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Abstract

Advisors: Matthew Anderson & William Zwicker

Peer grading can have many benefits in education, including a reduction in the time instructors spend

grading and an opportunity for students to learn through their analysis of others work. However, when

not handled properly, peer grading can be unreliable and may result in grades that are vastly different

from those which a student truly deserves. Therefore, any peer grading system used in a classroom must

consider the potential for graders to generate inaccurate grades. One such system is the PeerRank rule

proposed by Toby Walsh [11], which uses an iterative, linear algebra based process reminiscent of the

Google PageRank algorithm [6] in order to produce grades by weighting the peer grades with the graders

accuracies. However, this system has certain properties which make it less than ideal for peer grading in

the classroom. We propose a modification of PeerRank that attempts to make the system more applicable

in a classroom environment by incorporating the concept of “ground truth” to provide a basis for accuracy.

We then perform a series of experiments to compare the accuracy of our method to that of PeerRank. We

conclude that, in cases where a grader’s accuracy in grading others is a reflection of their own grade,

our method produces grades with a similar accuracy to PeerRank. However, in cases where a grader’s

accuracy and grade are unrelated, our method performs more accurately than PeerRank.
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1 Introduction

In the context of education, peer grading is a process in which each student in a class receives a set of

grades from their classmates for an assignment, and they, in turn, provide grades for their classmates’ as-

signments. An example of one student’s role in this process is diagrammed in Figure 1. Many educators

have argued that peer grading can be a valuable tool in enhancing the overall learning experience for stu-

dents. Sadler and Good [8] suggest several potential benefits to peer grading in the classroom, including

(i) a reduction in the time instructors spend on grading, (ii) faster and more detailed feedback on student

assignments, (iii) an increase in a student’s understanding of the material by requiring them to evaluate

the work of their classmates, and (iv) the possibility for students to identify the strengths and weaknesses

in their own assignments. Topping [10] expresses similar opinions, and adds that it “involves students di-

rectly in the learning process” and helps them develop social skills such as the ability to accept criticism. In

addition, Cho and Schunn [3] point out that when instructors bear the burden of grading all submissions

for an assignment they may be forced to limit the number of writing assignments given in the class, which

hampers the ability of students to develop their writing skills. Furthermore, the recent introduction of mas-

sive open-access online courses (MOOCs) such as those provided by EdX and Coursera makes it possible

for thousands of students to participate in the same class, in which case it is impossible for an instructor to

manually grade all the submissions for any assignment. It is therefore clear that peer grading systems have

the potential to be a beneficial, and sometimes essential, tool in education.

Figure 1: An example of one student’s role in the peer grading process. Here the student both grades and
is graded by five of their peers.
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However, an immediate concern about the peer grading approach is the overall reliability of a grading

system, that is, the likelihood that each student receives a grade that is close to the one they truly deserve.

If a system is unreliable then it is possible that a student may receive a grade that is significantly higher

or lower than their deserved grade, and the negative consequences of peer grading could outweigh any

potential benefits it may provide. While there are several possible sources for inaccurate grades, we identify

two particular causes:

Issue 1. A grader may have an overall tendency to grade their peers either more leniently or more harshly

than is deserved due to either their own inexperience in grading or a poor understanding of the

material being graded.

Issue 2. If a grader does not care about the peer grading process then it is likely that they will make no

effort to grade with accuracy.

In our opinion, it is essential that any peer grading system used in a classroom address these issues in order

to provide an accurate grade.

There have been several different approaches to providing accurate peer grading, each producing algo-

rithms with varying mathematical foundations. We discuss several of these systems in Section 2, and there

are two common aspects of them that address the previously-mentioned issues:

Solution 1. Make the individual grades from inaccurate graders have a smaller impact on a student’s over-

all grade than those provided by accurate graders.

Solution 2. Provide students with some sort of incentive to grade accurately.

One unique approach to peer evaluation in grant reviewing is the PeerRank system proposed by Toby

Walsh [11]. In PeerRank, each member of a group of “agents” provides a grade for the work submitted by

each of the agents in the group. The PeerRank algorithm combines this set of individual grades into a final

grade, using an iterative process with an underlying mathematical foundation in linear algebra similar to

that of Google’s PageRank algorithm for ranking web pages [6]. In short, an individual’s grade is based

both on the grades provided by the other agents, which are weighted by the grading agent’s own grade, and

on their own ability to grade accurately. The details of how PeerRank achieves this are given in Section 3.
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However, Walsh’s PeerRank system has certain issues that can cause it to produce inaccurate grades.

First, if a majority of the agents share a common belief relating to the subject of the works being graded, then

the grades of the agents outside that majority could unfairly suffer. For example, suppose that PeerRank is

being used to grade a set of physics research proposals whose authors are requesting funding. If a majority

of the physicists believe in string theory and reject all other models of the universe, then any proposal

that affirms belief in some other model may receive a lower grade than the proposals for string theory

research, regardless of its quality. Second, the peer grades provided by each agent are weighted based on

an important assumption.

Walsh’s Assumption. An agent’s accuracy in grading their peers is equal to their own grade.

In other words, Walsh assumes that there is a single score that reflects both how well an agent performs

on their own submission and how well they grade their peers’ submissions. PeerRank uses this score when

weighing the peer grades from different agents. While Walsh’s Assumption could be true in PeerRank’s

original context of grant reviewing, it is not necessarily true in classroom grading. For example, a student

who may not have understood how to answer a question when completing their own assignment may

understand and learn from the answers of their peers, in which case their grading accuracy could be higher

than their own grade. These issues are discussed in more depth in Section 3.3.

We address issues found in Walsh’s PeerRank by developing a system that can be used to provide

accurate peer grading in the classroom. In classes, we assume that there is some sort of “ground truth”

grade for each assignment that is determined by the instructor. In our approach to peer grading, we propose

that the instructor provides their own sample submission to be used as a basis for determining ground truth.

We then use this basis to produce an accuracy score for each grader that is independent of their own grade,

rejecting Walsh’s Assumption. Our proposed peer grading system uses these accuracy scores, rather than

the graders’ own grades, when weighing the peer grades in order to integrate the concept of ground truth

with the ideas developed by Walsh for PeerRank. We evaluated this system by testing it against simulated

grade data and comparing the results to those from PeerRank, and found that our system had a slight

improvement in accuracy over PeerRank in cases where Walsh’s Assumption fails to hold.

In Section 2, we discuss some of the past approaches to the problem of accurate peer grading. Then, in
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Section 3, we explain the details of exactly how PeerRank calculates grades and outline certain properties

of the system, as well as discuss some of the issues that could arise from applying PeerRank in the class-

room. In Section 4, we present our proposed method and discuss how it addresses the issues resulting from

PeerRank. In Section 5, we discuss the experiments with which we tested the performance of our method

against PeerRank, and then present our results. Finally, in Sections 6 and 7, we discuss our conclusions and

present potential continuations of our research.

2 Background and Related Work

There have been many articles published about peer grading and evaluation, both about its benefits and

impacts in education [3, 8, 10], and about systems for conducting it. As stated in the introduction, the

work most closely related to this thesis is the PeerRank system [11]. PeerRank is based largely on the

same foundations in linear algebra as the PageRank algorithm for ranking web pages developed by Page et

al. [1, 6] and used in the Google search engine. The process by which PeerRank determines grades, as well

as the issues with its implementation in the classroom, will be discussed in depth in Section 3.

Piech et al. [2] developed probabilistic models for peer grading. Their algorithms attempt to provide

accurate grading by adjusting for grader bias and, like PeerRank, incorporate a grader’s accuracy as a

factor in their own grade. Their process was established in the context of MOOCs offered on Coursera. Each

student is given five assignments to grade, one of which comes from a set of three to five randomly-selected

submissions that have been declared as “ground truth”. While the authors referred to these submissions

as “ground truth”, it is important to note that the submissions were not necessarily examples of a perfect

submission. The authors instead gave the set this name in order to reflect its use as a basis for determining

grader accuracy. Since a MOOC can have thousands of students and there are a very small number of

ground truth submissions, each one is graded hundreds of times. By the law of large numbers, it is assumed

that the average of the grades for a ground truth submission is close to the correct grade, and therefore these

submissions can be used as a basis for determining grader accuracy. However, because the ground truth

grade is determined by the grading students rather than the instructor it is possible that the resulting grade

will be inaccurate, especially if a majority of the graders have a poor understanding of the material. This
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means that the method is somewhat susceptible to Issue 1 from Section 1. Another major difference between

this work and PeerRank is that the probabilistic models they use produce a “belief distribution” of grades,

instead of a single grade, for each student. The size of this distribution is based on the model’s confidence

in the score it generates. As we will explain in Section 4, the process through which this system generates

grader accuracy scores served as an inspiration for our proposed method.

Another peer grading system for education is the CrowdGrader system developed by de Alfaro and

Shavlovsky [4]. In CrowdGrader, a student’s final grade is a combination of three separately determined

grades. First is the consensus grade, which is an average of the grades received from peers, taken after

the highest and lowest grades have been removed and the grades have been weighted by the graders’

accuracies. Second is the accuracy grade, which reflects the student’s overall accuracy in grading others

and is computed using an average square error. The third is the helpfulness grade, which incorporates an

additional step in which the students rate the quality of the feedback given to them by their graders. By

combining these ratings into the helpfulness grade, CrowdGrader encourages graders to provide useful

feedback to their gradees, instead of just a grade. However, according to the authors the absolute difference

(on a grading scale from 0% to 100%) between the grades produced by CrowdGrader and control grades

produced by instructors averaged around 15%. They note that this inaccuracy is comparable to that in

grades produced by teaching assistants, and that in cases where students claimed to have been mis-graded

the instructors were able to use the student feedback to determine the correct grades. However, such a low

accuracy is concerning for a system that is intended to grade students.

While it is not a grading system, a peer review system that is closely related to many other such sys-

tems, including PeerRank and CrowdGrader, is the system developed by Merrifield and Saari for ranking

research proposals [7], which was adapted by the NSF for the Signal and Sensing Systems program. Each

individual from the group submitting proposals is sent a certain number of proposals to organize in a

ranked list, and the individual lists are combined into an overall ranked list using a mathematical process

based on the Borda count, that is, an algorithm for combining voters’ individual preferences into an overall

ranking. The overall list is then compared to each evaluator’s list to determine their accuracy in ranking

proposals, and those evaluators who ranked accurately are rewarded by having their own proposal moved
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up slightly in the overall list.

3 PeerRank

In this section, we define our grading scenario, and then provide the details of PeerRank’s process of calcu-

lating grades. Suppose that we have a group of m agents, numbered from 0 to m− 1, which in the context

of classroom grading are students. Each agent j provides a grade Ai,j in the range [0, 1] for each agent i’s

submission (meaning that we have a total of m2 peer grades). After the peer grades are generated they

are assembled into a grade matrix A, where the ith row of A contains all of the grades received by agent i

and the jth column contains all of the grades given by agent j. Therefore, we denote the grade that agent i

received from agent j as Ai,j .

PeerRank [11] uses an iterative process in order to generate a grade vector ~X , where Xi contains the

overall grade for agent i, and this grade vector is repeatedly updated. We begin the process using a vector

~X0 called the “initial seed”, which we substitute into an equation in order to generate a new grade vector

~X1. This process is repeated using each of the new grade vectors we generate until we approximate a fixed

point, which is a grade vector that no longer changes with additional iterations (i.e., ~Xn+1 ≈ ~Xn).

Walsh gives two different versions of his PeerRank process, which combine the peer grades in A to

determine a final grade Xi for each agent i. The first is a basic version that provides no incentive for

accurate grading, and the second is a generalized version that includes an additional term to incentivize

accurate grading. We describe both versions, and prove properties of each.

3.1 Basic Version

Let Xn
i be the grade of agent i in the nth iteration of PeerRank. We start by choosing a value for α such that

0 < α < 1. Walsh states that the choice of α has no effect on the final result, and merely affects the speed of

convergence [11].

Next, we construct our initial seed grade vector ~X0. For each agent i, we set i’s initial grade to be the
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average of the grades they received.

X0
i =

1

m

m−1∑
j=0

Ai,j (1)

However, as we will show later in Theorem 1, the choice of our initial seed has no impact on the final result,

as long as it does not contain any zeros. Next, we iteratively calculate each agent’s grade in the (n + 1)st

iteration using the grades in the nth iteration:

Xn+1
i = (1− α) ·Xn

i +
α∑m−1

j=0 Xn
j

·
m−1∑
j=0

Xn
j ·Ai,j (2)

This equation can be rewritten in vector form:

~Xn+1 = (1− α) · ~Xn +
α∣∣∣∣∣∣ ~Xn
∣∣∣∣∣∣
1

·A ~Xn (3)

where
∣∣∣∣∣∣~V ∣∣∣∣∣∣

1
=
∑
i |vi| is the one norm of ~V .

The second term in this equation produces weighted averages of the grades each agent received, where

the weights used are the graders’ grades in the previous iteration. This equation is repeated iteratively until

we approximate a fixed point, i.e., until ~Xn+1 ≈ ~Xn. The resulting fixed point is the output of PeerRank,

and contains the final grade assigned to each agent.

3.1.1 Properties

In this section, we prove several important properties about the basic version of PeerRank. The first two

of these properties, along with several others, were proven by Walsh [11]. The first property, named here

as Proposition 1, states that the fixed point, ~X , for this version of PeerRank is an eigenvector of the grade

matrix A with eigenvalue
∣∣∣∣∣∣ ~X∣∣∣∣∣∣, meaning that A ~X =

∣∣∣∣∣∣ ~X∣∣∣∣∣∣ ~X . The second property, named here as Proposi-

tion 2, states that the domain for grades in the output ~X is the same as the domain for grades in the grade

matrix A. We then use these properties, along with some additional propositions, to prove that the fixed

point for the basic version of PeerRank is unique. This is an extremely useful property since it means that

we can use almost any grade vector as our initial seed and reach the same fixed point.
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It should be noted that Walsh defines the domain of possible grades as [0,1]. However, in Proposition 4

we will show that Theorem 1 is not guaranteed to apply if we allow grades of 0. Therefore, our statements

and proofs of Proposition 1, Proposition 2, and Theorem 1 restrict the domain of allowed grades to (0, 1].

We begin by proving the first two properties following the proofs given by Walsh. Note that our state-

ment and proof of Proposition 1 are stronger than Walsh’s equivalent statements [11].

Proposition 1. ([11], Proposition 1) The vector ~X ∈ (0, 1]m is a fixed point of the basic version of PeerRank if and

only if it is an eigenvector of the grade matrix A with eigenvalue
∣∣∣∣∣∣ ~X∣∣∣∣∣∣.

Proof. For the forward direction, assume that ~X is a fixed point of the basic version of PeerRank with the

grade matrix A. This means that

~X = (1− α) · ~X +
α∣∣∣∣∣∣ ~X∣∣∣∣∣∣

1

·A ~X ,

~X = ~X − α ~X +
α∣∣∣∣∣∣ ~X∣∣∣∣∣∣

1

·A ~X ,

α∣∣∣∣∣∣ ~X∣∣∣∣∣∣
1

·A ~X = α ~X .

If we divide by α and let λ =
∣∣∣∣∣∣ ~X∣∣∣∣∣∣

1
, we have

1

λ
·A ~X = ~X ,

A ~X = λ ~X .

Therefore, ~X is an eigenvector of A with eigenvalue
∣∣∣∣∣∣ ~X∣∣∣∣∣∣

1
.

We can reverse these steps to prove the reverse direction.

Proposition 2. ([11], Proposition 2) If ~X is a fixed point of the basic version of PeerRank with an m × m grade

matrix A, then ~X ∈ (0, 1]m.

Proof. We will prove that Xn
i ∈ (0, 1] for all i and all n using induction. For the base case, it is clear that

X0
i ∈ (0, 1] since it is the average of terms which are all in (0, 1]. For the inductive case, assume that
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Xn
i ∈ (0, 1] for all i. Then we have

Xn+1
i = (1− α) ·Xn

i +
α∑m−1

j=0 Xn
j

·
m−1∑
j=0

Xn
j ·Ai,j

> (1− α) · 0 + α∑m−1
j=0 Xn

j

·
m−1∑
j=0

Xn
j ·Ai,j since Xn

i > 0

>
α∑m−1

j=0 Xn
j

·
m−1∑
j=0

0 since Xn
j > 0 and Ai,j > 0

= 0.

Therefore Xn+1
i > 0, ∀i. Now let Xn

i = 1− ε where 0 ≤ ε < 1, we have

Xn+1
i = (1− α)(1− ε) + α∑m−1

j=0 Xn
j

·
m−1∑
j=0

Xn
j ·Ai,j

= 1− α− ε(1− α) + α∑m−1
j=0 Xn

j

·
m−1∑
j=0

Xn
j ·Ai,j

≤ 1− α− ε(1− α) + α∑m−1
j=0 Xn

j

·
m−1∑
j=0

Xn
j since Ai,j ≤ 1

= 1− α− ε(1− α) + α

= 1− ε(1− α)

≤ 1.

Therefore 0 < Xn+1
i ≤ 1.

Next we will prove that the fixed point of the basic version of PeerRank is unique regardless of our

choice of the initial seed (as long as it does not contain zeros). Our proof is based heavily on the proof for

the uniqueness of the fixed point in PageRank [1]. First, we present the following proposition from Bryan

and Leise [1].

Proposition 3. ([1], Proposition 3) Let ~v and ~w be linearly independent vectors in Rm, m ≥ 2. Then, for some real

values s and t that are not both zero, the vector ~x = s~v + t~w has both positive and negative components.
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Proof. Because ~v and ~w are linearly independent, neither are equal to ~0. Let d =
∑
i vi. We now have two

cases:

Case 1: Assume d = 0. Then because ~v 6= ~0, ~v must have both positive and negative components. Therefore,

if we let s = 1 and t = 0, then ~x = s~v + t~w = ~v has both positive and negative components.

Case 2: Assume d 6= 0. Then let s = −
∑
i wi
d and t = 1. Since ~v and ~w are linearly independent,

~x = s~v + t~w 6= ~0. However,
∑
i xi = 0. Therefore, ~x must have both positive and negative compo-

nents.

Next we prove the following lemma, which will be essential in proving Theorem 1. We define an

eigenspace as the space of eigenvectors of a matrix with the same eigenvalue, and the dimension of an

eigenspace as the size of a maximal set of linearly independent vectors in the eigenspace.

Lemma 1. Suppose that ~X is a fixed point of the basic version of PeerRank with grade matrix A. Then the eigenspace

with eigenvalue
∣∣∣∣∣∣ ~X∣∣∣∣∣∣

1
has dimension 1.

Proof. Suppose for contradiction that there exist two linearly independent fixed points ~V and ~W both in

the same eigenspace of A, Vλ, where λ =
∣∣∣∣∣∣~V ∣∣∣∣∣∣

1
=
∣∣∣∣∣∣ ~W ∣∣∣∣∣∣

1
by Proposition 1. Then for any real numbers s

and t both not zero, the vector ~X = s~V + t ~W is nonzero and must be in Vλ since vector spaces are closed

under linear combination. We can then rescale our choice of s and t so that
∣∣∣∣∣∣ ~X∣∣∣∣∣∣

1
= λ. By Proposition

1, this means ~X is also a fixed point. So by Proposition 2, the components of ~X are all in the range (0, 1].

However, by Proposition 3, for some choice of s and t that are not both zero, ~X must contain both positive

and negative components, a contradiction. Therefore, Vλ cannot contain two linearly independent vectors,

and so it has dimension 1.

Now, we prove Theorem 1, which states that a fixed point of the basic version of PeerRank is unique

regardless of our choice of initial seed.

Theorem 1. The basic version of PeerRank at most one fixed point for each grade matrix A.
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Proof. Suppose for contradiction that there exist two linearly independent fixed points ~V and ~W , both

nonzero, for PeerRank with the m × m grade matrix A. Then by Proposition 1, ~V is an eigenvector of A

with eigenvalue
∣∣∣∣∣∣~V ∣∣∣∣∣∣

1
, and ~W is an eigenvector of A with eigenvalue

∣∣∣∣∣∣ ~W ∣∣∣∣∣∣
1
. Furthermore, by Lemma 1,

the eigenspaces with eigenvalues
∣∣∣∣∣∣~V ∣∣∣∣∣∣

1
and

∣∣∣∣∣∣ ~W ∣∣∣∣∣∣
1

each have dimension 1. Therefore, since ~V and ~W are

linearly independent,
∣∣∣∣∣∣~V ∣∣∣∣∣∣

1
6=
∣∣∣∣∣∣ ~W ∣∣∣∣∣∣

1
.

Suppose, without loss of generality,
∣∣∣∣∣∣~V ∣∣∣∣∣∣

1
>
∣∣∣∣∣∣ ~W ∣∣∣∣∣∣

1
. Let ~X = s~V + t ~W , where s = −1 and

t = max1≤j≤n
Vj
Wj

. Note that ~X has no negative components, since for t = Vj
Wj

and i where 1 ≤ i ≤ n we

have

xi = sVi + tWi

= −Vi +
Vj
Wj

Wi

≥ −Vi +
Vi
Wi

Wi

= 0.

Then by linearity

A ~X = As~V +At ~W

= s
∣∣∣∣∣∣~V ∣∣∣∣∣∣

1

~V + t
∣∣∣∣∣∣ ~W ∣∣∣∣∣∣

1

~W

=


s
∣∣∣∣∣∣~V ∣∣∣∣∣∣

1
V1 + t

∣∣∣∣∣∣ ~W ∣∣∣∣∣∣
1
W1

...

s
∣∣∣∣∣∣~V ∣∣∣∣∣∣

1
Vn + t

∣∣∣∣∣∣ ~W ∣∣∣∣∣∣
1
Wn

 .
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Isolating the jth component of A ~X , we have

s
∣∣∣∣∣∣~V ∣∣∣∣∣∣

1
Vj + t

∣∣∣∣∣∣ ~W ∣∣∣∣∣∣
1
Wj = −

∣∣∣∣∣∣~V ∣∣∣∣∣∣
1
Vj +

Vj
Wj

∣∣∣∣∣∣ ~W ∣∣∣∣∣∣
1
Wj

= −
∣∣∣∣∣∣~V ∣∣∣∣∣∣

1
Vj +

∣∣∣∣∣∣ ~W ∣∣∣∣∣∣
1
Vj

< 0

since
∣∣∣∣∣∣~V ∣∣∣∣∣∣

1
>
∣∣∣∣∣∣ ~W ∣∣∣∣∣∣

1
.

This means that the jth component of A ~X is negative. However, because all components in A are

positive and all components in ~X are nonnegative, all components of A ~X , including the jth component,

must also be nonnegative. This means we have reached a contradiction. Therefore, there can be at most one

non-zero fixed point.

Note that while Theorem 1 proves that there can be at most one fixed point, neither we nor Walsh prove

that a fixed point is guaranteed to exist or that PeerRank will converge to a fixed point from every initial

seed. However, experimental results suggest that these properties are true.

Finally, we address our decision to restrict the domain of possible grades to (0, 1]. In his proposal of

PeerRank, Walsh specifies the domain of grades as [0, 1], which includes grades of 0. However, in the proof

of following proposition we show that if we allow grades of 0 then we can provide counterexamples of

Theorem 1, meaning that the fixed point of the basic version of PeerRank is no longer guaranteed to be

unique.

Proposition 4. Suppose that the grade matrix A contains entries all in the range [0, 1]. Under this assumption, the

basic version of PeerRank may have multiple fixed points.

Proof. Let A be the following 2× 2 grade matrix:

A =

1 0

0 1


First, let our initial seed be ~X0 = [1, 0]T . Then the basic version of PeerRank produces the fixed point [1, 0]T .
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Now, let our initial seed be ~X0 = [0, 1]T . Then the basic version of PeerRank produces the fixed point [0, 1]T .

Therefore, multiple fixed points exist.

While it may seem like a problem for a grading system to not allow grades of 0, this issue can be solved

by replacing grades of 0 with an extremely small positive value. The effect of these low grades on the

weighing of peer grades in PeerRank is extremely similar to the effect from grades of 0, and the added

requirement of positivity ensures that PeerRank can only produce one fixed point. Therefore in all of our

future examples, grades of 0 are assumed to have been replaced with a very small positive grade.

3.2 Generalized Version

The generalized version of PeerRank adds an extra term to the equation that provides an incentive for

graders to grade accurately. Let α and β be nonnegative values such that α+ β ≤ 1. Next, we construct our

initial seed grade vector ~X0 using Equation 1 as in the basic version of PeerRank. However, we define our

update step as

Xn+1
i = (1− α− β) ·Xn

i +
α∑m−1

j=0 Xn
j

·
m−1∑
j=0

Xn
j ·Ai,j +

β

m
·
m−1∑
j=0

1−
∣∣Aj,i −Xn

j

∣∣ (4)

The new term in this equation, as compared to Equation 2, incorporates a factor of β into agent i’s grade

based on their accuracy in grading others. It does so by measuring the absolute difference between the

grade given by agent i to agent j for all j, subtracting each of these differences from 1 to gain an accuracy

measure, and then averaging the results. The resulting value represents agent i’s overall grading accuracy,

which is then multiplied by β. Therefore, our choice of β impacts how much influence each agent’s grading

accuracy has on their own grade. Note that when β = 0, we are left with Equation 2.

3.2.1 Properties

We now wish to prove that the same useful properties that apply to the basic version of PeerRank also apply

to the generalized version. We therefore reprove the proposition covering the domain of the fixed point.
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Proposition 5. If ~X is a fixed point of the generalized version of PeerRank with an m × m grade matrix A, then

~X ∈ (0, 1]m.

Proof. We will prove that Xn
i ∈ (0, 1] for all i and all n using induction. For the base case, it is clear that

X0
i ∈ (0, 1] since it is the average of terms which are all in (0, 1]. For the inductive case, assume that

Xn
i ∈ (0, 1] for all i. Then we have

Xn+1
i = (1− α) ·Xn

i +
α∑m−1

j=0 Xn
j

·
m−1∑
j=0

Xn
j ·Ai,j +

β

m
·
m−1∑
j=0

1−
∣∣Aj,i −Xn

j

∣∣
> (1− α) · 0 + α∑m−1

j=0 Xn
j

·
m−1∑
j=0

Xn
j ·Ai,j +

β

m
·
m−1∑
j=0

1−
∣∣Aj,i −Xn

j

∣∣ since Xn
i > 0

>
α∑m−1

j=0 Xn
j

·
m−1∑
j=0

0 +
β

m
·
m−1∑
j=0

1−
∣∣Aj,i −Xn

j

∣∣ since Xn
j > 0 and Ai,j > 0

≥ β

m
·
m−1∑
j=0

1− 1 since Xn
j , Aj,i ∈ (0, 1]

= 0.

Therefore Xn+1
i > 0. Also, letting Xn

i = 1− ε where 0 ≤ ε < 1, we have

Xn+1
i = (1− α− β)(1− ε) + α∑m−1

j=0 Xn
j

·
m−1∑
j=0

Xn
j ·Ai,j +

β

m
·
m−1∑
j=0

1−
∣∣Aj,i −Xn

j

∣∣
= 1− α− β − ε(1− α− β) + α∑m−1

j=0 Xn
j

·
m−1∑
j=0

Xn
j ·Ai,j +

β

m
·
m−1∑
j=0

1−
∣∣Aj,i −Xn

j

∣∣
≤ 1− α− β − ε(1− α− β) + α∑m−1

j=0 Xn
j

·
m−1∑
j=0

Xn
j +

β

m
·
m−1∑
j=0

1

≤ 1− α− β − ε(1− α− β) + α+ β

≤ 1− ε(1− (α+ β)).
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Since 0 ≤ α+ β ≤ 1 and ε ≥ 0, we know ε(1− (α+ β)) ≥ 0. So

Xn+1
i ≤ 1− ε(1− (α+ β))

≤ 1.

Therefore 0 < Xn+1
i ≤ 1.

Neither we nor Walsh prove that the fixed point of the generalized version of PeerRank is unique, or

that PeerRank will always converge to a fixed point. However, experimental results suggest that our choice

of initial seed does not impact the fixed point.

3.3 Issues in the Classroom

There are several issues with the way PeerRank calculates grades that limit its usefulness in a classroom

setting. First, recall

Walsh’s Assumption. An agent’s accuracy in grading their peers is equal to their own grade.

This means that PeerRank uses the graders’ own grades as the weights when averaging the peer grades

in the update step. However this assumption may not always hold for every grader. For example, sup-

pose that we have a student who is having trouble with the course material at the time they complete

their assignment. Their grade will likely be low, as they may not have understood how to answer certain

questions. However, when they grade the assignments submitted by their classmates, they may see the

correct answers, realize why they are correct, and gain a new understanding about the material. If this is

true, then their grading accuracy will be higher than their own grade if we use the version of PeerRank in

which β = 0, which is the same as the basic version. Walsh claims that this basic version still should pro-

vide accurate grades, and that the generalized version merely provides an incentive for graders to grade

accurately. However, because PeerRank does not differentiate between one’s grade and their grading abil-

ities in its calculation of grades, the grades given by our student will have little impact on the final results,

despite their accuracy. Therefore, PeerRank seems to ignore the potential for students to learn from their

classmates, which is one of the major benefits of peer grading that we identified in Section 1. This flaw can

15



also be demonstrated by the reverse of this example. Now, suppose that we have a student who receives

a high grade on their assignment, but grades inaccurately. In this case, if we once again let β = 0, this

student’s grade will be much higher than their grading accuracy, but they will still have a strong impact

on the grades of their peers. As these examples illustrate, it may be beneficial to use some independent

measure of a grader’s accuracy as the weight in PeerRank, rather than the grader’s own grade.

The other major issue with using PeerRank in the classroom can be demonstrated by the following

example. Suppose that we have five students in a class, and those students are given an assignment that

consists of a single true or false question. The students who give the correct answer should receive full

credit (i.e. a grade of 1), and those who answer incorrectly should receive a grade of 0. Now, suppose that

two of the students answer correctly, and the other three answer incorrectly. Assuming that each student

believes themselves to be correct, we will have the following peer grading matrix:

A =



1 1 0 0 0

1 1 0 0 0

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1


Since we know which students are correct and incorrect, we would hope that the grades produced by our

peer grading system would be [1, 1, 0, 0, 0]T . However, because PeerRank has no knowledge of which stu-

dents are correct, it simply favors the majority group and produces the grades ~X = [0, 0, 1, 1, 1]T . While this

example seems rather extreme, it shows that extremely incorrect grades could be produced if the majority

of the students in a class grade based on some fundamental misunderstanding of the material in an assign-

ment. Clearly, in order to use PeerRank in a classroom, we must implement some method for specifying a

basis of “correctness” for each assignment.
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4 Proposed Changes

In this section, we present our proposed changes to PeerRank in order to address the issues described in

Section 3.3. We start by explaining our goal as it relates to the concept of “ground truth” in education, and

then we present our proposed solution.

4.1 Ground Truth

In education, we assume that there is a notion of ground truth in assignments that determines which sub-

missions are considered “correct” or “incorrect”. For example, in an elementary calculus course most prob-

lems have a single answer that is fundamentally correct, while all other answers are incorrect. This idea of

ground truth can also be extended to courses with assignments that require answers that are not as clear-

cut. In a math course based in proofs, a “correct” answer is a proof that uses given assumptions in order

to prove a statement without any flaws in logic. Even with writing assignments there is often some sort

of ground truth on which an essay is graded, which includes using proper grammar, writing a persuasive

argument, using sources effectively, or meeting the guidelines set by a rubric.

The ground truth in an assignment is normally determined by the course’s instructor when they grade

each submission. For example, if a homework assignment consists of questions, the instructor provides the

ground truth by marking each answer as either correct or incorrect. However, in PeerRank the instructor

has no role as grading is left entirely to the students. Therefore, as stated in Section 3.3, PeerRank incorpo-

rates no factor reflecting a concept of ground truth. We wish to give the instructor a role in the PeerRank

process that allows them to provide the basis of ground truth, and have each grader’s weight in the grade

calculation be a reflection of their grading accuracy in relation to the provided basis.

4.2 Our Proposed Solution

We now present our new peer grading process, which incorporates an independent measure of grading

accuracy. First, the instructor submits and determines the correct grade for their own sample submission.

The knowledge of which assignment belongs to the instructor and the correct grade is not shared with the
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students so that each assignment will be treated equally in the grading process. The students will then

grade each of the submitted assignments, including the instructor’s. An example of this process, using the

same example student as in Figure 1, is shown in Figure 2. We then compute an accuracy score ACCi for

each grader i by substituting both the grade AI,i given by i to the instructor’s submission and the correct

grade XI provided by the instructor into the following equation:

ACCi = 1− |AI,i −XI | (5)

Because both AI,i and XI are in the range [0, 1], ACCi is also in the range [0, 1]. Note that this is a measure

of accuracy analogous to that which Walsh uses in the β term of the generalized version of PeerRank.

Next, we change the PeerRank equation so that these accuracy scores are used as the weights in grade

calculation instead of the grader’s grades. Therefore the update step of the basic version of PeerRank,

represented by Equation 3, becomes

~Xn+1 = (1− α) · ~Xn +
α∣∣∣∣∣∣−−−→ACC
∣∣∣∣∣∣
1

·A ·
−−−→
ACC (6)

where
−−−→
ACC is the vector composed of the accuracy scores. Because the second term of this equation in-

volves division by
∣∣∣∣∣∣−−−→ACC

∣∣∣∣∣∣
1
, our method does not work when

−−−→
ACC is equal to ~0. However this is not a

Figure 2: An example of one student’s role in our new peer grading process. The student now grades the
instructor’s assignment in addition to the five other students.
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major problem since if every grader has a grading accuracy of 0, then no peer grading system can produce

the “correct” final grades. The issue can also be avoided entirely if the instructor’s assignment is chosen

such that XI ∈ (0, 1). Therefore, we assume that
−−−→
ACC 6= ~0. Also, because we now know the fixed weights

at the beginning of the grade calculation process we are no longer required to use an iterative process. We

now prove that the iterative method inherited from PeerRank simplifies to produce the following grades in

our setting:

~X =
1∣∣∣∣∣∣−−−→ACC
∣∣∣∣∣∣
1

·A ·
−−−→
ACC (7)

Proposition 6. The fixed point of the iterative version of our process is equal to 1∣∣∣∣∣∣−−−→ACC
∣∣∣∣∣∣

1

·A ·
−−−→
ACC.

Proof. At the fixed point ~X , we have

~X = (1− α) · ~X +
α∣∣∣∣∣∣−−−→ACC
∣∣∣∣∣∣
1

·A ·
−−−→
ACC,

~X = ~X − α ~X +
α∣∣∣∣∣∣−−−→ACC
∣∣∣∣∣∣
1

·A ·
−−−→
ACC,

α ~X =
α∣∣∣∣∣∣−−−→ACC
∣∣∣∣∣∣
1

·A ·
−−−→
ACC,

~X =
1∣∣∣∣∣∣−−−→ACC
∣∣∣∣∣∣
1

·A ·
−−−→
ACC.

Note that our method simply calculates weighted averages of the peer grades given to each student,

where the weights used are the accuracy scores. We will use this “basic” version of our method, which does

not include an equivalent of the incentive term used in the generalized version of PeerRank, throughout

the rest of the paper. However, it is simple to include this incentive in our method by using a two-stage

process. Choose a value of β where 0 ≤ β ≤ 1, which represents the portion of a student’s grade that

should be determined by their accuracy. First we calculate an initial grade vector ~X0 using Equation 7,

which reflects the grades deserved based solely on the quality of each student’s submission. Then, we

recalculate each student’s grade Xi by including a factor of β based on the student’s accuracy in grading
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the submissions of others, just like Walsh does in his generalized version of PeerRank. So our two stages

are:

~X0 =
1∣∣∣∣∣∣−−−→ACC
∣∣∣∣∣∣
1

·A ·
−−−→
ACC (8)

and

Xi = (1− β) ·X0
i +

β

m
·
m−1∑
j=0

1−
∣∣Aj,i −X0

j

∣∣ . (9)

By incorporating the grader’s accuracy in grading all of the assignments, rather than just the instructor’s

submission, into our incentive term we encourage the graders to grade all of the assignments with an equal

level of effort.

As we stated in Section 2, the method by which we determine each grader’s accuracy score was heavily

inspired by the work of Piech et. al [2]. Recall that in their method of determining grading accuracy, each

grader was required to grade a submission from a small set of student assignments. Since their method

was used in MOOCs, which involve extremely large classes, each of these “ground truth” submissions

was graded hundreds of times, and so the average of the grades received by a ground truth submission

was assumed to be the correct grade by the law of large numbers. Each grader’s accuracy in grading

these submissions, when compared to the determined ground truth grade, was then used to determine the

grader’s accuracy score. This process is extremely similar to our process, in which a grader’s accuracy score

is determined by their accuracy in grading an instructor’s submission with a previously determined grade.

The main difference between the method used by Peich et. al and our method is the manner in which the

grade for the “ground truth submission” is determined. In their method the correct grade for the assign-

ment is determined by the group of grading students, while in our method the grade is determined by the

instructor. This difference in how ground truth is determined provides our system with two key advantages

over that of Piech et. al. First, their system required the ground truth submissions to be graded hundreds

of times in order to apply the law of large numbers, which means that their system can only be used in

extremely large classes. Our system, however, can be applied to smaller classes since the correct grade for

the ground truth submission is determined solely by the instructor. Second, Piech et. al’s application of the

law of large numbers assumes that the class contains more accurate graders than inaccurate graders. This

20



opens their system up to one of the problems with PeerRank, as stated in Section 3.3. If the majority of

the students in a class have a fundamental misunderstanding of the material then the grade given to the

ground truth submission will be inaccurate, as it will reflect that common misunderstanding. However, as

we will explain in Section 4.3, our method’s use of the instructor to provide a basis of correctness addresses

this issue.

4.3 Addressed Issues

The solution we have presented addresses Issues 1 and 2 from Section 1. Because we generate accuracy

scores and use those scores to properly weight the peer grades, we anticipate the potential for inaccurate

graders and make the grades from those graders count less towards the final grades, addressing Issue 1.

Also, the version of our method presented in Equations 8 and 9 provide graders with an incentive to grade

accurately, addressing Issue 2. In addition, our solution addresses the two main issues with PeerRank

described in Section 3.3. First, we no longer follow Walsh’s Assumption that a grader’s accuracy is equal

to their own grade. We instead calculate an independent score reflecting their accuracy by evaluating

their performance in grading a sample assignment. Second, by having the instructor create both a sample

submission and the correct grade for it, we allow the instructor to provide a basis of correctness for the

assignment. Each grader’s accuracy is then determined in relation to this basis, which allows our method

to determine who the correct graders are. While it is possible that a student could use this fact in an attempt

to manipulate their own accuracy score if they are able to identify the instructor’s assignment, we assume

that the instructor remains anonymous. It is also likely that such attempts would fail since the correct grade

for the submission is withheld from the students.

These changes can be demonstrated by returning to the “majority vs. minority” example from Sec-

tion 3.3. Recall that in this example, we had a single question assignment, two students submitted a correct

assignment, and three students submitted an incorrect assignment. Without a way of specifying a basis of

correctness, PeerRank produced the grades ~X = [0, 0, 1, 1, 1]T instead of the correct grades [1, 1, 0, 0, 0]T .

Now, suppose that the instructor submits a correct assignment and gives it a grade of 1. This means that
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we will have the following peer grade matrix

A′ =



1 1 0 0 0 −

1 1 0 0 0 −

0 0 1 1 1 −

0 0 1 1 1 −

0 0 1 1 1 −

1 1 0 0 0 1


where the new row contains the grades given to the instructor’s assignment. Because the instructor only

grades themselves, the missing grades in the last column are marked with a dash. Using our method of

generating accuracy scores, we obtain
−−−→
ACC = [1, 1, 0, 0, 0, 1]T . This means that only the two correct students

will have an impact on the grade calculations, since the incorrect students each have an accuracy of 0. Now,

substituting the grade matrix

A =



1 1 0 0 0

1 1 0 0 0

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1


and
−−−→
ACC into Equation 7 we obtain the final grades ~X = [1, 1, 0, 0, 0]T , which is the correct solution.

5 Evaluation

We tested our proposed peer grading scheme against grade data to see how its performance compares

against the basic version of PeerRank. In this section, we first discuss how we implemented the two systems

and our test procedures. We then present the procedure with which we simulated peer grading data using

statistical models. Finally, we explain our experiments and present our results.
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5.1 Implementation

We implemented both PeerRank and our method using Sage [9], an open-source programming language

based on Python that incorporates various additional mathematics packages and operations. These added

operations include the ability to represent and perform operations on matrices and vectors, which are essen-

tial in implementing the PeerRank system. We also used Sage to create various automated test procedures

that we used in our experiments. The code used for each of these tasks is given in Appendix A.

5.2 Simulated Data

In order to conduct our experiments, we required grade data with which we could test the accuracies of

the two peer grading methods. However, real peer grading data from actual classes is not easily available,

and the potential data sources that were available to us did not meet the requirement that each student in

the class grades all of the other students. Therefore, we chose to use simulated data based on statistical

models based on the advice of Professor Roger Hoerl, a statistician in the Union College Mathematics

Department [5]. When creating the correct grades that a student should receive based on a ground truth,

we used a bimodal distribution comprised of two normal distributions. A normal distribution, often called

a “bell curve”, is a symmetric probability distribution which is centered at a given mean, or average value,

and approaches zero on both sides of the mean. In other words, a value close to the mean has a high chance

of being selected, while a value is less likely to be selected the farther it is from the mean. The graph of a

normal distribution is defined by the function

f(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2

where µ is the man value and σ is the standard deviation, a measure of the dispersion of the values in

the distribution from the mean. One of the normal distributions constituting our bimodal distribution

represented a group of high-achieving students, and had a high mean grade and low standard deviation.

The other normal distribution represented a group of lower-achieving students, and had a lower mean

grade and higher standard deviation. The two means and standard deviations, as well as the percentage
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(a) Graph of a distribution using values suggested by
Professor Roger Hoerl [5]. The high-achieving distri-
bution has a mean of 0.9 and a standard deviation of
0.04. The low-achieving distribution has a mean of 0.8
and a standard deviation of 0.08.

(b) Graph of the distribution used in the experiments
described in Section 5.4, which contains a greater di-
vision between the high-achieving and low-achieving
students. The high-achieving distribution has a mean
of 0.9 and a standard deviation of 0.04. The low-
achieving distribution has a mean of 0.5 and a stan-
dard deviation of 0.08.

Figure 3: Graphs of two different student distributions. Any grades produced by these distributions that
are outside the range [0, 1] are “clipped” to the bounds of the range.

of students drawn from each distribution, were parameters in our experiment. Two example distributions

are shown in Figure 3. If any of the grades drawn were outside the [0, 1] range required by the grading

systems, they were “clipped” to the bounds of the range. The resulting correct grades are assembled into a

grade vector ~G. The pseudocode for this grade generation process is given in Figure 4.

Next, we must generate the accuracy scores which our method produces through each grader’s grading

of the instructor’s sample submission. We simulate this process by drawing the accuracy score for each

1: strongStudentNum← dstrongStudentPercentage ∗ classSizee
2: for i← 0 to strongStudentNum do
3: G[i]← NORMALDISTRIBUTION(strongMean, strongStdev)
4: G[i]← min(max(G[i], 0), 1)
5: for i to classSize do
6: G[i]← NORMALDISTRIBUTION(weakMean,weakStdev)
7: G[i]← min(max(G[i], 0), 1)

Figure 4: Pseudocode for the generation of correct grades.
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grader from a normal distribution with a mean equal to the grader’s grade and a fixed standard deviation

selected as a parameter in our experiment. Once again, if we draw an accuracy score outside the range [0, 1],

we clip it at the nearest bound. We treat the resulting accuracy scores as if they were the values produced

through the grading of the instructor’s submission, and so we assemble the scores into the vector
−−−→
ACC.

The pseudocode for this process is given in Figure 5. Note that when the standard deviation is equal to 0,

we always draw an accuracy score equal to the grader’s grade, satisfying Walsh’s Assumption. However,

as we increase the standard deviation we can draw from a wider range of accuracy scores, meaning that

we relax Walsh’s Assumption as we increase the standard deviation. This will be an important fact in our

experiments.

Finally we simulate the peer grades assigned by each grader to each student using a uniform distribution,

a probability distribution in which every value in a given range has an equal chance of being selected, since

we assume that if a grader has a certain amount of inaccuracy then they will produce peer grades from

within a certain error range with equal likelihood. For each grader-student pair, the bounds of the uniform

distribution are defined as

Gi ± (1−ACCj) ·Gi

where Gi is the correct grade for student i and ACCj is the accuracy score for grader j. We then draw a

grade from the distribution, and apply the same clipping procedure if the resulting grade is outside the

[0, 1] bound. The peer grades that we generate are assembled into a matrix A. The pseudocode for this

process is given in Figure 6.

5.3 Experimental Method

In our experiments, we selected the number of different classes to simulate, the size of the classes, the means

and standard distributions used to draw the correct grades each student should receive, the percentage of

1: for i← 0 to classSize do
2: ACC[i]← NORMALDISTRIBUTION(G[i], accStdev)
3: ACC[i]← min(max(ACC[i], 0), 1)

Figure 5: Pseudocode for the generation of accuracy scores.
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the class that was in each of the two groups, and the standard deviation for the normal distributions used

to draw accuracy scores. For each test, we independently generated the correct grades, accuracy scores,

and peer grades for a class using the process described in Section 5.2. We then used the peer grade matrix

A to calculate grades from PeerRank, and used A and the accuracy vector
−−−→
ACC to calculate grades using

our method. We then compared each of the two resulting vectors to the correct grade vector ~G. In order

to generate an average error for each of the two methods, we subtracted ~G from the grade vector ~X , took

the two norm (or Euclidean distance), of the difference, and then divided the result by the square root of the

class size. This means that we are left with two average error values for test t:

EtPR =

∣∣∣∣∣∣ ~Xt
PR − ~Gt

∣∣∣∣∣∣
2√

m
(10)

EtAcc =

∣∣∣∣∣∣ ~Xt
Acc − ~Gt

∣∣∣∣∣∣
2√

m
(11)

where EtPR is the average error resulting from PeerRank, EtAcc is the average error resulting from our

method, and
∣∣∣∣∣∣~V ∣∣∣∣∣∣ =√∑i v

2
i is the two norm of ~V .

After all numTests tests have been completed, we average both the errors from PeerRank and the errors

from our method in order to obtain the average errors over all of the tests.

EPR =
1

numTests

numTests−1∑
t=0

EtPR (12)

EAcc =
1

numTests

numTests−1∑
t=0

EtAcc (13)

1: for j ← 0 to classSize do
2: for i← 0 to classSize do
3: min← G[i]− (1−ACC[j]) ∗G[i]
4: max← G[i] + (1−ACC[j]) ∗G[i]
5: A[i, j]← UNIFORMDISTRIBUTION(min,max)
6: A[i, j]← min(max(A[i, j], 0), 1)

Figure 6: Pseudocode for the generation of peer grades.
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5.4 Results

Our goal was to see how our method’s performance compares again that of PeerRank on simulated grade

data. We conducted two separate experiments with different class sizes. In Experiment 1, we tested 1,000

different small classes of 6 students, and in Experiment 2 we tested 120 different large classes of 50 students.

The number of different classes to use in each experiment were chosen so that the two experiments would

both test the same total number of students (6,000). We were most interested in how relaxing Walsh’s As-

sumption that a grader’s accuracy is equal to their own grade impacted the relative errors of both methods.

Therefore, the only variable we changed between tests in each experiment was the standard deviation used

in the normal distributions that generate accuracy scores. For the other variables, we let the number of

classes and the class size be fixed at the values defined for the experiment, the mean grade and standard

distribution for the higher-achieving group be 0.9 and 0.04 respectively, the mean grade and standard dis-

tribution for the lower-achieving group be 0.5 and 0.08 respectively, and the percentage of students in each

group be 50%. These values, which may not accurately represent the average real-world class, were chosen

so that our simulated classes would have an even mix of strong students and poor students.

For our experiments, we started by following Walsh’s Assumption and letting each grader’s accuracy

be equal to their own grade (i.e. we used a standard deviation of 0). We then increased the accuracy

standard deviation to 0.02 and 0.10. Recall that as the standard deviation increases, the connection between

a grader’s accuracy and their grade decreases, so these small increases in the standard deviation allow us to

judge how well the two methods perform as we slightly relax Walsh’s Assumption. Finally, in order to test

the methods’ performance in cases that completely violate Walsh’s Assumption, we increased the standard

deviation to 0.50 and 1.00. In Figures 7 and 8 we graph the grades resulting from PeerRank and our method

alongside the correct grades. In Tables 1 and 2, we present the standard deviations, the average absolute

errors of PeerRank and our method, and the average improvement achieved by using our method.

Notice that for low standard deviations, where Walsh’s Assumption holds, the grades produced by our

method are approximately equal to those produced by PeerRank. In Figures 7 and 8 (a) and (b) the range

of grades produced by PeerRank is the approximately the same as the range of grades produced by our

method, while in Figures 7 and 8 (c) the range of grades produced by PeerRank is only slightly larger than
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(a) Standard deviation = 0.00 (b) Standard deviation = 0.02

(c) Standard deviation = 0.10 (d) Standard deviation = 0.50

(e) Standard deviation = 1.00

Figure 7: The graphs resulting from Experiment 1 with varying distributions. The black line represents the
correct grades, the green area represents the grades produced by our method, and the red area represents
the grades produced by PeerRank. In each graph, the green area covers a portion of the red area. The
proximity of the edges of each of the two areas to the black line of correct grades can be interpreted as a
measure of each system’s accuracy.
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(a) Standard deviation = 0.00 (b) Standard deviation = 0.02

(c) Standard deviation = 0.10 (d) Standard deviation = 0.50

(e) Standard deviation = 1.00

Figure 8: The graphs resulting from Experiment 2 with varying distributions. The black line represents the
correct grades, the green area represents the grades produced by our method, and the red area represents
the grades produced by PeerRank. In each graph, the green area covers a portion of the red area. The
proximity of the edges of each of the two areas to the black line of correct grades can be interpreted as a
measure of each system’s accuracy.

29



Standard Deviation PeerRank Error Our Method’s Error Improvement
0.00 0.0399 0.0392 0.0007
0.02 0.0404 0.0394 0.0010
0.10 0.0426 0.0397 0.0029
0.50 0.0669 0.0363 0.0306
1.00 0.0813 0.0287 0.0526

Table 1: A table of results from Experiment 1, containing the average errors from PeerRank and our method,
as well as the average improvement from our method, for each of the tested standard deviations.

Standard Deviation PeerRank Error Our Method’s Error Improvement
0.00 0.0231 0.0228 0.0003
0.02 0.0233 0.0229 0.0004
0.10 0.0252 0.0233 0.0019
0.50 0.0417 0.0184 0.0233
1.00 0.0532 0.0133 0.0399

Table 2: A table of results from Experiment 2, containing the average errors from PeerRank and our method,
as well as the average improvement from our method, for each of the tested standard deviations.

the range produced by our method. Because of this, the average errors produced by the two methods

are approximately equal in these cases, as shown by the first three rows of Tables 1 and 2. However,

Figures 7 and 8 (d) and (e) show that as the standard deviation becomes larger and we break away from

Walsh’s Assumption, our method produces approximately the same range of grades (i.e., the green area in

the graphs remain the same distance from the black line representing the correct grades), while the range

produced by PeerRank grows extremely large. This is also reflected in Tables 1 and 2, which shows that

when the standard deviation is 1, we achieve an average improvement in accuracy of of 0.05 for small

classes and 0.04 for large classes (which is, for example, the difference between a percent grade of 90% or an

A- and a percent grade of 86% or a B) by using our method. Also, while the results show that both methods

produce higher absolute errors for smaller classes than for larger classes, both class sizes demonstrate the

same pattern of improvement from using our method as the standard deviation increases. This suggests

that these results hold regardless of the number of students in the class.

30



6 Conclusion

As our results on the simulated data demonstrate, if Walsh’s Assumption that a grader’s accuracy is equal

to their grade holds to be true, our proposed method produces grades that are approximately equal to those

produced by PeerRank. This is because we can simply replace the accuracy weights used in Equation 7 by

the graders’ grades, following Walsh’s Assumption, and end up with a grade vector that is approximately

equal to PeerRank’s fixed point. As a result, we can see that our method performs no worse than PeerRank.

However in certain cases where Walsh’s Assumption is false and a grader’s accuracy is entirely indepen-

dent of their own grade, a potential we presented in Section 3.3, our method produces grades that are more

accurate than those produced by PeerRank. This occurs because our method assumes no connection be-

tween grade and accuracy and therefore is unaffected in cases where a grader’s accuracy is very different

from their grade. PeerRank on the other hand assumes an explicit connection between grade and accuracy,

and therefore its performance suffers when this is not true.

In conclusion, by rejecting Walsh’s Assumption about the grade-accuracy connection and allowing an

instructor to provide a basis of ground truth, our method seems to address the issues found in PeerRank,

and therefore would allow for more accurate peer grading in a classroom setting.

7 Future Work

There are several different directions in which this research can be extended and continued. One immediate

continuation would be to test the performance of both PeerRank and our proposed method in actual class-

rooms with actual students and instructors, in order to see whether the results of our tests on simulated

data hold in practice. Another possible extension would be to propose additional methods of integrating

ground truth into PeerRank, and then compare the performance of those methods against both PeerRank

and our method. For example, instead of having all students grade an instructor’s assignment, the instruc-

tor could personally grade a certain subset of the students in the class. The instructor’s “grade” could then

be fixed at a large value so that the grades they provide would be the main determining factor for those

students’ grades. The increased accuracy in those students’ grades would then have an effect on the grades
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of the students they graded, and so the accuracy provided by the instructor could propagate throughout

the class.

This additional proposal of ground truth integration connects to an additional extension of this work,

which is to modify PeerRank so that each agent grades only a subset of the class. In both Walsh’s proposal

of PeerRank and our work, we assume that each student in the class provides grades for the entire class,

i.e. if there are m students in the class then each student must grade m assignments (or m+ 1 assignments

if we include an instructor’s submission), for a total of m2 grades. While this may be a reasonable proposal

for an extremely small class, it becomes infeasible with even a twenty student class, which is considered

small by the standards of most universities. Therefore it would be helpful to implement a “partial” grading

scheme, in which each student only grades a small subset of their peers, rather than the entire class. A

basic solution to this problem would be to simply use whatever grades were received for an assignment

in order to determine the assignment’s final grade, and to ignore the other students in the class. However

this could present challenges since, if an assignment is only graded by inaccurate graders, there is a greater

chance of error in the assignment’s final grade. This raises additional questions of whether there is an ideal

way to assign graders to assignments, or whether there is a clever method of approximating the grades that

might be given to an assignment by graders who did not directly grade that assignment based solely on the

known grades and accuracies.
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A Sage Code

In this appendix we provide our implementations of the algorithms we used in our research. As we stated

in Section 5.1, all of the code is written in the Sage programming language [9].

A.1 Basic Version of PeerRank

# Implementation of the basic PeerRank rule.

# Variable names follow from those given by Walsh.

# A is the initial grade matrix and 0<alpha<1

def BasicPeerRank(A, alpha):

m = A.nrows()

Xlist = [0]*m

for i in range(0, m):

sum = 0.0

for j in range(0, m):

sum += A[i,j]

X_i = sum/m

Xlist[i] = X_i

X = vector(Xlist)

fixedpoint = False

while not fixedpoint:

oldX = X

X = (1-alpha)*X + (alpha/X.norm(1))*(A*X)

difference = X - oldX

if abs(difference) < 10**-10:

fixedpoint = True

return X
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A.2 Generalized Version of PeerRank

# Implementation of the generalized PeerRank rule.

# Variable names follow from those given by Walsh.

# A is the initial grade matrix and alpha+beta<=1

def GeneralPeerRank(A, alpha, beta):

m = A.nrows()

Xlist = [0]*m

for i in range(0, m):

sum = 0.0

for j in range(0, m):

sum += A[i,j]

X_i = sum/m

Xlist[i] = X_i

X = vector(Xlist)

fixedpoint = False

while not fixedpoint:

oldX = X

X = (1-alpha-beta)*X + (alpha/X.norm(1))*(A*X)

for i in range(0, m):

X[i] += beta - (beta/m)*((A.column(i)-oldX).norm(1))

difference = X - oldX

if abs(difference) < 10**-10:

fixedpoint = True

return X

A.3 Basic Version of Our Method

# Implementation of the basic version of our method.

# A is the initial grade matrix and ACC is the vector of accuracy scores
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def BasicProposedMethodWithAccuracies(A, ACC):

return (1/ACC.norm(1))*(A*ACC)

A.4 Generalized Version of Our Method

# Implementation of the basic version of our method.

# A is the initial grade matrix, ACC is the vector of accuracy scores, and 0<beta<1

def GeneralProposedMethodWithAccuracies(A, ACC, beta):

m = A.nrows()

X0 = (1/ACC.norm(1))*(A*ACC)

X = vector([0.0]*m)

for i in range(0,m):

for j in range(0,m):

X[i] += 1-abs(A[j,i]-X0[j])

X[i] = (1-beta)*X0[i]+(beta/m)*X[i]

return X

A.5 Experimental Comparison of PeerRank and Our Method

# Runs multiple tests on simulated data and outputs the average errors.

# numTests - number of tests to run

# classSize - size of class

# highMean - mean grade for "strong" students

# highStdev - standard deviation for "strong" student distribution

# lowMean - mean grade for "weaker" students

# lowStdev - standard deviation for "weaker" student distribution

# highPercentage - percentage of students (between 0 and 1) that are in "strong" distribution

# accStdev - standard deviation around grade from which to draw accuracy score

def testGroundTruth(numTests, classSize, highMean, highStdev, lowMean, lowStdev, highPercentage, \

accStdev):

strongStudentNum = math.ceil(highPercentage*classSize)
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weakStudentNum = classSize-strongStudentNum

AccMethodDict = {} #Maps correct grade to the grade produced using the accuracy model

PRDict = {} #Maps correct grade to the grade produced using basic PeerRank

accTwoNormSum = 0.0

prTwoNormSum = 0.0

for test in range(0, numTests):

actualGrades = [0.0]*classSize

i = 0

while i<strongStudentNum:

actualGrades[i] = random.gauss(highMean,highStdev)

if actualGrades[i] > 1:

actualGrades[i] = 1

elif actualGrades[i] < 0:

actualGrades[i] = 0

i = i+1

while i<classSize:

actualGrades[i] = random.gauss(lowMean, lowStdev)

if actualGrades[i] > 1:

actualGrades[i] = 1

elif actualGrades[i] < 0:

actualGrades[i] = 0

i = i+1

actualGrades = vector(actualGrades) #actualGrades contains the students’ correct grades

accuracies = [0.0]*classSize

for i in range(0,classSize):

accuracies[i] = random.gauss(actualGrades[i],accStdev)

if accuracies[i] < 0:

accuracies[i] = 0

elif accuracies[i] > 1:
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accuracies[i] = 1

accuracies = vector(accuracies) #accuracies contains the graders’ accuracy scores

A = Matrix([[0.0]*classSize]*classSize) #A is the matrix containing the peer grades

for j in range(0,classSize):

for i in range(0,classSize):

min = actualGrades[i]-(1-accuracies[j])*actualGrades[i]

max = actualGrades[i]+(1-accuracies[j])*actualGrades[i]

A[i,j] = random.uniform(min,max)

if A[i,j] > 1:

A[i,j] = 1

elif A[i,j] < 0:

A[i,j] = 0

accOutput = BasicProposedMethodWithAccuracies(A,accuracies,0.1)

#accOutput is the set of grades produced by our method

prOutput = BasicPeerRank(A,0.1) #prOutput is the set of grades produced by PeerRank

accDiff = actualGrades-accOutput

prDiff = actualGrades-prOutput

for i in range(0,classSize):

AccMethodDict[actualGrades[i]] = accOutput[i] #Accumulate our method’s points on graph

PRDict[actualGrades[i]] = prOutput[i] #Accumulate PeerRank’s points on graph

accTwoNorm = accDiff.norm(2)/sqrt(classSize)

accTwoNormSum += accTwoNorm #Accumulate 2-norm errors for our method

prTwoNorm = prDiff.norm(2)/sqrt(classSize)

prTwoNormSum += prTwoNorm #Accumulate 2-norm errors for PeerRank

gtGrades = sorted(AccMethodDict)

gtPoints = [None]*len(gtGrades)
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accPoints = [None]*len(gtGrades)

prPoints = [None]*len(gtGrades)

for i in range(0,len(gtGrades)): #Create lists of points for graph

gtPoints[i] = (i,gtGrades[i])

accPoints[i] = (i,AccMethodDict[gtGrades[i]])

prPoints[i] = (i,PRDict[gtGrades[i]])

gtPoints = point(gtPoints, rgbcolor=’black’)

accPoints = point(accPoints, rgbcolor=’green’)

prPoints = point(prPoints, rgbcolor=’red’)

show(prPoints+accPoints+gtPoints, axes_labels=[’Student No.’,’Grade’]) #Graph points

print "Average Error by Two Norm for Our Method: " + str(accTwoNormSum/numTests)

print "Average Error by Two Norm for PeerRank: " + str(prTwoNormSum/numTests)
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