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ABSTRACT 

 

KIM, TAERA  3D flowerlike micro/nanocomposite ceria to remove arsenic and 

chromium in drinking water. Department of Chemistry, June 2014.  

  

ADVISORS: Laura A. MacManus-Spencer and Michael E. Hagerman 

Ceria has received great attention for the removal of water contaminants due 

to its high oxygen storage capacity, marked oxygen ion conductivity, and tunable 

catalytic activity. Zhong et al. suggested that ceria (cerium oxide) microspheres with 

nanoscale 3D flowerlike morphology represent a promising inorganic synthetic 

material to remove water contaminants such as As(V) and Cr(VI) from drinking water. 

The 3D flowerlike micro/nanocomposite ceria offer key advantages over other 

nanoparticle based remediation systems as they can be easily removed via 

conventional microfiltration. The goals of this thesis project were to test the 

reproducibility of the synthesis of the 3D flowerlike ceria, and to assess the ability of 

the material to remove As(V) and Cr(VI) from water. Analyses using scanning 

electron microscopy (SEM), powder X-ray diffraction (XRD), and attenuated total 

reflectance-infrared spectroscopy (ATR-IR) confirmed the successful synthesis of the 

3D flowerlike ceria. Inductively coupled plasma – mass spectrometry (ICP-MS) was 

used to quantify the removal of As(V) and Cr(VI) from water; results revealed that the 

concentrations of As(V) and Cr(VI) were reduced by more than 90% using the 3D 

flowerlike ceria, and their final concentrations were lower than the maximum 

contaminant levels set by the U.S. EPA. SEM images of both exposed and recycled 

3D flowerlike ceria indicated that the 3D flowerlike morphology was retained after 

exposure to As(V) and Cr(VI) and after washing with NaOH solution. The 3D 

flowerlike ceria is an effective nanosorbent for the removal of As(V) and Cr(VI) in 

water treatment. 
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1. INTRODUCTION 

  Among the most serious environmental problems today is drinking water 

pollution caused by toxic substances like arsenic- and chromium-containing 

compounds, which are potential carcinogens and poisons.
1
 More specifically, inhaled 

and ingested chromium(VI) can cause lung cancer and liver and kidney damage, 

respectively.
2
 The maximum contaminant levels (MCLs) for arsenic(V) and 

chromium(VI) set by the U.S. Environmental Protection Agency (EPA) are 10 ppb
1 

and 100 ppb,
3
 respectively. Prior research has suggested that arsenic contamination in 

drinking water is a serious cause of poisoning in many countries, including 

Bangladesh.
4
 According to the Washington Post, chromium contamination was found 

in the drinking water of 31 United States cities.
5 

Although providing arsenic- and 

chromium-free water is urgent in places like Bangladesh and the United States, there 

are few effective and efficient water treatment methods to remove this contaminant.
4
 

 Nanomaterial science has received great attention for developing less 

expensive and more environmentally acceptable water purification methods including 

nanocatalysts, nanostructured catalytic membranes, nanoparticle enhanced filtration, 

and nanosorbents.
6
 Nanoparticles are efficient water purification nanocatalysts and 

redox active media because of their large surface areas, size, and optical, electronic 

and catalytic properties, which are shape dependent.
7
 Adesina has concluded that 

titanium dioxide (TiO2) nanoparticles are very versatile because they can serve as 

oxidative and reductive catalysts, as well as photocatalysts for organic and inorganic 

pollutants in water purification processes.
8
 Total organic carbon in contaminated 

water was greatly removed when TiO2 nanoparticles were added in the presence of 

ultraviolet light.
8
 Nanoscale zero valent iron (Fe0) and biometallic Fep particles are 

paradigms of redox active media; these particles reduce organic and inorganic 
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pollutants in aqueous solutions to less toxic by-products.
9-11

 

 Nanostructured and reactive membranes, including nanofiltration and reverse 

osmosis, play an important role in purifying water. Vander Bruggen and 

Vandercasteele reviewed the effectiveness of nanofiltration to removal of cations, 

natural organic matter, biological contaminants, organic pollutants, nitrates and 

arsenic from groundwater and surface water.
12

 Favre-Reguillon reported that 

nanofiltration is an effective method to remove minute quantities of uranium(VI) from 

seawater.
13

 Peltier et al. concluded that water quality for a large water distribution 

system improved using nanofiltration, reducing organic and biological 

contaminants.
14 

 
However, both nanofiltration and reverse osmosis methods require a pressure 

gradient to selectively transport solvent and certain solutes across a membrane.
1
 

Nanofiltration requires a pressure gradient of 345 to 1034 kPa (50 to 150 psi), 

whereas reverse osmosis requires a pressure gradient of 689 to 1034 kPa (100 to 150 

psi).
1 

In addition to nanofiltration and reverse osmosis, the invention of dendritic 

polymers in the area of macromolecular chemistry made a significant contribution to 

the development of ultrafiltration processes for water purification. Dendritic polymers, 

which are soft nanoparticles with the size of 1-20 nm, can be used as recyclable 

water-soluble ligands with high capacity for toxic metal ions, radionuclides, and 

inorganic anions.
15-17 

Nanosorbents are widely used to remove organic and inorganic pollutants 

from contaminated water due to their large surface areas and functionality with 

chemical groups to have high affinity towards target compounds.
6
 Li et al. have 

investigated the sorption capacities of multiwalled carbon nanotubes (MWCNTs) for 

lead(II), copper(II), and cadmium(II).
18

 They reported that the metal-ion sorption 
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capacities of the MWCNTs were 3 to 4 times greater than those of powder activated 

carbon and granular activated carbon, which are the two common sorbents used in 

water purification.
18

 Moreno et al. have evaluated NaP1 zeolites (Na6Al6Si10O32 

·12H2O) as effective sorbents and ion-exchange media for the removal of heavy metal 

ions from acid mine wastewaters.
19

 

Peng et al. have incorporated cerium oxide, which is also known as ceria and 

has high surface area (189 m
2
/g), on carbon nanotubes (CeO2-CNTs), and these 

particles appeared to be effective nanosorbents for arsenic(V).
20

 The addition of 

calcium(II) and magnesium(II) increased the amount of sorbed arsenic(V) 

approximately from 10 to 82 mg/g.
19

 In addition to CeO2-CNTs, Deliyanni et al. have 

developed akaganeite [b-FeO(OH)] nanocrystals for a novel arsenic(V) sorbent.
21

 

Lazaridis et al. reported that nanocrystalline akaganeite is also an effective 

chromium(VI) sorbent.
22

  

In contrast to these nanomaterials, Zhong et al. successfully synthesized 3D 

flowerlike ceria and confirmed that 3D flowerlike ceria is an effective nanosorbent for 

the removal of both arsenic(V) and chromium (VI).
23

 3D flowerlike ceria can be 

synthesized in a manageable and economical way to remove arsenic and chromium 

pollutants, and it can be reused many times.
23

 People not only in Bangladesh and in 

the United States, but also in other countries where water contamination is a serious 

problem, may benefit from using 3D flowerlike ceria. 

1.1 System of Interest 

1.1.1 Ceria 

 Ceria is a synthetic inorganic compound which has a high oxygen storage 

capacity because it can shift from CeO2 to Ce2O3.
24

 Bulk ceria can remove 
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 contaminants through catalytic reactions such as the reduction of NO to N2,
25

 the 

oxidation of CO and unburned hydrocarbons,
22

 and the conversion of SO2 to H2S,
25

 

and through adsorption such as the adsorption and release of H2S from gas streams.
26

 

Nanoscale ceria is more efficient for catalysis and adsorption because of its higher 

surface area and increased catalytic activity compared to that of bulk ceria.
23

 It has 

previously been shown that ceria nanoparticles supported on carbon nanotubes adsorb 

significant amounts of both arsenic
27

 and chromium
28

 from contaminated water. 

  However, nanoparticles are difficult to recover for recycling because they are 

too small to be removed via conventional microfiltration.
29

 Hence, it is important to 

synthesize ceria microspheres with nanoscale features. The micro/nanocomposite 

structure maintains nanoscale properties such as surface area and makes the 

composite more facile to handle. The 3D flowerlike micro/nanocomposite ceria is 

superior to other water purification methods due to the following reasons: (i) the 

possibility of separation and recycling, (ii) high surface area, and (iii) prevention of 

aggregation, retaining unblocked mass transfer and high catalytic activity.
23

 Most 

importantly, ceria may be reused multiple times by washing in sodium hydroxide 

solution to remove sorbed contaminants
23

 and does not require a pressure gradient or 

the discharge of a great amount of water as with nanofiltration and reverse osmosis. 

1.1.2 Proposed Mechanism for Formation of Ceria 

 One proposed mechanism for ceria formation is outlined in Scheme 1.
30

 A 

portion of the ethylene glycol becomes oxidized as it reacts with molecular oxygen 

during reflux to form oxalic acid and formic acid. Formate and oxalate bind to the 

cerium(III) cations present to form the ceria precursor which contains alkoxide 

bridging ligands. Lastly, cerium formate complexes with oxalic acid, which is the 
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bridging unit, to form cerium alkoxide nanomaterials with spindle structures. Each 

cerium formate unit in the cerium alkoxide chain has an octahedral geometry that is 

stabilized by formic acid. 

Scheme 1. Proposed mechanism for the formation of spindle ceria nanomaterials.
30 

 

Sun et al. reported a proposed mechanism for monodispersed flowerlike ceria 

microspheres (Scheme 2).
31

 The flowerlike ceria microspheres were synthesized 

mainly by a polymerization-precipitation reaction, metalmorphic reconstruction, 

mineralization, and controlled calcinations.
31

 Sun et al. suggested that this mechanism 

can be used to synthesized other 3D flowerlike nanostructures owing to the 

morphological preservation of both individual ceria nanosheets and 3D flowerlike 

microspheres upon calcination.
31

 However, there are few studies on 3D flowerlike 

micro/nanocomposite structure of ceria. Perhaps the most likely proposed mechanism 

for formation of 3D flowerlike micro/nanocomposite ceria is a combination of 

Schemes 1 and 2 because ethylene glycol is used to form a cerium alkoxide chain and 

then ultimately 3D flowerlike micro/nanocomposite ceria. 
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Scheme 2. Proposed mechanism for formation of flowerlike ceria microspheres.
31 

 

1.1.3 Laponite and Ceria/Laponite Water Filtration Membrane 

  Laponite is synthetic hectorite clay
 
which consists of disc-shaped 

nanoparticles that are approximately 25 nm in diameter and 0.92 nm in thickness and 

has a negative surface charge density of 0.014 e
-
/Å

2 
in water.

32
 An isotropic liquid 

phase, a gel phase, and a nematic gel can be formed at low salt concentration and 

increasing clay weight.
33-34

 It can be used to coat various substrates through facile 

self-assembly from the aqueous phase. Its self-assembly is significant because it 

facilitates the fabrication of organic-inorganic nanocomposites.
35 

Nanoparticles can be 

used to form Laponite membranes through the self-assembly of Laponite such as 

nano-Laponite/CdSe and Laponite/Polyaniline.
36

 More importantly, a Laponite/ZnO 

membrane was created to remove trichloroethylene (TCE), a common water 

contaminant.
37

 Similar to the Laponite/nano-ZnO membrane, 3D flowerlike ceria may 

be included to form a Laponite/ceria membrane, which will ideally sequester toxic 

metals such as arsenic and chromium while allowing water to pass through the 

membrane. 

In this study, the formation of 3D flowerlike ceria is studied using Powder X-

ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The chemical 

composition of ceria is analyzed using attenuated total reflectance infrared 
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spectroscopy (ATR-IR). The ability of ceria particles to remove arsenic(V) and 

chromium(VI) contaminants is tested using inductively coupled plasma-mass 

spectrometry (ICP-MS). 

 

1.2 Characterization Methods 

1.2.1 ATR-IR 

  Infrared spectroscopy (IR) is used to measure the absorption of IR radiation 

by a molecule by exciting a molecule from a ground energy state to a higher 

vibrational energy state. Absorption occurs when the frequency of stretching and 

bending of the specific bonds in a molecule matches the frequency of the incident 

radiation.
38

 In order for molecules to absorb IR radiation, there must be a vibrational 

motion that causes a change in dipole moment.
38

 The common modes of vibration are 

stretching vibrations (symmetrical and asymmetrical) and bending vibrations. A 

symmetrical stretching vibration of a symmetrical molecule is called IR-inactive 

because it does not change the dipole moment of the molecule.
38

 On the other hand, a 

symmetrical stretching of an asymmetrical molecule, asymmetrical stretching 

vibrations and bending vibrations are IR-active because they cause changes in the 

dipole moment of the molecule. The frequency at which IR radiation is absorbed 

depends on several factors such as the masses of the atoms in the bond, the strength of 

the bond, and the geometry of the molecule.
38 

  For an IR radiation source, the intensity of radiation should be continuous 

over the wavelength range, be constant over time, and should cover a broad 

wavelength range.
38

 One of the most common modern sources for the mid-IR 

radiation is the Globar, which is an electrically heated bar of sintered silicon carbide.
38 

The sample holder in an IR spectrometer must be transparent to IR radiation in order 
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to observe the absorption of the sample. Thus, materials such as glass or quartz cannot 

be used because these materials absorb IR radiation at wavelengths longer than 3.5 

μm.
38

 

  One common IR sampling techniques is ATR-IR, which can be used for the 

analysis of films, solids, and liquids. A small quantity of liquid or solid sample is 

placed in contact with the surface of the internal reflection element (IRE). When the 

incoming light penetrates the sample, the light reflected becomes attenuated at certain 

frequencies where the sample absorbs.
38

 A diagram of ATR-IR instrumentation is 

shown in Figure 1. 

 
Figure 1. A diagram of ATR-IR instrumentation.

39 

 

 

The radiation emitted by the Globar is polychromatic. After the radiation 

passes through the sample, an interferometer collects all the wavelengths at the same 

time without dispersion.
38 

The beam splitter splits the radiation coming from the 

source into two beams of equal intensity, after which the two beams are reflected back 

to the detector by a moving mirror and a fixed mirror.
40

 By altering the position of the 

moving mirror, an interferogram is created, which is a time domain signal. Then, a 

Fourier transform is used to convert the signal to the frequency domain. ATR-IR 

requires a fast detector such as a pyroelectric detector.
38

 In this study, ATR-IR was 
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used to analyze the chemical composition of the ceria precursor and the calcined ceria. 

 

1.2.2 SEM 

SEM is an electron microscope that focuses a high-energy electron beam onto 

the sample surface to generate images on the micro- to nanoscale;
41

 this technique can 

also provide information about surface morphology and chemical composition, 

depending on the detection method used. The essential components of SEM include 

the following: an electron gun, electron lenses, a sample stage, a secondary electron 

detector or additional detectors, including a backscattered electron detector (BSE), an 

energy dispersive X-ray detector (EDX), or a cathodoluminescence detector (CL).
42

 

An electron gun is a tungsten filament that is wreathed with a Wehnelt electrode.
43 

The negative potential of the Wehnelt electrode is what makes the electron gun a point 

source because electrons are emitted from a small area of the filament.
43 

It is crucial to 

have a point source because a point source emits electrons that have the same kinetic 

energy; thus, using a point source ensures that any difference in signals results from 

the surface of the sample, not from the source of electrons.
44

 As the electron beam 

passes through the scan coils and the deflecting objective lens, the focused beam of 

electrons rasters (i.e., sweeps) over the surface of the sample. As a result, secondary 

electrons are produced due to the interactions between the incident electron beam and 

weakly bound conduction band electrons in the sample from a depth of 0.5 to 50 

nm.
45

 A secondary electron detector detects the secondary electrons that are 

accelerated by the high voltage applied to the tip of the secondary electron detector 

and produces images in a very fine scale.
44

 SEM is conducted to study the surface 

morphologies of 3D flowerlike ceria particles. A diagram of SEM instrumentation is 

shown in Figure 2. 
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Figure 2. A diagram of SEM instrumentation.

42
 

 

 

1.2.3 Powder XRD 

 

 Powder XRD is a technique that is used to determine the atomic and 

molecular structure of solid crystalline or semicrystalline materials.
41

 X-ray 

diffraction occurs when the incident beam of X-rays is reflected by the atomic planes 

of a crystal, and the reflected beam interacts with other reflected beams, reinforcing 

each other.
38,41

 The distance between the planes of electron density in crystals can be 

measured using the Bragg equation (Equation 1, Figure 3) 

                                           (1) 
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where n is the order of diffraction,   is the known wavelength of the monochromatic 

X-ray beam, d is the distance between planes of electron density in the crystal, and   

the angle between the incident X-ray beam and the surface of the crystal. 

 
Figure 3. A schematic diagram of Bragg’s equation.

46 

 

 

The measurement of the distance between planes of electron density in 

crystals determines the crystal structure of solid crystalline or semicrystalline 

materials.
38

 Non-crystalline materials such as liquids, gases, and solids, including 

glasses and amorphous polymers, cannot be studied by XRD; these materials do not 

show the diffraction of X-rays because they do not have a well-ordered structure. In 

powder XRD, the diffraction pattern is obtained from a powder of the material, not an 

individual crystal. The advantages of using powder XRD are the following: no single 

crystals are needed, peaks can be seen due to various elements, and speciation (i.e., 

oxidation states) can be analyzed.
46 

For XRD sample preparation, materials must be ground and pressed to form a 

flat surface in the sample holder. A powdered sample emits the circular cones of 

diffracted X-rays due to the random orientation of crystallites in the sample. The 

circular cones of X-rays result in curved lines on the X-ray film as the X-ray film is 

curved to fit the diameter of the Rowland circle.
38

 The sample rotates relative to the 

X-ray source, which remains stationary, at a rate of  /min.
38 

A charge coupled device 

(CCD), which is a two-dimensional array detector, simultaneously rotates at a rate of 
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2 /min along the sample and detects diffracted radiation released by the sample 

according to the Bragg equation.
38

 XRD is used to get information about the elements 

of 3D flowerlike ceria particles and oxidation states present. 

1.2.4 ICP-MS 

 ICP-MS is a type of mass spectrometry that can be used to detect and 

quantify metals and non-metals at very low concentrations, such as parts per billion 

(ppb) and parts per trillion (ppt), typically with unit mass resolution.
38

 This technique 

has great advantages over other techniques for quantitative elemental analyses 

because it has a high scan rate, high sensitivity, high selectivity, and good precision 

and accuracy.
37

 It has applications in environmental chemistry such as analyses of 

water, wastewater, soil, sediment, and air particulates.
38 

  The sample preparation for water samples is relatively simple. Samples are 

acidified with 1% nitric acid. Nitric acid has advantages over other strong acids 

because it causes the least amount of polyatomic ion interferences except for one 

silicon isotope (
28

Si).
47

 The concentration of solutions is kept less than 1000 parts per 

million (ppm), preferably less than 500 ppm.
48

 Standards are prepared which have 

similar concentrations as the analytes. Internal standards that have masses similar to 

the analyte metals are also prepared to correct some aspects of instrumental drift. The 

common internal standards for water samples are beryllium (Be), strontium (Sr), 

gallium (Ga), yttrium (Y), indium (In), praseodymium (Pr), rhenium (Re), bismuth 

(Bi), and thorium (Th).
47

 Glassware cannot be used to prepare and contain the metal 

solutions because metals tend to interact with and adhere to glass. Thus, plastic 

volumetric flasks and tubes are used for all sample preparation procedures. 
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The typical ionization source in ICP-MS is an argon plasma. An argon 

ionization source gives high ionization efficiency because it has an ionization energy 

of 15.8 eV, which is higher than that of all elements on the periodic table except for 

helium (He), neon (Ne), and fluorine (F).
40 

An excited argon (Ar) atom collides with 

analyte elements to produce ions in an Ar plasma, which has a temperature of 6,000 – 

10,000 K.
49 

It produces mostly monoatomic ions with a single positive charge
38

 and 

small diatomic species.
49

 The resulting ions enter a quadrupole mass analyzer, which 

separates ions based on their mass-to-charge ratio (m/z) in an electric field.
38

 This 

electric field is created when an oscillating radio frequency voltage and a constant 

direct current voltage are applied to four parallel metal rods. At a given radio 

frequency to direct current voltage ratio, only ions of the correct mass-to-charge ratio 

take a corkscrew-like path through the quadrupole and reach the electron multiplier 

detector, whereas other ions that have unstable trajectories collide with the rods. An 

electron multiplier detector detects analyte ions that pass through the quadrupole mass 

analyzer, producing a cascade of electrons for each ion.
38

 Signals are proportional to 

the concentration of analyte ions. A diagram of ICP-MS instrumentation is shown in 

Figure 4. 
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Figure 4. A diagram of ICP-MS instrumentation.

50
 

 

 

It is important to note that isobaric interference, one of the mass spectral 

interferences, occurs when there are ionic species present in the plasma that have the 

same m/z values as the analyte ion of interest.
 
Since many Ar

+
 ions are present in the 

plasma, the ions of Ar,
 
such as ArH

+
, ArC

+
, ArN

+
, ArNH

+
, ArO

+
, ArCl

+
, and Ar2

+
, 

interfere with analyte ions that have the same m/z.
40

 Isobaric interference often occurs 

with the most abundant isotope because the most abundant isotope is the most 

sensitive.
51

 For instance, 
40

Ar
+ 

interferes with the most abundant calcium isotope 

40
Ca

+ 
(97%); thus, the second-most abundant calcium isotope 

40
Ca

+
 (2.1%) must be 

analyzed.
51

 In addition, ArC
+
 interferes with 

52
Cr

6+
, so the isotope 

53
Cr should be 

analyzed. Here, ICP-MS was used to measure arsenic(V) and chromium(VI) 

concentrations in contaminated and purified water samples to test the removal 

efficiencies of 3D flowerlike ceria particles and films. 

 

1.3. Research Goals 

The main goals of this research are the following: 1) to synthesize ceria 

micro/nanocomposite structures for water filtration studies, 2) to test their ability to 
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remove As(V) and Cr(VI) from water, 3) to fabricate Laponite/ceria membranes, and 

4) to learn the synthesis and characterization of nanomaterials that have 

interdisciplinary applications in environmental science.
52

 

 

2. EXPERIMENTAL 

2.1 Materials 

Anhydrous cerium chloride (>99.99%), cerium chloride heptahydrate 

(CeCl3·7H2O, 99.999%), urea, tetrabutylammonium bromide (98.8%), ethylene glycol 

(99.8%), ethanol (99.5%), sodium arsenate dibasic heptahydrate (98.0%), and 

potassium dichromate (99.0%) were purchased from Sigma-Aldrich and were used 

without further purification. Hydrochloric acid and sodium hydroxide were purchased 

from Fisher Scientific. The high-purity 70% nitric acid was distilled in a two-bottle 

Teflon still by staff in the Union College Geology department. 
69

Ga, 
59

Pr, and 
45

Sc 

were purchased from Inorganic Ventures. Laponite RD was purchased from Southern 

Clay Products. 

 

2.2 Synthesis of Ceria 

  Anhydrous CeCl3 (0.7548 g), urea (1.1039 g), and TBAB (0.2996 g) were 

added to 75 mL ethylene glycol in a 250-mL three-necked round bottom flask. The 

mixture was stirred with a magnetic stir bar and was heated using a heating mantle at 

180°C for 30 min. The solution was cooled down to room temperature when the 

reaction was complete. The precipitate was washed with ethanol four times in a 50-

mL PPCO copolymer centrifuge tube for 30 min at 1684 rcf (4000 rpm, rmax = 94.0 

mm) in an Allegra X-22R Centrifuge and was dried in air for a day. The air-dried 

precipitate was calcined at 450°C for 24 h and was cooled down to room temperature 
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for a day.  

After failure to obtain 3D flowerlike ceria, CeCl3·7H2O was used as a cerium 

source instead of anhydrous CeCl3. CeCl3·7H2O (1.5015 g), urea (2.2008 g), and 

TBAB (6.0005 g) were added to 150 mL ethylene glycol in a 250-mL round bottom 

flask. The mixture was stirred with a magnetic stir bar and was heated at 180°C in an 

oil bath for 30 min in this experiment. The solution was cooled down to room 

temperature when the reaction was complete. The precipitate was washed with 

ethanol four times in a 50-mL PPCO copolymer centrifuge tube for 30 min at 1684 rcf 

(4000 rpm, rmax = 94.0 mm) in an Allegra X-22R Centrifuge and was dried in air for a 

day. A small amount of the air-dried precipitate was collected as the ceria precursor. 

The rest of the air-dried precipitate was calcined at 450°C for 24 h and was cooled 

down to room temperature for a day; this final product was collected as the calcined 

ceria. 

 

2.3 Removal of As(V) and Cr(VI) from Water 

  As(V) and Cr(VI) solutions were prepared using Na2AsO4·7H2O and 

K2Cr2O7 as the sources of As(V) and Cr(VI). The Na2AsO4·7H2O (0.0259 g) and 

K2Cr2O7 (0.0259 g) were added to separate 10-mL polypropylene volumetric flasks 

and diluted with deionized water, which resulted in concentrations of 621.9 ppm and 

915.5 ppm of As(V) and Cr(VI), respectively. For 1:100 dilutions, 100 µL of 621.9 

ppm As(V) solution and 915.5 ppm Cr(VI) solution were added to 10-mL 

polypropylene volumetric flasks and diluted with deionized water. To have final 

concentrations of 80 ppb for both As(V) and Cr(VI) solutions, 128.6 µL of 6.219 ppm 

As(V) solution and 87.4 µL of 9.155 ppm Cr(VI) solution were added to 10-mL 

polypropylene volumetric flasks in triplicate (i.e., three controls and three test samples 
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both for As(V) and Cr(VI) solutions) and diluted with deionized water. In addition, 

128.6 µL of 6.219 ppm As(V) solution and 87.4 µL of 9.155 ppm Cr(VI) were added 

together to 10-mL polypropylene volumetric flasks in triplicate (i.e., three controls 

and three test samples) and diluted with deionized water for the mixed As(V) and 

Cr(VI) solutions. The pH of the 80 ppb As(V) and Cr(VI) solutions was adjusted to 3 

by adding HCl or NaOH.  

Then, 20 mg of the calcined ceria was added to three test samples in 15-mL 

ICP-MS polypropylene conical tubes for As(V), Cr(VI), and the mixed As(V) and 

Cr(VI) solutions, and these solutions were mixed on an orbital shaker table for 5 h at 

100 rpm at room temperature. Controls for As(V), Cr(VI), and the mixed As(V) and 

Cr(VI) solutions were carried through the entire procedure except for the addition of 

20 mg of the calcined ceria. Then, the exposed ceria was washed with 30 mL of 0.2 M 

NaOH on the orbital shaker table for 5 h at 100 rpm and was centrifuged for 2 h at 

10,000 rpm. The supernatant was removed, and the recovered ceria was air-dried. The 

centrifuge tube containing ceria that was exposed to the As(V) solution broke, so only 

ceria that was exposed to Cr(VI) and the mixed As(V) and Cr(VI) solutions was 

recovered. 

 

2.4 SEM 

  A Zeiss EVO50XVP instrument was utilized for SEM studies. Ceria 

precursor, the calcined ceria, ceria that was exposed to the mixed As(V) and Cr(VI) 

solution, and the recovered ceria that was exposed to the mixed As(V) and Cr(VI) 

solutions and was also washed in NaOH solution were mounted on SEM stubs with 

carbon tape. SEM images of these samples were obtained with the optimized 

accelerating voltage within a range from 8 to 20 keV and the optimized spot size 
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within a range from 259 to 429. A secondary electron detector was used to acquire the 

images. 

 

2.5 ATR-IR 

  A Galaxy 6020 Fourier-Transform Infrared Spectrophotometer was used for 

ATR-IR studies. Small quantities of TBAB, ceria precursor, and the calcined ceria 

were placed on the IRE, and infrared spectra of these samples were obtained with 32 

scans and 2 cm
-1 

resolution. 

 

2.6 Powder XRD 

  A Phillips Compact X-ray Diffractometer System (PW1840) was used for 

powder XRD studies, which was operated at a voltage of 45 keV and a current of 35 

mA. Iron filtered cobalt radiation was used with a wavelength of 1.790 Å . All XRD 

spectra were obtained using a step size of 0.010° (2 ) at 2.00 s per step and a 

receiving slit of 0.3 mm. 

 

2.7 ICP-MS 

2.7.1 Instrumentation 

 A PerkinElmer/Sciex Elan 6100 DRC was utilized for ICP-MS studies. Prior 

to the experiment, an Ar plasma was generated at 6000 °C for at least 30 min. The 

pressure of the vacuum system was 1.11  10
-5

 torr for the ion optics, quadrupole and 

detector. 

 

2.7.2 Preparation of Blank, Working Standard, and Internal Standard Solutions 

 A blank solution was prepared by adding 7 mL of 70% nitric acid (HNO3) to 
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a 50-mL polypropylene volumetric flask and diluting to 50 mL with high-purity 

deionized water using a Barnstead Easypure II purifier. To prepare working standard 

solutions, 0.5 mL of each 1000 ppm As and Cr stock solution and 7 mL of 70% HNO3 

were added and diluted to 100 mL, which resulted in a concentration for each of 5000 

ppb. Then, 0.01 mL, 0.1 mL, 0.5 mL, and 1.0 mL of 5000 ppb As and Cr solutions 

were added and diluted to 50 mL with high-purity deionized water to make standards 

of 1 ppb, 10 ppb, 50 ppb, and 100 ppb with 1% HNO3, respectively. The internal 

standards were the following: 
69

Ga, 
59

Pr, and 
45

Sc. For a trace element internal 

standard solution, 0.1 mL of each 1000 ppm Ga, Sc, and Pr stock solution and 7 mL 

HNO3 were added and diluted to 100 mL with high-purity deionized water. Then, 0.5 

mL of internal standard solution was added to the blank and all working standard 

solutions. Lastly, 0.1 mL of internal standard solution, and 0.14 mL of 70% HNO3 

were added to all test solutions in 10-mL centrifuge tubes. In order to measure the 

concentrations of As(V) and Cr(VI) in the prepared solutions, 
75

As(V) and 
52

Cr(VI) 

were analyzed, as well as the isotope 
53

Cr(VI) because ArC
+
 interferes with 

52
Cr(VI).  

 

2.7.3 Analyses of As(V), Cr(VI), and the Mixed As(V) and Cr(VI) Solutions 

 A blank solution, four standard solutions, and the following solutions in 

triplicate were analyzed: As(V) controls, As(V) test samples, Cr(VI) controls, Cr(VI) 

test samples, the mixed As(V) and Cr(VI) controls, and the mixed As(V) and Cr(VI) 

test samples. 

 

2.8 Investigation of the Dispersion of Laponite RD in the As(V) and Cr(VI) Solutions 

 The quantities of Laponite RD described in Table 1 were added to 80 ppb 

As(V) and 80 ppb Cr(VI) solutions in 15-mL polypropylene conical tubes, and these 
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solutions were mixed on an orbital shaker table for 5 h at 100 rpm at room 

temperature. Then, these solutions were centrifuged in 50-mL PPCO copolymer 

centrifuge tubes for 2 h at 0 °C and 10528 rcf (10000 rpm, rmax = 94.0 mm) in an 

Allegra X-22R Centrifuge. 

 

Table 1. The quantities of Laponite RD added to 80 ppb As(V) and 80 ppb Cr(VI) 

solutions in triplicate without ceria. 

Experiment Amount of Laponite RD (mg) 

1 75 

2 50 

3 25 

4 10 

 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Characterization of 3D Flowerlike Ceria 

3.1.1 SEM 

 SEM images revealed the morphological changes between the nanocomposite 

ceria (Figure 5) and the 3D flowerlike ceria (Figure 6). As shown in Figure 5, 

nanocomposite ceria was formed when anhydrous CeCl3 was used as a reactant for 

the metal source. Many ceria nanomaterials appeared to clump together (Figure 5), 

and some of them were in a shape of nanowires (Figure 5). Since 3D flowerlike ceria 

did not form when using anhydrous CeCl3 as a source of cerium and a heat mantle for 

the reflux setup, CeCl3·7H2O was used as the source of cerium and an oil bath with 

temperature control were utilized for the reflux setup to maintain the temperature at 

180 °C. 
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Figure 5. Formation of nanocomposite ceria when the synthesis of ceria was carried 

out at 180 °C using anhydrous cerium chloride as the source of cerium: (a) the ceria 

aggregates and (b) the ceria nanowires. 

 

 

Shown in Figure 6, 3D flowerlike ceria successfully formed using the new 

parameters. Hence, it is crucial to utilize cerium chloride hydrate and a temperature-

controlled oil bath for the synthesis of 3D flowerlike ceria. The water molecules of 

CeCl3·7H2O may stabilize the central Ce
3+

 ion and increase its solubility in ethylene 

glycol. The increased solubility of CeCl3·7H2O in ethylene glycol may facilitate the 

reaction between CeCl3·7H2O and formic acid to form cerium formate (Scheme 1). It 

is also possible that the water molecules of CeCl3·7H2O may form hydroxide ions. 

These hydroxide ions may interact and form Ce-O bonds which are the bridges of the 

ceria. In addition, the calcined ceria shown in Figure 6 shows evidence of micropetals 

that are composed of many compact layers. These stacked lamellae have been 

reported previously by Zhong et al.
23 

a 
a 

b 

b 
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Figure 6. Formation of 3D flowerlike micro/nanocomposite ceria when the synthesis 

of ceria was carried out at 180 °C using a temperature-controlled oil bath and 

CeCl3·7H2O as the source of cerium. The circles represent the aggregates of 3D 

flowerlike ceria. 

 

 

 

When Figure 6 was compared with the SEM image of 3D flowerlike ceria 

obtained by Zhong et al., the sizes and the distribution of 3D flowerlike ceria were 

different.
23

 The size of individual ceria “flowers” in Figure 6 is about 2 µm whereas 

the ceria flowers synthesized by Zhong et al. were about 5 µm in diameter.
23

 

According to Zhong et al., further aggregation of 3D flowerlike ceria is prevented 

once the 3D flowerlike structure is formed because 3D flowerlike ceria is already 

present in an aggregated form.
23

 However, some of the 3D flowerlike ceria appeared 

to clump together more than others in Figure 6. Thus, the aggregated 3D flowerlike 

ceria in Figure 6 was less evenly distributed and had fewer compact layers than the 

3D flowerlike ceria that was synthesized by Zhong et al.
23

 It is possible that the 
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aggregated 3D flowerlike ceria caused the dispersed 3D flowerlike ceria to clump 

together, which may have impeded the distribution of the dispersed 3D flowerlike 

ceria. Having an even distribution of 3D flowerlike micro- and nano-structure of ceria 

is important because it is required for microfiltration and because its aggregation may 

inhibit the adsorption of As(V) and Cr(VI), which could lower the efficiency of the 

3D flowerlike ceria in water treatment.  

 

3.1.2 ATR-IR 

The ATR-IR spectra of TBAB, the ceria precursor, and the calcined ceria 

were obtained to study their chemical composition and to confirm that all the organic 

compounds were removed after calcination. As shown in Figure 7, the significant 

absorption bands for TBAB appeared at 1400 cm
-1 

(C-N stretch), 1500 cm
-1 

(C-H 

bend), and 2800-3000 cm
-1

 (C-H stretch).  

The significant absorption bands for the ceria precursor appeared at 500-600 

cm
-1

 (Ce-O stretch), 1000-1100 cm
-1

 (C-O stretch), 1300-1400 cm
-1

 (O-C-O 

symmetric stretch), 1400-1500 cm
-1

 (O-C-O asymmetric stretch), and 3100-3300 cm
-1

 

(O-H stretch).
53

 The absorption band for the Ce-O stretch appeared as a broad peak 

with the highest absorbance because the ceria precursor is mostly composed of cerium 

and oxygen. The vibrational frequency for the Ce-O stretch at 500-600 cm
-1

 agreed 

with the literature vibrational frequency at 551 cm
-1

.
54

 The O-C-O bonds in the ceria 

precursor are the alkoxide chains that link the cerium oxide molecules (Scheme 1). 

Two peaks were observed for the O-C-O band because the bond has both asymmetric 

stretching at a higher vibrational frequency and symmetric stretching at a lower 

vibrational frequency. In addition, the ceria precursor appeared to have either water or 

formic acid as a broad band for O-H stretching was observed at 3300-3400 cm
-1

.  
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In the spectrum of the calcined ceria, the significant absorption bands that 

were observed appeared at 500-600 cm
-1 

(Ce-O stretch), 1300-1500 cm
-1 

(O-C-O 

asymmetric and symmetric stretches), and 3300-3400 cm
-1 

(O-H stretch). Similar to 

the ceria precursor, the calcined ceria was mostly composed of cerium and oxygen; 

thus, the absorption band for the Ce-O stretch was expected to have the highest 

absorbance. The absorption band for the O-C-O stretch still appeared after calcination 

at 450 °C. Although all the alkoxide chains were not calcined, the absorption band of 

the O-C-O stretch for the calcined ceria had lower absorbance than that for the ceria 

precursor. As a result, the large quantities of the alkoxide chains were successfully 

removed in the calcined ceria. During calcination, not only most of the alkoxide 

chains, but also TBAB, which is an organic templating agent, was removed because 

the C-H stretch, the C-H bend, and the C-N stretch diminished after calcination. 

However, similar to the ceria precursor, the calcined ceria still contained water or 

formic acid as a broad band for O-H stretching was also observed at 3300-3400 cm
-1

. 
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_ 

Figure 7. ATR-IR spectra of TBAB (black), ceria precursor (blue), and the calcined ceria (red).
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3.1.3 Powder XRD 

 Powder XRD spectra were obtained for the ceria precursor (Figure 8) and the 

calcined ceria (Figure 9) to determine whether or not the 3D flowerlike ceria was in a 

highly crystalline phase after calcination. 

 

 

 
Figure 8. Powder XRD spectrum of the ceria precursor. 

 

 

 

 
Figure 9. Powder XRD spectrum of the calcined ceria. Indexed from Zhong et al.

23 
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  As shown in Figure 8, there are no significant peaks in the powder XRD 

spectrum of the ceria precursor; this indicated that the ceria precursor was in an 

amorphous phase, in agreement with Zhong et al.
23 

When the X-rays hit the ceria 

precursor, they were scattered in many directions; thus, only the ceria precursor was 

in non-crystalline phase because there was no constructive interferences. 

However, four significant peaks appeared after calcination in Figure 9. When 

the X-rays hit the calcined ceria, peaks with high intensity appeared in the XRD 

spectrum because the X-rays hit the lattice planes of the calcined ceria and were 

preferentially scattered in certain directions.
55

 Hence, the calcined ceria was in a 

crystalline phase, as evidenced by the sharp peaks with relatively higher intensities 

(Figure 9). It is important to have the calcined ceria in a crystalline phase because 

when the calcined ceria is in a highly crystalline phase, it has high surface area and a 

highly porous structure; both of these properties potentially increase the removal of 

As(V) and Cr(VI) by ceria. The four sharp peaks in the powder XRD spectrum of the 

calcined ceria agreed with the results from Shirke et al.
56

 In order to study the 

structure of 3D flowerlike ceria further, the values of d-spacing were calculated using 

Equation 1 (Table 2). The d-spacings for our 3D flowerlike ceria match those reported 

by Shirke and his colleagues (Table 2).
56
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Table 2. Comparison of the experimental and the literature quantitative 

powder XRD data for the calcined ceria. 

  
  of X-ray  

(Å ) 

2  

(degree) 

  

(degree) 

  

(radian) 
sin   

d-spacing 

(Å ) 

Experimental 1.79 (Cu) 

33.0 16.5 0.288 0.284 3.15 

38.0 19.0 0.331 0.325 2.75 

55.5 27.8 0.484 0.465 1.92 

66.0 33.0 0.576 0.544 1.64 

Shirke et al.
56 

2.28 (Cr) 

42.9 21.4 0.374 0.365 3.13 

50.2 25.1 0.438 0.424 2.70 

73.9 36.9 0.644 0.601 1.91 

89.0 44.5 0.776 0.701 1.63 

 

 

3.2 Removal of As(V) and Cr(VI) from Water 

 Experiments were conducted to test the ability of the 3D flowerlike ceria to 

remove As(V) and Cr(VI) from water. Results from these experiments are shown in 

Figure 10. 
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Figure 10. Removal of As(V) and Cr(VI) from water by ceria. Black bars represent 

controls without exposure to ceria, whereas grey bars represent test samples with 

exposure to ceria. (As + Cr) is a mixed solution of As(V) and Cr(VI). Numbers 

represent concentrations of corresponding samples listed. Error bars represent 

standard deviations for triplicate samples. 

 

 

 

As shown in Figure 10, there was a significant decrease in the concentrations 

of As(V) and Cr(VI) after exposure to 3D flowerlike ceria. The final concentrations of 

As(V) and Cr(VI) were lower than the MCLs for As(V)
1
 and Cr(VI)

3
 in drinking 

water set by the U.S. EPA (Figure 10).
1,3

 It is crucial to have lower concentrations of 

As(V) and Cr(VI) than their MCLs because the concentrations of As(V) and Cr(VI) 

that are higher than the MCLs will most likely cause serious health effects. The 

current drinking water standard for arsenic was lowered to be 10 ppb from 50 ppb in 

1975 to reduce the public health risks from arsenic contamination in drinking water.
57

 

The percent removal of As(V) and Cr(VI) by the 3D flowerlike ceria were calculated 

and are summarized in Table 3. 
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Table 3. Percent removal of As(V) and Cr(VI) from water by 3D flowerlike ceria. 

Sample Removal by ceria (%) 

As 92 ± 3 

Cr 91 ± 2 

As (As+Cr) 94 ± 8 

Cr (As+Cr) 90 ± 8 

   

 

In all test samples, the concentrations of As(V) and Cr(VI) were reduced by 

more than 90% using the 3D flowerlike ceria (Table 3). There were no significant 

differences among the removal percentages for the four samples within error. 

Therefore, there was no difference in removal in the single-contaminant solutions vs. 

the mixed solution; this revealed that the presence of both As(V) and Cr(V) ions did 

not affect the ability of the ceria to remove both ions. Also, since the removal 

percentages of the two mixed As(V) and Cr(V) samples were very close, the ceria did 

not preferentially remove one ion over the other ion. 

 

3.3 Recovery and Recycling of 3D Flowerlike Ceria 

 After testing the removal of As(V) and Cr(VI) by the 3D flowerlike ceria, 

SEM images of the exposed (Figure 11) and NaOH-washed (Figure 12) ceria were 

obtained to determine if there were any morphological changes in the 3D flowerlike 

structure. 
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Figure 11. 3D flowerlike micro/nanocomposite ceria after exposure to As(V) and 

Cr(VI).  

 

 

Figure 11 was compared with Figure 6 to determine if there were any 

morphological changes in the structure of the 3D flowerlike ceria after exposure to 

As(V) and Cr(VI). Based on this comparison, it is clear that the structure of the 3D 

flowerlike ceria was retained after it was exposed to the mixed As(V) and Cr(VI) 

solution. It is crucial to retain the 3D flowerlike micro/nanostructure because the 3D 

flowerlike micro/nanostructure allowed As(V) and Cr(VI) to sequester between the 

two stacked cerium-oxygen sheets and remove them from water. 
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Figure 12. 3D flowerlike micro/nanocomposite ceria that was washed in NaOH 

solution after exposure to As(V) and Cr(VI). 

 

 

 

After confirming that there was no change in morphology of the 3D 

flowerlike ceria after exposure to As(V) and Cr(VI), an SEM image of the ceria after 

regeneration (washing in NaOH) was obtained (Figure 12). Similar to the comparison 

between Figures 6 and 11, there was no change in morphology of the 3D flowerlike 

ceria upon washing with NaOH. The stability of the 3D flowerlike structure is 

important to be able to reuse the 3D flowerlike ceria after use and washing with 

NaOH solution. If there was any significant morphology change of the 3D flowerlike 

ceria after washing with NaOH, its properties would also change, and it could not be 

reused multiple times. 

 

3.4 Testing the Dispersion of Laponite RD in the As(V) and Cr(VI) Solutions 

 When Laponite RD was added to the As(V) and Cr(VI) solutions and 
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centrifuged, it did not separate as a solid in the As(V) and Cr(VI) solutions; instead, it 

remained completely dispersed in the As(V) and Cr(VI) solutions. The dispersion of 

Laponite RD in the As(V) and Cr(VI) solutions is important because its dispersive 

property would facilitate to form the Laponite RD/3D flowerlike ceria filtration 

membrane. 

 

3.5 Importance of Nanostructures 

This experiment emphasizes that the cooperation of micro- and nano-

structures of 3D flowerlike ceria is essential for water filtration applications. Several 

reports have emerged about various morphologies of ceria. For instance, Ho et al. 

have synthesized spherical ceria nanoparticles, microsized rod-shaped, and spindle-

like ceria structures using a polyol method.
30

 Ceria particles with these structures have 

been selected as catalysts for CO oxidation and have applications in solid electrolytes 

and electrochromic devices.
30

 Li et al. have prepared mesoporous nanorod-like ceria 

by microwave-assisted hydrolysis of Ce(NO3)3·6H2O in the presence of urea.
58

 They 

reported that the mesoporous nanorod-like ceria has an application for efficient 

photocatalytic environmental purification because it exhibited highly efficient 

photothermocatalytic activity for the gas-phase mineralization of organic 

contaminants such as benzene.
58

 

Sun et al. have fabricated nearly monodisperse flowerlike ceria microspheres 

that are hollow mesoporous materials with controlled morphologies and high 

hydrothermal stability.
31

 The flowerlike ceria microsphere is an excellent candidate 

for gas transport due to its open 3D porous structure.
31

 The monodisperse porous 

materials can be used as catalysis, energy storage, and conversation.
31

 Similar to 

nearly monodisperse flowerlike ceria microspheres, Xiao et al. have synthesized 
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hierarchical ceria nanocrystal microspheres by a nonaqueous sol-gel method at 

120 °C.
59

 These microspheres appeared to be promising adsorbents for wastewater 

treatment because these can effectively remove Cr(VI) without pH preadjustment and 

rhodamine B from simulated wastewater.
59

 Based on these studies of different 

morphologies of ceria nanomaterials, the nanostructure of ceria is a decisive factor for 

its applications. 

 

3.6 An Emerging Ceria Nanostructure with Higher Removal Capacity for As(V) and 

Cr(VI): Ceria Hollow Nanospheres 

 Cao et al. extended the work of Zhong et al.
23

 to investigate what 

morphology of ceria would give a better removal capacity for As(V) and Cr(VI).
60

 

Cao et al. have synthesized ceria hollow nanospheres by a template-free and 

microwave-assisted method.
60

 The Brunauer-Emmett-Teller (BET) surface area and 

the maximum removal capacity of As(V) and Cr(V) for ceria hollow nanospheres 

were compared with those for 3D flowerlike ceria (Table 4). 

 

 

Table 4. BET surface area and the maximum removal capacity of ceria hollow 

nanospheres and 3D flowerlike ceria. 

Adsorbent sample 

Brunauer-Emmett-

Teller (BET) 

Surface area 

(m
2
·g

-1
) 

Maximum removal 

capacity of As(V) 

(mg·g
-1

) 

Maximum removal 

capacity of Cr(VI) 

(mg·g
-1

) 

Ceria hollow spheres 

from Cao et al.
60 72 22.4 15.4 

3D flowerlike ceria 

from Zhong et al.
23 34.1 14.4 5.9 
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As compared in Table 4, ceria hollow nanospheres have higher surface area 

and higher removal capacity for As(V) and Cr(VI) than 3D flowerlike ceria.
 
In 

contrast to previously reported methods for other ceria nanostructures, neither an 

organic templating agent nor an organic solvent is needed to synthesize ceria hollow 

nanospheres.
60

 In addition, microwave-assisted heating has advantages in low cost 

and short reaction time compared to the hydrothermal process.
60

 Cao et al. also 

reported that microwave heating gives the homogeneous shapes and sizes of the 

nanoparticles due to uniform heating of the mixture.
60

 For these reasons, they claimed 

that ceria hollow nanospheres are more advantageous than 3D flowerlike ceria to 

remove As(V) and Cr(VI) from water. 

 

4. CONCLUSIONS 

 

  In summary, the 3D flowerlike ceria was successfully synthesized through a 

facile, ethylene glycol/TBAB mediated self-assembly process and was characterized 

using SEM, XRD, and ATR-IR. ICP-MS data revealed that the 3D flowerlike ceria 

sorbed As(V) and Cr(VI) in test solutions and reduced their aqueous concentrations by 

more than 90%. The 3D flowerlike micro/nanocomposite structure of ceria was 

retained both after exposure to As(V) and Cr(VI) and after washing with NaOH 

solution.  

 

5. FUTURE WORK 

5.1 Testing the Recycling and Reuse of 3D Flowerlike Ceria 

One of the advantages of using 3D flowerlike ceria is that it can theoretically 

be reused multiple times.
23,60

 Thus, it is important to test if the NaOH-washed 3D 

flowerlike ceria still has the same ability to reduce the concentrations of As(V) and 
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Cr(VI) in water. In order to test the reusability of the NaOH-washed 3D flowerlike 

ceria, it can be sequentially added to new As(V) and Cr(VI) solutions and centrifuged. 

If the final concentrations of As(V) and Cr(VI) are reduced by at least 90%, then the 

NaOH-washed 3D flowerlike ceria can be recycled and reused multiple times. 

 

5.2 Selectivity of 3D Flowerlike Ceria for As(V) and Cr(VI)  

  In the current work, sodium arsenate dibasic heptahydrate and potassium 

dichromate were dissolved in deionized water to prepare As(V) and Cr(VI) solutions 

for water treatment. In the future, it would be ideal to test the ability of 3D flowerlike 

ceria to remove As(V) and Cr(VI) in actual contaminated drinking water samples. 

There may be other potential contaminants such as magnesium and calcium present in 

contaminated drinking water. It would be interesting to test if the 3D flowerlike ceria 

can selectively remove As(V) and Cr(V) from contaminated drinking water in the 

presence of other metals and ions. 

 

5.3 Laponite RD/3D Flowerlike Ceria Filtration Membrane 

 Since Laponite RD remained dispersed in the As(V) and Cr(VI) solutions, the 

3D flowerlike ceria can be incorporated within Laponite RD to create water filtration 

membranes. The proposed scheme of Laponite RD/3D flowerlike ceria filtration 

membrane is shown in Figure 13. 

After confirming the aqueous dispersion of Laponite RD in the As(V) and 

Cr(VI) solutions, the simultaneous addition of Laponite RD and the 3D flowerlike 

ceria to the As(V) and Cr(VI) solutions may help to disperse the 3D flowerlike ceria 

aggregates. Increasing dispersion of 3D flowerlike ceria may increase its ability to 

remove As(V) and Cr(VI) because more surface area of the 3D flowerlike ceria will 
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be exposed to adsorb more As(V) and Cr(VI). 

 

Figure 13. Proposed scheme of Laponite RD/3D flowerlike ceria filtration membrane. 

Yellow flowers and blue disks represent 3D flowerlike ceria and Laponite RD, 

respectively. 

 

 

In order to create the Laponite RD/3D flowerlike ceria filtration membrane, 

Laponite RD and 3D flowerlike ceria can be added to the As(V) and Cr(VI) solutions 

simultaneously and centrifuged to allow Laponite RD to separate with the 3D 

flowerlike ceria. The precipitate can be collected and air-dried. The air-dried 

precipitate can be casted on filter paper,
36

 and the morphology of the Laponite RD/3D 

flowerlike ceria filtration membrane can be studied using SEM. The final 

concentrations of As(V) and Cr(VI) after the addition of Laponite RD and 3D 

flowerlike ceria can be measured by using ICP-MS. The percent removal of the 

Laponite RD/3D flowerlike ceria filtration membrane can be compared with the 

percent removal of As(V) and Cr(VI) after exposure to 3D flowerlike ceria.  
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