waits and tries to benefit from the spillover when the demand is low.  

However, existing literatures have largely neglected the importance of optimal innovation 

strategies in the context of oligopolistic market. Dawid et al. (2010) are few of the people who 

have dealt with capacity adjustment processes when firms produce more than one product. They 

test how the option to invest in the new market affects capacity dynamics of both firms. They 

also ask, what is the value of innovation option for the innovating firm and how is the non-

innovating incumbent affected by the innovation (option) of its rival? They find that the non-

innovating firm benefits most of the time.  

My paper differs from the previous ones in the sense that I have incorporated both 

technological level and investment in productive capacity as a factor for a firm’s profit. 

Technology and productive capacity is further affected by the level of R&D investment and 

investment in new innovated products. This indicates the existence of subgame perfect 

equilibrium since firms choose the best investment strategy in response to their rival firm’s 

choice of investment and consequently the technological level of the rival firm. Unlike Dawid et 

al., I give both of the firms the option to invest in the new innovated product (i.e. the 

technological advance) which may or may not be differentiated. Thus, this leads to a symmetric 

game which yields different outcome as compared to their asymmetric game.  
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CHAPTER FOUR 

MODEL AND ANALYSIS 

My paper is concerned about the incentive to innovate when there is a technological 

spillover. My objective is to model a duopoly market structure in which a firms decision to 

invest in innovation is affected by the presence of technological spillovers. Thus, I plan to 

present a model that has technological spillovers that tends to keep firms together in 

technological progress. 

Since I am modeling a duopoly market structure, I assume that there are only two firms in 

the market. I let    be the level of capital of firm    *   +. The initial production capacity 

is   ( )    
     .    is the technology level of firm  . The initial level of technology is 

  ( )    
       Assuming the similar assumptions from Dawid et al., both firms exploit their 

production capacities and price of firm i is then given by the following linear demand system: 

  ( )    .  ( )    ( )/    .(  ( )    ( )/                                         ( )  

where,       represents the degree of the effect of net technological level on price. To 

simplify the problem, there are no marginal production costs and so the production costs are 

linear. The total cost of the firm is represented by the quadratic function of investment and 

research costs, i.e.  

  (  ( )    ( ))  0
     ( )

 

 
1  0

     ( )
 

 
1                                                         ( )  

where   ( ) denotes the investment in capital and   ( )  denotes the research of firm i = 1, 2 at 

time t, and   and d are positive parameters. Now there are four relevant state variables 

(capacities) which evolve according to the state dynamic:                             
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 ( )        ( )                                                                           ( ) 

  
 ( )    ( )   .  ( )    ( )/     ( )                                                 ( ) 

Where    *   +, and  (  ( )    ( )) represents the R&D spillover.   is the depreciation rate 

of the capital stock and so if the firm does not put effort into maintaining the capital it 

depreciates over time. Similarly,   is the depreciation rate of technology which implies that if 

firms do not put some effort in maintaining the level of technology, it depreciates over time.  

The initial conditions are 

  ( )    
             ( )    

                                                            ( ) 

which states that, at time 0 the value of capital and technology is positive.  

The instantaneous profit function of firm i is then given by 

   {  (     )    (     )}   .
  

 
  
 /  (

  

 
  

 )                                 ( ) 

Now we can define the marginal profit of firm i with respect to capital  

   

   
   (     )                                                                     ( ) 

We can see that the marginal profit of firm i is positive but decreasing, which implies that the 

marginal value of more capital diminishes as the firm adds more capital. Moreover, the marginal 

profit also depends on technology which shows that the firm with higher technology benefits 

more from investing in production. 
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Firm 1 and 2 both chooses their investments in order to maximize their discounted profit 

net of investment and research costs over an infinite time horizon. The discount rate is denoted 

by r >0. The objective function for firm i is then given by 

   ∫     0{  (     )    (     )}   .
  

 
  
 /  .

  

 
  

 /1
 

 
                        ( )                       

                                     Subject to: 

                   ( )    
                                                                     ( ) 

        (     )            ( )    
                                         (  )  

                                         
Where i ϵ {1, 2} and j ϵ {2, 1}  

The Hamiltonian for firm i is 

 (       )      [{  (     )    (     )}   .
  

 
  
 /  (

  

 
  

 )]    (      )        

    (    (     )     )                                                                                                  (  ) 

where   is the shadow value (marginal value) of    and     is the shadow value of   . 

Theorem 1: The optimal Investment and Research at steady state (i.e.   
          

   ) is  

  
  

          ( 
 
   )

 (   )  
        

    
   

(     )  
                                                         

Proof: 

The current value Hamiltonian for firm i is 

       [{  (     )    (     )}   .
  

 
  
 /  (

  

 
  

 )]    (      )                                

    (    (     )     )                                                                                                (  ) 

where we define                               as the current value multiplier.     is the shadow value 

of    evaluated at time t and     is the shadow value of    at time t.  

The relevant first order conditions (FOCs) for the optimum are: 

  

   
                                                                                                                                (  ) 

  

   
                                                                                                                             (  ) 
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                                                                                                                                (  ) 

  

    
                                  (     )                                                                     (  ) 

 

 Equation (13) states that, the marginal cost of investment must equal the marginal value     of a 

unit of additional capital. Likewise, equation (14) states that, the marginal cost of doing research 

must equal the marginal value     of a unit of additional technology. 

 

From (13) and (14) we get 

                     
   

  
                                                                                                      (  ) 

                     
   

  
                                                                                                   (  ) 

 

On the basis of the above FOCs on control variables, the co-state equations for the solutions are  

 

    
  

   
    

                  (   )              (     )    
                                     (  ) 

     
  

   
    

               (     )             
                                                                (  ) 

 

These conditions must be evaluated along with the initial conditions 

  ( )    
             ( )    

      

We differentiate (17) and (18) totally and use them to eliminate     and      and use (19) and 

(20) to eliminate    
  and     

  from the results. Thus the resulting system is equation (15), (16) 

and  

  
  

   
 

  
         

(   )              (     )

  
                                                

      
(   )                (     )

  
                                   (  )  
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(     )        

  
                                                                               

      
(     )         

  
                                                                   (  ) 

 

From equation (21), the points  (        ) such that    
    satisfy 

  
     

  (      )   ( 
 
   )

 (   )  
                                                                      (  ) 

And the equation (22) with the points (        ) such that   
    satisfy 

  
    

   

(     )  
                                                                                                 (  )  

Since this problem is infinite horizon and autonomous (see Appendix 2, part c), the steady state 

is defined by   
     

    
    

   . 

The optimal level of investment for each firm is dependent on twice the amount of one’s 

capital and the capital of the rival firm and the net technology level of the firms. Thus, 

suggesting that the solution for optimal investment is closed-loop subgame Nash equilibrium (i.e. 

Nash equilibrium for the subgame in which firm i’s strategies depend not only on time but also 

on current values of observed state variables of the rival firm). At steady state, the optimal 

investment decreases for any further increase in capital of both firms. This suggests that, there is 

a decreasing return to investment in capital. So, beyond the point of optimal investment, it is not 

profitable to invest further in productive capacity as it lowers instantaneous profit of the firm. On 

the other hand, being technologically ahead indicates that the firm should invest more. This is 

most probably because of the fact that firms can take advantage of reduced production cost (as 

found by Femminis and Martini (2010)). Another possible explanation is that, as technology 
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rises, the price also rises and hence makes it more attractive for firms to invest more in 

productive capacity.  

The research level of firm i is only dependent on its own capital. This suggests that the 

solution is open-loop Nash equilibrium (i.e. each firm’s decision depends only on time) for the 

optimal level of research. In open-loop equilibria, each player ignores the strategy played by the 

other firm. The optimal solution shows that firms increase research when they have higher level 

of capital. Since both firms have the incentive to be ahead of the other firm, it makes intuitive 

sense that they have the incentive to do more research when they are technologically ahead and 

has higher level of capital. Furthermore, since capital depreciates over time,   
  will not tend to 

infinity as     (if   is sufficiently high enough) and thus the level of research will also be 

finitely bounded.  

In general, for the effect of technology on investment we can consider the following cases:  

Case 1:        

Lemma 1: at    
   if        then firm i’s investment increases as the technological gap (  ) 

increases.  

Proof: 

 

Assume that      . Then the term  (     ) in equation (23) is positive 

So let |      |    , then 

 

  
  

  (      )   (  )

 (   )  
                                                                      (  ) 

 



24 

 

Thus the result implies that when firm i's technology is greater than the technology of its rival 

firm, investment of firm i is positively correlated to the net technological level (  ). Hence, all 

else equal, increase in     increases investment in this case.  

Case 2:        

Lemma 2: at    
  , if         then firm i’s investment decreases with increase in technological 

gap. 

Proof: 

Assume that      . Then the rival firm is technologically ahead which means that the term 

 (     ) in equation (23) is negative 

So let         , where     . Then 

 

  
  

  (      )   (  )

 (   )  
                                                             (  ) 

 

Equation (26) implies that the technological gap is negatively correlated to investment decision 

in this case. Thus, the investment of firm i decrease as the technological gap rises.   

Case 3:           

Lemma 3: If          (i.e. the firms are at same level of technology) then the optimal 

investment path is not affected by the level of technology.  

Proof : 

Assume that        , then from equation (23) we have 
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  (      )   ( 
 
   )

 (   )  
                                                                               

 

  
  

  (      )

 (   )  
                                                                                     (  ) 

 

At         the effect of technology on the investment decision vanishes.  

Theorem 2: When firm i is technologically behind, they will do more research and vice versa. 

Thus in the long run firms will tend to converge towards        

Proof: 

Using Lemma 1, 2, and 3 and the assumption that firms have the option to use their resources to 

either invest and/or do research, we can conclude that, in a duopoly, firms have the tendency to 

try and catch up to the technological level of their rivals. Given the symmetric nature of the game, 

we can then conclude that the firms tend to converge towards       (since both firms have the 

incentive to move towards        according to Lemma 1 and 2). Hence, all else being equal,   
  

achieves maximum at        with respect to the optimal level of technology.  

Proposition 1: Optimal technological level is a function of own research and the technological 

level of the rival firm. That is, firm i’s technology increases as the firm’s research increases and 

as well as when the rival firm’s technology increases. Furthermore, at optimal research level, 

state of technology is positively correlated to the capital.  

Proof:  

 

From (11), setting      , we have 

 

    (     )                                                                                                    

So,     
   

 

   
     

 

   
                                                                                       (  )   



26 

 

This implies that technology is an increasing function of a firm’s research and rival firm’s level 

of technology.  In other words, firms play the catch up game and so, if the rival firm increases his 

technological level then I (the corresponding firm i) need to catch up to him as well. This does 

indeed replicate the behaviors of Boeing and Airbus. Both Boeing and Airbus tend to innovate 

simultaneously: if one innovates the other follows suit soon after.  

At      
 , substituting (24) into (28), we then get 

  
   

   

(     )  (   )
  

   

   
                                                                   (  )   

which means that, at optimal level of research, higher level of capital results in higher level of 

technology.  

From (15), setting      , we have 

 

                                                                                                                        

so,     
   

  

 
                                                                                                   (  )   

At      
 , substituting (18) into (24), we then get the steady state path for K 

  
   

  (   
    )   (     )

 (   )   
                                                                          

  
   

      (     )

 (   )     
                                                                            (  ) 
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Theorem 3: The optimal level of capital and technology for firm i is 

  
   

 

  
 (  

 

    
      (  

 

    
)      ((

 

  
   

 

   
)(

  

    
)    ))         

and 

  
   

     

    
        (

 

  
 

 

   
) (

  

    
) 

where    (   )      and   (     )  (   ). 

 

Proof: 

From (29) we can solve for    and get 

    (     )  (   )(  
  

   

   
  )                                                                  (  ) 

Evaluating at      
  and      

  we can set (31) equal to (32) 

      (  
    )

 (   )     
 (     )  (   ) (  

  
   

   
  )                                        

For ease of calculation, let   (   )      and   (     )  (   ) 

Then  

        
     

 
  (  

  
 

   
   ) 
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)  

    

  
   (
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   (

 
  

 
 

   )

(
    

  
)

 

  
  

    

    
   (

 

  
 

 

   
)(

  

    
)                                       (  ) 

Then substituting (33) into (31) we get 

  
   

      (
    

    
   (

 
  

 
 

   ) (
  

    
)    )

  
                                           

  
   

      (
    

    
)     ((

 
  

 
 

   )(
  

    
)   )

  
                                      

  
   

 

  
 (  

 

    
   (  

 

    
)     ((

 

  
 

 

   
)(

  

    
)   ))        (  )  

Equation (33) states that technological level of the firm i is subjected to decrease as the rival 

firm’s capital and technological level rises. Similarly equation (34) states that the market share of 

firm i is subjected to decreases as the rival firm gains more market share and dominates the 

market with higher level of technology. Since this is a symmetric duopoly market the steady state 

rule applies to both firms. 
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CHAPTER FIVE 

CONCLUSION 

 

            From the analysis in previous chapter, I find that firms tend to do more research 

when they have more capital and invest less when the total capital in the market increases. At 

steady state, the optimal investment decreases for any further increase in capital of both firms. 

This suggests that, there is a decreasing return to investment in capital. So, beyond the point of 

optimal investment, it is not profitable to invest further in productive capacity.  

  They tend to invest more when they are technologically ahead and do more research 

when they are behind. This is most probably because firms can take advantage of reduced 

production cost (as found by Femminis and Martini (2010)).  Moreover, when the rival firm is 

dominating the market and has superior technology, a firm would want to increase research to 

catch up. In doing so, they can also reduce the cost of doing research since they can take 

advantage of reduced research cost due to technological spillover. This enables the firm that is 

technologically behind to invest in production when they are trying to catch up technologically 

as well. Firms also do more research when they have higher level of capital. Since both firms 

have the incentive to be ahead of the other firm, it makes intuitive sense that they have the 

incentive to do more research when they are technologically ahead.  

 I find that my model is able to reflect the behaviors of Boeing and Airbus. As mentioned 

in chapter 2, Boeing and Airbus consistently introduced new models of aircraft in the market in 

order to stay ahead in the game. As shown in table 1, the timing of most of the models 

introduced was close to the rival firm’s timing. We can observe that the timing of the innovation 

was usually in response to the rival firm’s innovation. This is reflected by the fact that both firms 

try to catch up to the other firm when they fall behind technologically. In the historical data, we 



30 

 

can also see that both Boeing and Airbus introduced new models within ten years after the 

introduction of the previous one. In other words, there are no innovations in aircrafts for a long 

time, but when one firm innovates, the other one follows shortly after and then the pattern 

repeats. The long gap from one innovation period to the next one could possibly be explained by 

using Theorem 2 in previous chapter. As I showed that since both firms have the tendency to 

catch up to the technological level of rival firm, when they achieve that equality in technological 

level, they have the incentive to at least stay at the same level of technology as the rival firm. 

Furthermore, whenever there is a new innovation in the market we showed that firm that is 

behind has the advantage of reduced research cost due to spillovers and thus, is able to catch up 

sooner than it would have taken if he was to innovate on his own. In that sense, the long gap 

could also represent the time taken for the firm that is ahead to research and achieve the 

technological breakthrough (i.e. new innovation).  

 There is lot of scope for future research in this field. In my paper, I was not able to 

provide complete analysis using phase diagrams due to limited time. One can possible use 

dynamic programming to do a graphical analysis of the model. It would also be interesting to 

find out how firms behave when the outcome of the investment in new products is uncertain. 

This will add the stochastic attribute to the model and it can possibly represent the reality more 

accurately. Nevertheless, given all the limitations, my model does have a close correlation to that 

of the market that I wanted to replicate, that is, Boeing and Airbus.  
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APPENDIX 1 

Functional Optimization 

             ( )   ∫  (   ( )   ( ))  
  

  
                                                     (1.1) 

               (  )            (  )     

Gateaux Variation (First Variation) of J in the direction h is: 

    (   )   
 

  
 (    )|

   
                                                               (1.2) 

 

 (    )  ∫  (  (    ) (    ) )  
  

  
                                                 (1.3) 

 

  
 (    )  ∫

 

  
 (  (    ) (    ) )  

  

  
  

 

  
 (  (    ) (    ) ) 

 
  

  
(  (    ) (    ) ) ( )  

  

   
(  (    ) (    ) )  ( ) 

 

  
 (    )|

   
 ∫

  

  
 ( )  

  

   
  ( )  

  

  
                                     (1.4) 

∫
  

   
  ( )   

  

  

     14 

Integration by parts:
15
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/  ;          ( )          ( );  

∫
  

   
  ( )   
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  ∫  ( )
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/    

                (  )           (  )     
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 ∫
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  ∫  ( )
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/                          (1.5) 

 

 ∫ (
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/)  ( )  

  

  
               ( )  (  )           (  )     

 

Therefore,   
  

  
 

 

  
 .

  

   
/                                                                                        (   )16  

 

 

 

 

                                                 
14

 We need to get rid of   ( ) 
15

 ∫         ∫      
16

 Euler-Lagrange equation 
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APPENDIX 2 

 Optimal Control: 

  a. Simplest control problem 

The simplest control problem is one of selecting a piecewise continuous control 

function  ( )        , to 

   ∫  (   ( )  ( ))  
  

  
       (2.1) 

                 ( )   (   ( )  ( ))      (2.2) 

            (  )               (  )                        (2.3)  

 

Here f and   are assumed to be continuously differentiable functions of these independent 

arguments, none of which is a derivatives. The control variable u(t) must be a piecewise 

continuous function of time. The state variable x(t) changes over time according to the 

differential equation (2.14) governing its own movement. The control u affects the objective 

(2.13), both directly and indirectly.  

 

The calculus of variations problem of choosing a continuously differentiable function  ( )    

    , to 

 

   ∫  (   ( )   ( ))  
  

  

 

                (  )     
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is easily transformed into an equivalent problem in optimal control. Let  ( )    ( )  Then the 

equivalent optimal control problem is 

 

   ∫  (   ( )  ( ))  
  

  

 

                 ( )   ( )  (  )          

 

The state variable is x, while u is the control.  

 

b. Simplest Problem – Necessary Conditions (Part II, section 2 [Kamien, 91]) 

To find necessary conditions that a maximizing solution   ( )   ( )          we follow a 

procedure similar to solving a nonlinear programming problem with Lagrange multipliers. Since 

the constraining relation (2.2) must hold at each t over the entire interval        , we have a 

multiplier function  ( ). Let  ( ) be any continuously differentiable function t on        .   

 For any function x, u satisfying (2.2) and (2.3) and any continuously differentiable 

function  , all defined on        , we have 

∫  (   ( )  ( ))  
  

  

 

 ∫ [ (   ( )  ( ))   ( ) (   ( )  ( ))   ( )  ( )]  
  

  

                  (   ) 

 

since the coefficients of  ( ) must sum to zero if (2.2) is satisfied, as we assume. Integrate the 

last term on the right of (2.4) by parts 
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∫   ( )  ( )     (  ) (  )   (  ) (  )  ∫  ( )  ( )  
  

  

  

  

 

 

Substitute into equation (2.4) 

∫  (   ( )  ( ))  
  

  

  

∫ [ (   ( )  ( ))   ( ) (   ( )  ( ))   ( )  ( )]    (  ) (  )   (  ) (  )
  

  

           (   ) 

 

A control function u(t),        , together with the initial condition (2.3) and the differential 

equation (2.4) determine the path of the corresponding state variable x*(t),        . Since 

selection of the control function u(t) determines the state variable x(t), it determines the value of  

(2.5) as well. 

 We consider a one-parameter family of comparison controls u*(t) + ah(t), where u*(t) is 

the optimal control, h(t) is some fixed function, and a is a parameter. Let y(t, a),        ,  

denote the state variable generated by (2.2) and (2.3) with control u*(t) + ah(t),        . We 

assume that y(t, a) is a smooth function of both its arguments. So a=0 provides the optimal path 

x*.  

 

 (   )    ( )         (    )     

 

With the functions u*, x* and h all held fixed, the value of (2.1) evaluated along the control 

function u*(t) + ah(t) and the corresponding state y(t, a) depends on the single parameter a. We 

write 
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 ( )    ∫  (   ( )   ( )    ( ))  
  

  

 

Using (2.5), 

  ( )    ∫ , (   (   )   ( )    ( ))   ( ) (   (   )   ( )    ( ))   (   )  ( )-  
  

  

  (  ) (    )   (  ) (    ) 

Since u* is a maximizing control, the function J(a) assumes its maximum at a=0. Therefore, 

  ( )   . Differentiating w.r.t. a and evaluating at a=0 gives, on collecting terms, 

 

  ( )  ∫ ,(         )   (      ) -  
  

  

  (  )  (    )                             (   ) 

Now let   obey the linear differential equation. 

    ,(  (   
    )   ( )  (   

    )-              (  )    

 

With   given in the above equation, (2.6) holds provided that  

∫ ,  (       )     (       )-   
  

  

   

for an arbitrary function h(t). In particular, it must hold for  ( )    (       )     (       ), 

so that 

∫ ,  (    ( )   ( ))   ( )  (    ( )   ( ))-     
  

  

 

 

This, in turn, implies the necessary condition that 

 

  (    ( )   ( ))   ( )  (    ( )   ( ))                   
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So we have shown that if the functions u*(t), x*(t) maximize (2.1), subject to (2.2) and (2.3), 

then there is a continuously differentiable function  ( ) such that u*,x*,   simultaneously satisfy 

the state equation 

  ( )   (   ( )  ( ))     (  )                                                        (   ) 

the multiplier equation 

    [(  (   ( )  ( ))   ( )  (   ( )  ( ))]          (  )                             (   ) 

and the optimality condition 

  (   ( )  ( ))   ( )  (   ( )  ( ))                                                  (   ) 

for        . 

The way to remembering, or generating these conditions is the Hamiltonian 

 

 (   ( )  ( )  ( ))   (     )    (     )     (2.10) 

Now, 

  

  
             (   )                

  

  
          

 

 
  

  
             (   )                 ( )   

  

  
  (      )     

 

  

  
              (   )                         

  

  
   

 

In addition, we have  (  )     and  (  )     At each t, u is a stationary point of the 

Hamiltonian for the given value of x and  .  
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c. Discounting, Current Values, Comparative Dynamics (Part II, section 8, [Kamien, 91]) 

For many problems of economic interest, future values of rewards and expenditures are 

discounted, say, at the rate r: 

   ∫      (     )  
 

 

                                                                             (    ) 

                 ( )   (     )  ( )                                            (    ) 

In terms of the Hamiltonian 

       (     )    (     )                                                               (    ) 
 

We require (x, u, λ) to satisfy, 

                                                                                     (    ) 

                           ( )                                                     (    ) 

All values are discounted back to time 0; in particular, the multiplier  ( ) gives a marginal 

valuation of the state variable at t discounted back to time zero. As illustrated below, it is often 

convenient to conduct the discussion in terms of current values. Further, if t is not an explicit 

argument of f and  , then the differential equations describing an optimum solution will be 

autonomous when the multiplier is given in its current form.  

Write (2.13) in the form 

      , (     )       (     )-                                                           (    ) 

and define 

 ( )      ( )                                                                             (    ) 
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as the current value multiplier associated with (2.12). Whereas  ( ) gives the marginal value of 

the state variable at t, discounted back to time zero (when the whole problem is being solved), 

the new current value multiplier m(t) gives the marginal value of the state variable at time t in 

terms of values at t.  

Also let  
        (     )    (     )                                                           (    ) 

 

We call   the current value Hamiltonian. Differentiating (2.17) with respect to time gives 

               
                                                                                   

 

                                                                                 (    ) 
 

on substituting from (2.17) and (2.15). In view of (2.18),        , so (2.19) becomes  

         
 (     )

  
                                                                        

 

                           
 

                                                                             (    ) 
 

In addition, (2.14) can be written as  

   
 (     )

  
     

  

  
                                                                    

 

Which implies    
  

  
                                                                               (    ) 

 

Finally, (2.12) may be recovered in terms of the current value Hamiltonian: 

 

      
  

  
                                                                           (    ) 

 

In sum, (2.13) – (2.15) may be equivalently stated as 

   (     )    (     )                                                       (    ) 
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                                                                            (    ) 

 

      
  

  
                                                                (    ) 

Terminal conditions may be stated in terms of the current value multipliers by using conditions 

already derived and definition (2.17). For example, if x(T) is free, then  ( )       ( )    is 

required. If  ( )    is needed, then      ( )    and      ( ) ( )   . 

 Notice first that (2.24) and (2.25) do not contain any discounted terms. Second, note that 

if t is not an explicit argument of f and g, then Equations (2.12), (2.24), and (2.25) reduce to 

    (   )            
 

  (   )     (   )                                                                          
 

        (   )     (   )                                                            
 

which is an autonomous (meaning time enters only through the discount term) set of equations; 

that is, they do not depend on time explicitly. Solving the second equation for    (   ) in 

terms of m and x and substituting into the equation for x', m' results in a pair of autonomous 

differential equations. In general, autonomous differential equations are easier to solve than non-

autonomous ones. Furthermore, even if an explicit solution is not possible, phase diagram 

analysis of the qualitative properties of the solution may be possible when there are autonomous 

equations.  
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APPENDIX 3 

 Dawid et al. Model outline 

Consider a duopoly market with Firm 1 and Firm 2, with initial production capacities    ( )(  

   ) available for an existing product (product a). Dawid et al. gives only Firm 1 the option to 

innovate and then Firm 2 is just a non-innovating incumbent. They assume that Firm 1 has just 

introduced an innovated new product (product b) and now it has to build up a production 

capacity for the new product. The initial production capacity of the product 2 is   ( )   .  

They assume that both firms exploit their production capacities and prices are given by the 

following linear demand system: 

  ( )    (   ( )     ( ))      ( )  

  ( )     (   ( )     ( ))      ( )  

For the parameter   (     ), if the     holds, it indicates that the new product is 

vertically differentiated from the existing product. The parameter    represents the level of 

horizontal differentiation. Moreover,    .  

They also assume that there are no marginal production costs and so the production costs are 

linear. Investment costs are quadratic, that is,   .   ( )/  
      ( )

 

 
 , where    ( ) denotes the 

investment of firm    *   + for product i = a, b at time t and    and    are positive parameters.  

Since Firm 1 is the only one innovating, there are three relevant state variables (capacities) which 

evolve according to the state dynamic: 
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 ̇              

 ̇              

 ̇              

With initial conditions 

   ( )     
             ( )       ( )     

       

Firm 1 and 2 both chooses its investments in order to maximize its discounted profit net of 

investment costs over an infinite time horizon. The discount rate is denoted by r >0. The 

objective functions are given by: 

   ∫     0(  (       )      )    (   (       )      )    
  

 
   
  

  

 
   
 1

 

 
    

   ∫     0(  (       )      )    
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