


1 INTRODUCTION TO COLLIDING WINDS

Figure 1: Schematic showing the formation of a P-Cygni line profile. This schematic is
borrowed from the Encyclopedia of Astronomy and Astrophysics [1]

In binary star systems, the collision of two radiatively driven winds produces a shocked

structure. These systems are called colliding-wind binaries (CWBs) and most generally

consist of WR and OB-type stars. When the two winds interact a fraction of the kinetic

energy of the winds is converted into heat that causes the shock to emit X-ray, γ-ray, ra-

dio or synchrotron radiation [4]. As such, binary systems are commonly observed at these

wavelengths. Because of this, the structure and radiation emission of these shocks are

worth computing [37][32]. Parkin & Gosset (2011) used a three-dimensional hydrody-

namic model to calculate the X-ray emission in the binary system, WR22 [38]. Wilkin et

al. (1997) showed that conservation of momentum implies that not all of the kinetic energy

may be thermalized, and that the maximum amount available for radiation is the kinetic

energy in the center of mass frame [28]. Corcoran explains how in eccentric binaries the

X-ray emission can have a high variability based on the density and relative wind veloc-

ity along the shock [5]. A common example of a CWB is the system WR-104, which is

also observed to have variable X-ray emission. The system consists of a WR star and a

brighter OB main sequence star, and the shocked structure has an observed Archimedian

spiral shape due to the orbital motion of the system [13]. X-ray emission is also observed

in the Eta Carinae binary star system. Johnstone et al. modeled the low-mass counterpart
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1.1 Introducing the Line Wind 1 INTRODUCTION TO COLLIDING WINDS

to CWBs to determine the habitability of planets in surrounding regions to the shock [6].

Hydrodynamical simulations have been successful in determining the shape of these struc-

tures in two- and three-dimensions, [29][24][31] but simple analytic models have yet to be

found when both Coriolis and centrifugal forces are accounted for.

Thin shell analytic models have been constructed for simplified geometries [33][34][35].

The collision surface is a shell of fluid bounded by two shock surfaces resulting from the

deceleration of the winds. If it is assumed that within the shock there is efficient cooling,

then it is implied that the shocked layers of fluid have small thickness when compared to

their distance from the star [15]. Using this assumption, Wilkin (1996, hereafter W96) de-

veloped exact analytic solutions for stellar wind bow shocks using momentum conservation

arguments [15]. Cantó, Raga, & Wilkin (1996, subsequently CRW96) built on the formal-

ism of W96, and applied similar methods to the interaction of two supersonic, stellar winds

[16]. These models are applicable in an inertial frame and ignore the orbital motion of the

binary system. This paper builds on these theoretical models, and examines the problem of

an orbiting binary star system with supersonic wind collision. This requires conservation

of mass and momentum arguments to derive and solve four ordinary differential equations

to determine the shape of the collision surface for winds with equal momentum loss rates.

1.1 Introducing the Line Wind

We introduce the concept of a line wind to make the geometry of the system more

tractable. As its name suggests, a line wind emits fluid radially from a line and exhibits both

cylindrical and plane symmetry. There is a precedent for considering cylindrical winds,

such as 2D simulations [24][36]. Lamberts et al. (2012) state that performing 2D simu-

lations in the orbital plane of the star involves a density that scales as r−1 instead of r−2

as it would for an isotropic wind [24]. The mass-loss rate per unit length of a line wind

is defined as λ ≡ F A/2πL where F is the mass flux and A is the area of a cylindrical
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1.2 Stationary Line Wind Collisions 1 INTRODUCTION TO COLLIDING WINDS

Gaussian surface enclosing the line (ignoring the caps, since all wind is emitted radially).

The density of the wind can be written as,

ρ =
λ

rv
, (1.2)

where v is the launch speed of the wind and r is the cylindrical radius measured from

the line wind. Due to the plane symmetry of a line wind, we need only determine the

wind properties for a slice of arbitrary thickness in the orbital plane. This removes one

independent and one dependent variable. We further assume the speed v is constant in an

inertial frame so that it is a coasting wind.

The line wind formulation, as a result of the simplified geometry, will serve as a step-

ping stone for further progress in this field, and will be used to develop the necessary tools

to solve the more difficult problem of an isotropic wind collision. In this paper, we first

derive the results of CRW96 with the simplification of the line wind geometry in Section

1.2. Second, in Section 2, we apply the formalism of W96, CRW96, and Wilkin & Stahler

(1998, hereafter WS98) to the interaction of two, constant velocity solar winds in the steady

state limit accounting for orbital motion. In Section 3, we determine the shell shape in the

unequal wind case, where one wind has a higher velocity or mass-loss rate than the other

wind.

1.2 Stationary Line Wind Collisions

In this section, we consider the momentum and mass conservation arguments of CRW96,

simplifying the two-wind interaction problem with the line wind geometry. The steady-

state collision of two nonaccelerated line winds in the yz-plane develops a thin shocked

shell, where we choose these coordinates to agree with the solutions of CRW96. Due to the

cylindrical symmetry of the line winds, we need only consider the yz-plane, with the line
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1.2 Stationary Line Wind Collisions 1 INTRODUCTION TO COLLIDING WINDS

winds parallel to the x-axis. The first line wind is located at the origin while the second

line wind is at z = D. The curve of the thin shell can be specified as R(θ1), where R is the

spherical radius. The winds collide head-on at a radius, referred to as the stagnation point,

determined by balancing the ram pressures of the winds, ρ1v21 = ρ2v
2
2 , which provides,

Ro =
λ1v1
ρ2v22

, (1.3)

where the wind at the origin is denoted by subscript 1 and the second wind is denoted by

subscript 2. Note that for equal winds the stagnation point is equidistant between the two

winds atRo = D/2. The stagnation point radius,Ro, serves as the unit of length, and scales

the shape of the shell in non-dimensional form. A schematic of this situation is shown in

Figure 2.

Figure 2: Schematic diagram of the line wind collision. The two winds are shown by the
filled black circles: the first wind is at the origin, and the second wind is at a distance D
along the z-axis. The thin shell, given by R(θ1), is represented and clearly intercepts the
z-axis at the stagnation point Ro. This figure has been borrowed from CRW96, where we
have changed the labels to match the geometry of this problem [16].

8



1.2 Stationary Line Wind Collisions 1 INTRODUCTION TO COLLIDING WINDS

1.2.1 Flux Function Description of Momentum Conservation

The condition of steady state requires that the flow rates of mass and momentum within

the shell are equal to the mass and momentum incident upon the shell from both winds

integrated from the stagnation point to θ1 [16]. It is important to develop an understanding

of flux functions, as they will be an important aspect of this section and later sections. A

flux is defined as the rate of flow of a property per unit area. By this definition, Φm, is the

mass flow rate through a disk of the shell with height ∆x at an angle θ1 from the stagnation

point and is given by [15],

Φm = σvt, (1.4)

which can be used to solve for the mass surface density σ and tangential velocity vt within

the shell. Due to the fact that the flow rate of mass in the shell is equal to the mass striking

the shell from both winds, Φm = Φm1 + Φm2. We use a subscript 1 to represent the first

wind, and a 2 to indicate the second wind. The velocity may be written in terms of flux

functions as ~v = ~Φ/Φm with ~Φ representing the linear momentum flux. This momentum

flux and velocity is in fact tangent to the shell so by dotting by the unit vector t̂ we find

vt = Φt/Φm where Φt is the momentum flux tangential to the shell given by
√

Φ2
y + Φ2

z =

Φmvt. The same definition used for Φm readily applies to momentum fluxes where instead

of mass the momentum flow rate is considered. Therefore, the quantities Φy and Φz are

the momentum rates in the y and z directions through a disk of the shell with height ∆x

at an angle θ1 from the stagnation point. Returning to the condition of steady state, the

conservation of mass and momentum within the shell gives the linear momentum flux,

Φyŷ + Φz ẑ = [Φy1 + Φy2]ŷ + [Φz1 + Φz2]ẑ, (1.5)

which can be related to the mass flux by,

Φyŷ + Φz ẑ = Φm[vyŷ + vz ẑ]. (1.6)
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The angular momentum flux Φj is defined by,

~Φj = ~R× ~Φ. (1.7)

If we define the θ-component of velocity within the shell as vθ = vycos θ1 − vzsin θ1,

where the angle θ1 is shown in Figure 2. Then the angular momentum flux is related to the

components of linear momentum flux as,

~Φj = ΦmvθR φ̂, (1.8a)

~Φj =R(Φy cos θ1 − Φz sin θ1)φ̂, (1.8b)

because the angular momentum is only in the φ̂-direction we will only use the φ-component

of angular momentum flux Φj = ~Φj · φ̂. Conservation of angular momentum implies,

Φj = Φj1 + Φj2. (1.9)

Using Equations 1.5, 1.6, 1.8, and 1.9 we find the curve of the shell in algebraic form

to be,

R =
Φj1 + Φj2

(Φy1 + Φy2) cos θ1 − (Φz1 + Φz2) sin θ1
, (1.10)

where the quantities on the right side of the equation are functions of θ1, θ2, and R, and

therefore describe the spherical radius at any position along the shell. Equation 1.10 has

the same form as Equation 6 of CRW96 although the definitions of the flux functions have

been altered due to the line wind geometry.

1.2.2 Formulation and Solution of the Flux Functions

In this section, we use the schematic shown in Figure 2 to derive the mass and momen-

tum imparted on the shell by both winds. The flux function definitions given in the last
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1.2 Stationary Line Wind Collisions 1 INTRODUCTION TO COLLIDING WINDS

section are seen clearly here. For example, consider the mass flux on the shell by the first

wind,

Φm1 =

∫ θ1

0

dΦm1 =

∫ θ1

0

λ1dθ1 = λ1θ1. (1.11)

It seen that the mass flux is the mass sent into the shell by the first wind integrated from

the direction of the symmetry axis to the angle θ1. This comes directly from the definition

of Φm. Following this integration method for the rest of the flux components, we find the

linear and angular momentum propelled into the shell by the first wind to be,

Φz1 =

∫ θ1

0

v1 cos θ1 dΦm1 = λ1v1sin θ1, (1.12a)

Φy1 =

∫ θ1

0

v1 sin θ1 dΦm1 = λ1v1(1− cos θ1), (1.12b)

Φj1 = 0, (1.12c)

and similar equations are written for the second wind,

Φm2 =

∫ θ2

0

dΦm2 =

∫ θ2

0

λ2dθ2 = λ2θ2, (1.13a)

Φz2 =

∫ θ2

0

−v2 cos θ2 dΦm2 = −λ2v2sin θ2, (1.13b)

Φy2 =

∫ θ2

0

v2 sin θ2 dΦm2 = λ2v2(1− cos θ2), (1.13c)

Φj2 =

∫ y

0

Dv2 sin θ dΦm2 = Dλ2v2(1− cos θ2). (1.13d)

We define a dimensionless parameter β representing the momentum ratio of the line winds,

β =
λ1v1
λ2v2

. (1.14)
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The case of equal momentum loss rates is β = 1. Lamberts et al. (2011) gives the stagna-

tion point radius in terms of β in their treatment of 2D cylindrical winds,[36]

Ro =
1

1 + β−1
D. (1.15)

Lamberts et al. (2011) similarly applied the CRW96 formalism to cylindrical winds in

order to determine a 2D solution comparable to CRW96 Equation 24. We continue our

treatment of the problem by replacing Equations 1.11, 1.12 and 1.13 in Equation 1.10 and

through use of the geometric relation determined from the sine law,

R = D sin θ2 csc (θ1 + θ2), (1.16)

we obtain,

tan
(θ1

2

)
= β tan

(θ2
2

)
. (1.17)

For β = 1, it is clear from Equation 1.17 that θ1 = θ2. For arbitrary values of β and a given

value of θ1, Equation 1.17 can be solved for θ2 using the relation,

θ2 = 2 tan−1
( 1

β
tan

(θ1
2

))
, (1.18)

and the spherical radius of the shell can be determined by Equation 1.16. Our analytic so-

lution for θ2 is an explicit solution, whereas Lamberts et al. (2011), like CRW96, gives an

implicit solution. Either solution, when compared to CRW96 Equation 24, demonstrates

the simplified nature of the line wind geometry.CRW96 required numerical solution meth-

ods to find the value of θ2 whereas the line wind solutions are analytic. As done by CRW96,

an approximate solution can be found for θ2 using,

θ2 ≈
1

β
θ1 +

β2 − 1

12 β3
θ31 +

2β4 − 5β2 + 3

240 β5
θ51, (1.19)
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which comes from the expansion of Equation 1.18 for small θ1, as we expect θ1 to be small

for low values of β.

The combination of Equations 1.18 and 1.16 produce the shape of the shell. For equal

strength winds, we observe a constant plane at z = D/2 as shown in Figure 3.
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Figure 3: The locus of the thin shell for different values of the parameter β.

In Figure 3, the curve for β = 1 is the collision surface for a system with no orbital

motion in the case of equal winds. This is an important check to ensure that the solutions

in Section 2 for the corotating line wind problem are correct for the most basic situation. It

is also worth noting that W96’s bow shock solution can be simplified by the concept of a

line wind [15].

The asymptotic angle θ∞1, corresponding to R → ∞, can be found by evaluating

Equation 1.17 for the condition θ∞1 + θ∞2 = π,

θ∞1 = π − 2 tan−1
√
β. (1.20)

θ∞1 represents the tail solution for the bow shock at distance much greater than the stellar

separation distance. We plot Equation 1.20 in Figure 4 as a function of β. It is clear that for
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β = 0, θ∞1 = 180◦ which indicates that at large distances from the origin the bow shock is

parallel to the z-axis.
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Figure 4: The asymptotic angle θ∞1 is shown as a function of β.

1.2.3 Mass Surface Density and Tangential Velocity

We find the tangential velocity through the use of Equations 1.5 and 1.6,

vt =

√
Φ2
y + Φ2

z

Φm

. (1.21)

Inserting the necessary information from Equations 1.12 and 1.13,

vt
vw1

=

√
[β(1− cos θ1) + (1− cos θ2)]2 + [β sin θ1 − sin θ2]2

β θ1 + α θ2
, (1.22)

where α = vw1/vw2. As stated above, the mass surface density can be found using

Equation 1.4,

σ =
Φ2
m

Φt

. (1.23)
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Using Equations 1.12 and 1.13, we find σ to be,

σ =
σo (β θ1 + α θ2)

2√
[β(1− cos θ1) + (1− cos θ2)]2 + [β sin θ1 − sin θ2]2

, (1.24)

and σo = λ/βvw1. The tangential velocity and mass surface density are plotted in Figures

5a and 5b for multiple values of β.

Figure 5: The tangential velocity (left) and mass surface density (right) for several β values
ranging from 1 to 32.

For the case of equal winds, β = 1, it is clear from Equation 1.17 that θ1 = θ2. In this
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special case, Equations 1.22 and 1.24 can be rewritten in a simpler form,

vt
vw1

= 2
(cos θ1 − 1)

θ1(1 + α)
, (1.25a)

σ = σo
θ21(1 + α)2

2(1− cos θ1)
. (1.25b)

Equation 1.16 can likewise be written in simpler form,

R =
D

2
sec θ1. (1.26)

CRW96 notes that it is possible to carry out a series solution to find approximate, explicit

solutions to the two-wind interaction problem. We follow this suggestion and produce

series solutions for R, vt and σ. When β is left as an arbitrary value, Equations 1.16,

1.22, and 1.24 can be Taylor expanded in orders of θ1. This is done by first inserting

Equation 1.18 into Equations 1.16, 1.22, and 1.24. The first two non-zero terms of the

Taylor expansions are,

R

D
=

1

1 + β
+

1

4 β
θ21 +

β(3 + 2β)

48 β2
θ41, (1.27a)

vt
vw1

=
β
√
β2 + 1

β2 − 2

α + β2
+
−α + (2α− 3)β2 + 6αβ3 + 8(1 + α)β4 + 6β5 + (2− 3α)β6 − β8

24 β3 (α + β2)2
√
β2 + 1

β2 − 2
θ21,

(1.27b)

σ

σo
=

(α + β2)

β2
√
β2 + 1

β2 − 2
θ1 −

(α + β2)(β2(3 + β(β(−1 + β)2 − 6) + α(β(2 + β(1 + 5(−2 + β)β))− 1)

24(β2 − 1)2β4
√
β2 + 1

β2 − 2
θ31.

(1.27c)
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1.3 Importance of Orbital Motion in Binary Wind Collisions

Binary star systems are relevant in astrophysics due to the fact that two-thirds of all

stars in the Milky Way are in binaries [2]. In a binary system, both stars emit winds,

which collide supersonically to produce a shocked structure. In this section, we describe

the necessity of including orbital motion when modeling such shocks.

We consider the problem of two line winds orbiting a common center of mass. In

the co-rotating frame, due to orbital motion, the winds are anisotropic resulting in a nonax-

isymmetric shock geometry. The winds collide with balanced ram pressures at the midpoint

between the stars, which for equal winds is referred to as the stagnation point. Due to the

symmetry of the co-rotating frame, we develop this solution method under the assump-

tion of steady state. For steady state collisions, gas strikes the shell from both sides and

cannot accumulate at any given location. Instead, a flow of gas emanates from the region

surrounding the stagnation point.

The orbital motion of the system adds complexity and breaks the symmetry implied

in the hypothetical, unmoving binary wind solution in Section 1.2. To describe the bow

shock in a co-rotating reference frame we must account for the effects of the Coriolis and

centrifugal forces. These forces act on the shock structure to develop a spiral pattern, as

seen in direct observations of binary systems in Figure 6. We develop additional methods

for integrating the Coriolis and centrifugal forces into the solution method described by

W96, CRW96, and WS98.

In Section 2, we formulate the problem of wind collisions in a rotating binary system

by first presenting the streamline descriptions of WH17. Followed by an explanation of

conservation of mass and momentum arguments to develop and solve four ordinary differ-

ential equations for the shape of the collision surface in the case of equal winds. In Section

3, we apply a similar formalism to the case of unequal winds. We conclude in Section 4

17



1.3 Importance of Orbital Motion 1 INTRODUCTION TO COLLIDING WINDS

with a summary of the important results and possible future research in this field.

Figure 6: Image of the binary system, WR104, showing the spiral pattern of the shock
induced by orbital motion [14].
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2 FORMULATION

2 Mathematical Formulation: Equal Winds

In this section, we present an extension to the formalism described in Section 1.2 to

the problem of a binary line wind system with orbital motion. The solution requires a

description of stellar wind streamlines (Appendix A) in the co-rotating frame which were

found by Wilkin & Hausner (2017), hereafter WH17. In this section, we assume that the

line winds have equal mass-loss rates and equal wind speeds. The two supersonic line wind

flows collide at the origin in the co-rotating frame to form a thin shell in the steady state

limit.

2.1 Description of an Orbiting Line Wind

We consider a binary line wind system in a counter-clockwise, circular orbit as viewed

from above. The system has plane symmetry, and therefore we need only apply this for-

malism to the orbital plane. In the reference frame of the line winds, there is a steady-state

solution for the trajectory and velocity of the emitted winds.

The line wind orbits at a distance Ro from the origin in the xy-plane with an angular

frequency ω. The star’s position and velocity in the inertial frame are described by,

~r∗(t) = Ro(x̂ cos ωt + ŷ sin ωt), (2.1a)

~v∗(t) = ωRo(−x̂ sin ωt + ŷ cos ωt), (2.1b)

where x̂ and ŷ represent unit vectors parallel to the familiar x and y axes. The trajectory of

a fluid element launched at time τ in the inertial frame is given by,

~R(τ) = ~r∗(t) + (t− τ)[~v∗(t) + ~v′w(θ, s)] (2.2)

where ~v′w(θ, s) is the launch velocity in the reference frame of the line wind and t > τ . The

19



2.1 Orbiting Line Wind 2 FORMULATION

prime denotes the corotating frame. The launch velocity in the corotating frame is,

~v′w(θ, s) = −x̂ cos(θ − ωτ)− ŷ sin(θ − ωτ). (2.3)

The equations relating the inertial and co-rotating coordinate systems are,

x = x′ cos ωt− y′ sin ωt, (2.4a)

y = −x′ sin ωt + y′ cos ωt, (2.4b)

where we have chosen not to consider the z axis due to the cylindrical symmetry of the line

wind, and x′ and y′ represent the coordinates of the co-rotating frame as seen in Figure 7.

x '

y '

x

y

ω t

Figure 7: The Cartesian coordinates in the inertial and co-rotating reference frames. Primes
denote the co-rotating coordinates.

2.1.1 Fluid Trajectory and Velocity

The path of a fluid element launched at time τ from the star’s location is described by

WH17 [18]. The equations of WH17 take forms suitable for a line wind when the azimuthal

angle α = θ + π and the latitude δ = 0. Because line winds are 2D, we can safely set
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2.1 Orbiting Line Wind 2 FORMULATION

the latitudinal angle to zero. Note, the α used by WH17 is not the ratio of wind speeds

that we use for the remainder of this work, but instead is a longitudinal angle measured

counterclockwise from the x′-axis. As defined in WH17, the dimensionless trajectory, in

the co-rotating frame, of a fluid element launched from a line wind at ~r′∗ = (Ro, 0) is,

~r′ =〈cos(ps) + ps sin(ps)− s cos(θ − ps), (2.5)

− sin(ps) + ps cos(ps)− s sin(θ − ps)〉,

where p and s are dimensionless parameters, and θ represents the azimuthal launch an-

gle of a streamline measured counter clockwise relative to the−x′-axis. The dimensionless

parameter s represents the time since launch, (t − τ)Ro/Vw, of a specific streamline to a

point on the streamline. The dimensionless constant p designates the ratio of the orbital

speed of the star to the launch speed of a fluid element from the star, p = ωRo/Vw. The

combination of these two dimensionless parameters, ps, represents the angle in radians that

the line wind has rotated along its orbit since the launch of a fluid element.

The dimensionless velocity of a fluid element can be found by differentiating Equation

2.5 with respect to s, which produces the components,

u′x = − cos(θ − ps)− ps sin(θ − ps) + p2s cos(ps), (2.6a)

u′y = − sin(θ − ps) + ps cos(θ − ps)− p2s sin(ps). (2.6b)

Equations 2.5 and 2.6 are the complete streamline descriptions provided by WH17. We can

compare these results to a system with no orbital motion by taking the limit that p→ 0.

2.1.2 Fluid Density

We follow the method outline by WH17 to find the fluid density, ρ, as a function of

position. It is not as simple as the trajectory and velocity where we set the latitude δ = 0,
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we re-derive the fluid density from scratch using the steps of WH17. This is done by

solving the mass conservation equation. First, we recall the density of a line wind used in

Section 1.2 which is given by Equation 1.2. Similarly, we define the unit of density as,

ρo =
λ

r∗uw
, (2.7)

where r∗ is the unit of length and uw is the unit of velocity. The dimensionless density is

therefore ρ̃ = ρ/ρo. The mass conservation equation is,

∇ · (ρ̃~u′) = 0, (2.8)

where ~u′ is the vector sum of Equation 2.6. WH17 used tensor calculus to solve for the

density, we follow a similar approach recognizing that our set of coordinates is (zi) = (θ, s)

due to that fact that δ = 0 for a line wind. The superscript, in this case, is an index which

is either θ or s. The covariant basis vectors are found by,

bi =
∂~r′

∂zi
, (2.9)

with ~r′ equivalent to Equation 2.5. The basis vectors are,

bθ = x̂′s sin(θ − ps)− ŷ′s cos(θ − ps), (2.10)

and bs = ~u′. The magnitude square of the basis vectors are,

u′2 = 1 + p2s[s(1 + p2)− 2(cos θ + ps sin(ps)], (2.11a)

|bθ|2 = s2. (2.11b)
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2.1 Orbiting Line Wind 2 FORMULATION

It naturally follows that the covariant metric tensor is simpler for a line wind and is,

g =

 s2 gθs

gsθ u′2

 (2.12)

where gθs = gsθ = bθ · bs = ps2(p sin θ − 1).The determinant, g, of the metric tensor is,

g = s2(1− p2s cos θ)2. (2.13)

This yields the density law of a similar form to WH17,

∇ · A =
1
√

g

[ ∂
∂θ

(
√

gAθ) +
∂

∂s
(
√

gAs)
]
. (2.14)

Following WH17, we note that only the second term of the divergence is required, as the

first term vanishes when applying the above formula to Equation 2.8. To do this, we apply

A = ρ̃~u′, recognizing that the only non-vanishing curvilinear component is the s compo-

nent because u′θ = 0 and u′s = 1. Therefore, the solution is,

√
g ρ̃ = f(θ). (2.15)

The function f(θ) is found by matching the behavior of Equation 2.15 near the line wind

where the flow is cylindrically-symmetric in the limit of small s. Taking the limit as s→ 0,
√

g drops its dependence on θ. This requires that f(θ) is a constant. If we regard the mass

density at a small radius R1 = Ros1 measured from the source we find,

ρ1 =
λ

R1uw
= ρo

f(θ)
√

g
, (2.16)

which gives us,

ρ =
λ

Rouw

1

s(1− p2s cos θ)
. (2.17)
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In dimensionless form this is written as,

ρ̃ =
1

s(1− p2s cos θ)
. (2.18)

There is a density enhancement for inner streamlines, and notably less dense outer stream-

lines for θ > π/2.

2.1.3 Description of the Second Wind

WH17 provided the trajectory and velocity of a fluid element launched from a line

wind at ~r′ = (Ro, 0), but we also require a wind description for the second line wind at

~r′2 = (−Ro, 0). The wind descriptions for the second line wind develop from the inherent

skew symmetry of the co-rotating frame in a binary system. Consider a point (xo, yo) on the

shell closer to the first wind, which we will refer to as point A. There is a skew symmetric

point (−xo,−yo) referred to as point B. By symmetry, the wind description of the first

wind at point B is equivalent to the wind description of the second wind at point A. We

find that ~r′2(θ2, s2) = −~r′1(θ1, s1) which in turn yields the result ~u′2(θ2, s2) = −~u′1(θ1, s1).

Figure 8 is a depiction of the diagram used to determine this geometry.

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

θ1

θ2

Figure 8: Diagram depicting the evident skew symmetric nature of streamlines in the co-
rotating frame. The launch angles θ1 and θ2 are measured from their respective source.
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We rewrite Equation 2.2 for the second line wind as,

~R2(τ) = −~R(τ)

~R2(τ) = −~r∗(t)− (t− τ)[~v∗(t) + ~v′w(θ, s)], (2.19)

the subscript 2 denotes the second wind, and the equations in Section 2.1.1 take on subscript

1 to represent the first line wind. The nondimensional description of streamlines from the

second line wind return,

~r′2 =〈− cos(ps2)− ps2 sin(ps2) + s2 cos(θ2 − ps2), (2.20a)

sin(ps2)− ps2 cos(ps2) + s2 sin(θ2 − ps2)〉,

u′2x = cos(θ2 − ps2) + ps2 sin(θ2 − ps2)− p2s2 cos(ps2), (2.20b)

u′2y = sin(θ2 − ps2)− ps2 cos(θ2 − ps2) + p2s2 sin(ps2), (2.20c)

where ~r′2, u
′
2x, and u′2y are the dimensionless trajectory and velocity components of a fluid

element. Similar to the descriptions of the first wind, θ2 and s2 represent the coordinates

of a fluid element along a streamline measured from the location of the second wind. The

wind launch angle, θ2, is an azimuthal angle measured counter-clockwise from the top of

the x-axis as seen in Figure 8. For equal winds, the fluid density, Equation 2.18, remains

the same for both winds.

The streamline trajectories for both winds are shown in Figure 9 for p = 0.6. It is clear

from the figure that the streamlines are not radial as s increases, though they are emitted

radially, due to the Coriolis and centrifugal forces in the co-rotating frame. In the inertial

frame, fluid emitted from the winds moves radially.
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Figure 9: Stellar wind streamlines in the orbital plane from winds at x/Ro = −1 and
x/Ro = 1 for p = 0.6.

2.1.4 Derivation of the Critical Streamlines

There exists a specific value of θ and s for each wind that signifies a streamline through

the origin, as shown in Figure 9. The origin is the location of the stagnation point, and

as such the streamlines that strike the origin collide anti-parallel and have balancing ram

pressures. We define θo and so as the critical streamline labels that represent the critical

streamline through the origin.

As noted above, fluid elements in the inertial frame move in a straight path. For a

streamline to reach the origin in the inertial frame we require that v̂w = −r̂, which states

that the velocity of a fluid element emitted from the line wind must be anti-parallel to the

stars position vector from the origin, given by Equation 2.1a. ~vw is the orbital velocity of

the line wind given by Equation 2.1b plus the velocity of the wind emitted from the source

in the co-rotating frame. Using the relation ~vw · r̂ = −|~vw| , and assuming t = τ = 0 with

no loss of generality, we find,

θo = arcsin p. (2.21)
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To solve for so we use the relation,

x = xo + uxT, (2.22)

plugging in the values for x and xo,

0 = Ro + uxT, (2.23)

where T = Ro/vw is the unit of time. Through the use of this equation, and by utilizing the

trigonometric identity developed by Equation 2.21,

cos θ =
√

1− p2, (2.24)

we determine,

so =
1√

1− p2
= sec θo. (2.25)

There is no loss of generality when applying θo and so in the co-rotating frame.

2.2 Derivation of Streamlines Near the Origin

We determine the values of θ1, s1, θ2, and s2 which represent streamlines through points

close to the origin by expanding Equations 2.5 and 2.20a around θo and so respectively. For

brevity, we defined parameters to simplify the expansions, k = θ−θo and t = s−so, further

description of these methods can be found in Appendix B (Section 5.2). The expansions

result in the equations,

θ1 =θo − y cos(tan θo)− x sin(tan θo), (2.26a)

s1 =so + [−(xso + yso tan θo) cos(tan θo) + (yso − xso tan θo) sin(tan θo)]. (2.26b)
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Using a similar method for θ2 and s2 we establish,

θ2 =θo + y cos(tan θo) + x sin(tan θo), (2.27a)

s2 =so − [−(xso + yso tan θo) cos(tan θo) + (yso − xso tan θo) sin(tan θo)]. (2.27b)

Comparing Equations 2.26 and 2.27 yields,

2θo = θ1 + θ2, (2.28a)

2so = s1 + s2, (2.28b)

which is a useful relation representing the symmetry of the corotating frame for equal

winds.

2.3 Derivation of Streamlines Far From the Origin

In this section, we find the value of θ and s, for both winds, at points far from from the

stagnation point. For the first wind, we define the series,

θf =b0 + b1, (2.29a)

sf =a0 + a1, (2.29b)

where a and b are unknown constants, and a1 and b1 have an implicit p dependence. We

then Taylor expand Equation 2.5 to the first order in p:

x1 =1− sf cos θf − ps2f sin θf , (2.30a)

y1 =− sf sin θf + ps2f cos θf . (2.30b)
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To the zeroth order in p, ignoring the second term in Equation 2.30b and substituting in

Equation 2.29, we solve for a0 and b0 with the result,

a0 =
√

(x1 − 1)2 + y21, (2.31a)

b0 = arctan

(
y1

x1 − 1

)
. (2.31b)

It readily follows that to the first order in p we use the full forms of Equation 2.29 and 2.30

to solve a system of two equations for the unknowns a1 and b1. The expressions for a1 and

b1 are,

a1 = 0, (2.32a)

b1 = p a0. (2.32b)

The value of θf and sf result from substituting Equations 2.31 and 2.32 into Equation

2.29. Expressions for θ2f and s2f follow from the fact that x2 = −x1 and y2 = −y1.

Consequently, using the same method, we find that a′0 and a′0 are,

a′0 =
√

(x1 + 1)2 + y21, (2.33a)

b′0 = arctan

(
y

x+ 1

)
. (2.33b)

The expressions for a′1 and b′1 are identical to Equation 2.32 with the substitution of a′0 and

b′0 in place of a0 and b0. Therefore, θ2f and s2f are similarly identical to Equation 2.29 with

the substitution of a′ and b′ for the second wind.

2.4 Thin Shell Geometry

Following the approach of WS98 and WS2003, we consider a small, three-dimensional

patch of shell. The normal direction can be found by taking the gradient of the function
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x−X(y) and evaluating for x = X and finding the unit vector,

n̂m =
∇[(x−X)(−1)m+1]

|∇(x−X)|
, (2.34)

where subscript m allows us to choose the direction of the normal. We have defined n̂1

as the outward normal and n̂2 as the inward normal. The outward normal is therefore,

n̂1 =
î− ĵXy√

1 +X2
y

= î cos ηx + ĵ cos ηy,

= î cos ηx + ĵ sin ηx, (2.35)

where ηx+ηy = 90◦ and the subscripts on X indicate partial derivatives with respect to

the subscript variable. We have defined two direction cosines and their angles relative to the

x and y directions. It is important to note that for small p we require cos ηx to be negative

and sin ηx to be positive. This is determined by the expected direction of the initial tilt of

the collision surface deduced by the anti-parallel collision of streamlines at the stagnation

point, as seen in Figure 9.From this geometry we conclude,

sin ηx =
dx/dy√

1 + (dx/dy)2
, (2.36a)

cos ηx =
−1√

1 + (dx/dy)2
. (2.36b)

For comparison, in the axisymmetric limit ηx = γ as seen in WS98 [17]. The normal

component of velocity is determined by,

u′ni = ~u′i · n̂1, (2.37)

and the subscript i denotes either the first or second wind. The normal components of
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velocity for the first wind can be written as,

u′n1 = cos ηx u1x + sin ηx u1y,

= cos ηx [− cos(θ1 − ps1)− ps1 sin(θ1 − ps1) + p2s1 cos(ps1)] (2.38)

+ sin ηx [− sin(θ1 − ps1) + ps1 cos(θ1 − ps1)− p2s1 sin(ps1)].

Using common trigonometric identities we rewrite this as,

u′n1 = − cos(θ1 − ps1 − ηx)− ps1 sin(θ1 − ps1 − ηx) + p2s1 cos(ps1 + ηx), (2.39)

which for the second wind becomes,

u′n2 = cos(θ2 − ps2 − ηx) + ps2 sin(θ2 − ps2 − ηx)− p2s2 cos(ps2 + ηx). (2.40)

2.5 Formulation of the Conservation Equations

In this section, we derive the full set of differential equations pertaining to the spatial

components of momentum, Φx and Φy, and the conservation of mass Φm within the shell

using the approach described by Wilkin & Stahler (2003), hereafter WS2003 [19]. We

begin by considering a physical quantity Q within a three-dimensional patch, with density

q, of shell. Noting that one component of the patch is the length ∆`, we choose to represent

all equations in this section as the quantity Q per unit length which allows us to consider

the two dimensional geometry of the line wind in the orbital plane. In steady state, Q is

constant in time. In Cartesian coordinates, the conservation law for Q may be written as,

∂(Auyq∆x)

∂y
= − sec ηx [q1un1 − q2un2]. (2.41)

Note that for the case of line winds A=1. In an inertial frame, as in Section 1.2, the equa-

tions representing the spatial components of momentum could be called momentum con-
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servation equations, but in a non-inertial frame or in the presence of a non-zero net force

they could be referred to as force equations. Such force equations are the fluid equivalent

of Newton’s 2nd law, with the inclusion of the non-inertial forces. For the remainder of

this paper, we may refer to the set of differential equations as conservation equations, but

it should be remembered that the momentum equations are not true conservation equations

in the co-rotating frame due to addition of Coriolis and centrifugal forces, which will be

described below. The equation for mass is a true conservation equation regardless of ref-

erence frame. To derive the equation for mass conservation, we let Q be mass and the

corresponding q be the mass density ρ. The mass conversation equation in conservative

form becomes,
dΦm

dy
=
d(σxuy)

dy
= − sec ηx [ρ1un1 − ρ2un2], (2.42)

where σx = ρ∆x is the mass column density in the x̂-direction and uy is the y-component

of velocity within the shell. Similarly to W96, we define Φm as the mass flux within the

shell [15].

In the co-rotating frame, the Coriolis and centrifugal forces are accounted for in our

consideration of momentum conservation. The forces may be written as,

Fcoriolis = −2σx~ω × ~u, (2.43a)

Fcentrifugal = −σx~ω × (~ω × ~r). (2.43b)

For both spatial components of momentum, Equation 2.41 uses q = uiρwhere the subscript

i denotes either the x or y-component of velocity within the shell. For the components of

momentum this approach yields,

dΦx

dy
=
d(Φmux)

dy
= − sec ηx [ρ1u1nu1x − ρ2u2nu2x] + σxω

2x+ 2σxωuy, (2.44a)

dΦy

dy
=
d(Φmuy)

dy
= − sec ηx [ρ1u1nu1y − ρ2u2nu2y] + σxω

2y − 2σxωux. (2.44b)
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The Coriolis and centrifugal forces appear in component form, and vanish for no orbital

motion ω = 0. Equation 2.44 represents the vector momentum flux at any point in the shell.

Returning to the statement of W96, the momentum within the shell is exactly the vector sum

of momentum generated by both winds integrated over the shell’s surface [15]. Therefore,

because we know the vector momentum flux at any point we recognize that the direction

of flow within the shell is parallel to the combination of Equations 2.44. Fluid in the shell

follows the path of the vector momentum, and therefore moves tangential to the surface

of the shell. We write a differential equation for the shape of the shell referred to as the

trajectory equation,
dx

dy
=

Φx

Φy

=
ux
uy
, (2.45)

which can be used to determine the shape of the shell x = x(y). The shell’s shape is

not a resultant of ram pressure balances between the two winds, but is determined by the

direction of momentum propelled into the shell [15].

Equations 2.42, 2.44a, 2.44b, and 2.45 comprise a set of four ordinary differential equa-

tions (ODEs) in four dependent variables x, Φm, Φx, and Φy with independent variable

y. This set of equations uses the approach of W96 in considering a trajectory equation,

whereas WS98 used the normal and tangential components of momentum to determine the

shape of the shell. We are able to ignore the normal and tangential component method

due to the fact that the fluid in the shell follow the path of the vector sum of momentum

imparted on the shell [15].

2.6 Nondimensionalization

It is convenient to convert all variables in our four differential equations into nondimen-

sional forms. This allows the use of the nondimensional velocities taken from WH17 [18].
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We define nondimensional flux functions as,

Φ̃m =
Φm

λ
, (2.46a)

~̃Φ =
~Φ

λuw
, (2.46b)

Φ̃y =
Φy

λuw
, (2.46c)

Φ̃x =
Φx

λuw
. (2.46d)

The nondimensional radius is defined as R̃o = Ro/r∗. We use the corresponding rela-

tions between flux functions, shown in the definitions of our four differential equations,

combined with Equation 2.46 to rewrite our non-dependent variables in terms of the flux

functions. The dimensionless mass column density σ̃x becomes,

σ̃x =
Φ̃2
m

Φ̃y

. (2.47)

It readily follows that the dimensionless form of Equation 2.42 is,

dΦ̃m

dy
= − sec ηx [ρ̃1ũ1n − ρ̃2ũ2n], (2.48)

where ρ̃ is Equation 2.18. Likewise, Equations 2.44 become,

dΦ̃x

dy
= − sec ηx

[
ρ̃1u

′
1nũ
′
1x − ρ̃2u′2nũ′2x

]
+ p2x̃′

Φ̃2
m

Φ̃y

+ 2pΦ̃m, (2.49a)

dΦ̃y

dy
= − sec ηx

[
ρ̃1u

′
1nũ
′
1y − ρ̃2u′2nũ′2y

]
+ p2ỹ′

Φ̃2
m

Φ̃y

− 2p
Φ̃mΦ̃x

Φ̃y

. (2.49b)

Dropping the tilde notation, Equation 2.45 remains the same nondimensionally. The dimen-

sionless set of four differential equations is now written in terms of dependent variables and

known velocities which are in turn dependent on the dimensionless parameters s, θ, and p.
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2.7 Singular Points and Singular Differential Equations

In this section the mathematical structure of the differential equations is discussed in

terms of singular points. For a given differential equation, a singular point is defined as the

point at which no analytic solution can be obtained due to the fact that there is the chance

that when separating variables we divide by zero. A solution to a differential equation is

called a singular solution when the solution is not unique at a specific point. In most cases

there is not an analytic solution to a singular differential equation, and the solution is most

probably discontinuous.

Consider the first-order autonomous differential equation with the initial condition x(0) =

0,
dx

dt
= x2. (2.50)

Separating variables we find,
dx

x2
= dt. (2.51)

Integrating the differential equation yields,

−1

x
= t+ C (2.52)

and solving for x(t) returns the general solution,

x(t) =
−1

t+ C
. (2.53)

The initial condition requires that x(0) = 0, but in solving for the particular solution we

find that there is no value of the constant C that fits the initial condition. Therefore, xo = 0

is a singular point and x = xo = 0 is a singular solution to the differential equation. The

singular solution must be noted in conjunction with the general solution to represent the

full solution to the differential equation.
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2.8 Stagnation Point Expansion

The solution to the locus of the thin shell requires integration of the set of four differ-

ential equations. However, at the stagnation point we require that the fluxes Φm, Φx, and

Φy are identically zero. It is clear from examination of Equations 2.45, 2.48, 2.49a, and

2.49b that this produces the problem of a singular point. The singularity is produced by

the vanishing denominators in those equations at the stagnation point. To escape the neigh-

borhood of the singular point, we expand the differential equations around the stagnation

point to find approximate solutions to the equations. (Note: it is the singularity that leads to

the often cited condition of “normal force” or ram pressure balance at the stagnation point.

Since other points along the shell are not singular points, it is inappropriate to think of ram

pressure balance at locations where fluid has non-zero speed and follows a curved path.)

As mentioned previously, we expect that for p = 0 the thin shell is equivalent to Figure

3. We therefore develop Maclaurin series in p and y to produce approximate equations for

the flux functions near the singular point. We then integrate these equations to identify the

locus of the thin shell for small p. This solution acts as a check to our set of differential

equations and the formalism applied to find it.

Strictly speaking, expansion in p is not required but is simpler because otherwise we

would have a set of simultaneous non-linear equations which would be much more difficult

to solve. Small p is also justified by physical systems of stars as the wind speed is normally

higher than the orbital speed. For example, the binary system HD 931219A, shown in Table

1, has been determined to have p ≈ 0.1 [25].

The Maclaurin expansions of Equations 2.21 and 2.25 to the second order in p results

36



2.8 Stagnation Point Expansion 2 FORMULATION

in,

θo =p (1 +
1

6
p2), (2.54a)

so =1 +
1

2
p2. (2.54b)

We then expand θ1, θ2, s1, and s2 which enter in the velocity components u1x, u1y, and u1n.

Next, we expand the velocity components. The same steps are taken for the similar terms

of the second wind. The expansion of these terms is too lengthy to write here.

At the stagnation point, located at x = 0, the tilt of the collision surface caused by the

orbital motion of the system is specified by h1. For p = 0, h1 vanishes, but for p > 0 the

tilt is non-zero.To derive this quantity for small p, we expand x(y) to the leading order in

y,

x = h1 y + h2 y
2 +O(y3), (2.55)

where h1 = dx/dy. The expansion of Equations 2.36, which depend on h1, are unchanged

to the lowest order. In addition, we define series for the fluxes:

Φm =m1 y +m2 y
2 +O(y3), (2.56a)

Φx =f1 y + f2 y
2 +O(y3), (2.56b)

Φy =g1 y + g2 y
2 +O(y3). (2.56c)

Inserting the complete set of velocity expansions into Equations 2.45, 2.48, 2.49a, and

2.49b we again expand to the second order in p and y. To the first order in y, the expansions

of Equation 2.49 resemble ram pressure balance at the stagnation point. As such, both f1

and g1 are identically zero. The expansion of Equation 2.48 results in a non-zero m1 which

likewise implies that f1 and g1 vanish. To leading order in y, the outcome is a system of
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four equations in four unknowns h1, m1, f2, and g2. The result is,

h1 =
4

3
p+

11

6
p3 +

134

27
p5, (2.57a)

m1 = 2 +
5

3
p2 +

11

3
p4, (2.57b)

f2 =
4

3
p+

11

6
p3 +

119

27
p5, (2.57c)

g2 = 1− 5

12
p4. (2.57d)

Examination of these equations reveals that the coefficients h1, m1, f2, and g2 have parity

in p. This important because it proves that it is not necessary to expand to higher orders in

p due to the fact that the higher orders are small compared to the previous order.

2.9 Comparison with Inertial Solution

It is possible to compare Equations 2.57, which represent the initial conditions to the

integration, to similar expansions of the inertial line wind collision in Section 1.2. It is

necessary to set β = 1 in the inertial solution equations to have an applicable match, which

means that θ1 = θ2. In the limit p → 0 the expansions match using the following trans-

formation, noting that the origin is shifted and there is a scale factor so that the coordinate

systems match properly. The necessary transformation requires a relationship between θ1,

the independent variable in the inertial solution, and y which we find to be,

y = (1− x) tan θ1, (2.58)

where x = h1y. But, for p = 0 the coefficient h1 is also zero. This means the proper

geometrical relation is,

y = tan θ1. (2.59)
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Plugging this into Equations 2.55 and 2.56 which likewise have Equations 2.57 inserted

where necessary gives us,

x =0 +O(θ21), (2.60a)

Φm =2
(
θ1 +

1

3
θ31
)

+O(θ61), (2.60b)

Φx =0 +O(θ21), (2.60c)

Φy =θ21 +
2

3
θ41 +O(θ61), (2.60d)

where we note that the constants h1 and f2 are zero for p = 0. Now, for comparison,

we find expansions of the inertial flux functions for β = 1. For β = 1, the dimensional

parameters for both winds are equivalent. The expansions of Equations 1.11, 1.12, 1.13

result in,

Φm,i =2θ1 +O(θ61), (2.61a)

Φz,i =0 +O(θ21), (2.61b)

Φy,i =θ21 −
1

12
+ θ41O(θ61), (2.61c)

Φz,i

Φy,i

=0 +O(θ21), (2.61d)

where we have used the subscript i to represent a nondimensionalized inertial flux function.

We have defined Φz,i/Φy,i as the trajectory equations for the inertial problem. Its result is

the equivalent of h1 in the inertial problem, and is therefore comparable to the expansion

of x. In the inertial problem’s coordinates, Φz,i is the equivalent of the non-inertial Φx. It

is clear that to the leading order these expansions are in agreement.

2.10 Integration

The next step is to integrate the differential equations to determine the locus of the

thin-shell. Substituting Equation 2.57 into Equations 2.55 and 2.56 produces the initial
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conditions for our integration.

It is important to integrate the equations using θ and s values for points not near the

origin. We use the equations derived in Section 2.3 and insert the equivalent of Equation

2.29 for both the first and second winds into every equation where θ and s are encountered

in the expansions of Equations 2.45, 2.48, 2.49a, and 2.49b. Prior to this, we substitute

Equation 2.55 for x1 in Equations 2.31 and 2.33.

The set of differential equations was then integrated using the initial conditions de-

scribed above for p = 0.01. The upper and lower bounds were y = 0.05 and y = 5. The

output produces the shape of the thin-shell shown in Figure 10.

-4 -2 0 2 4

-4

-2

0

2
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Figure 10: Shocked surface for p = 0.01 produced by the integration of four differential
equations from y = 0.05 to y = 5.

The orbital motion twists the tail of the shock to distort the expected shell shape for no

orbital motion. The shocked surface for p = 0.01 is comparable to the β = 1 curve shown

in Figure 3 for line wind collisions with no orbital motion. Numerical integration of the

differential equations yields the shell shape for small p. A family of curves is represented

in Figure 11.
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Figure 11: Numerical integration of the differential equations yields the shell shape for
multiple values of p, ranging from 0.01 to 0.2.

As the orbital speed of the line-wind system increases, the effects of the Coriolis and

centrifugal forces increase proportional to p and p2 respectively. The Coriolis and centrifu-

gal effects twist the shocked shell into a spiral structure similar to WR104 in Figure 6. The

numerical integration encounters a stiff system at decreasing values of y as p increases.

Therefore, we are unable to reveal the tail solution which would better represent the spiral

structure of Figure 6.
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3 Generalization to Unequal Winds

3.1 Nondimensionalization

We consider two line-winds with equal momentum loss rates, but unequal wind veloci-

ties or unequal mass loss rates. We define the dimensionless parameter α as a ratio of wind

velocities,

α =
vw
vw2

, (3.1)

where vw and vw2 are the velocity units of the first and second wind respectively. We

continue to use Equations 2.46 and 2.47. For the first wind, the dimensionless velocity is

ũ1 = u1/vw. For the second wind, we have ũ2 = u2/vw = 1/α. It is also clear that λ and

λ2 likewise have different units. The dimensionless parameter β encapsulates λ and λ2.

The dimensionless form of Equation 2.42 with the parameters α and β is,

dΦ̃m

dy
= − sec ηx [ρ̃1ũ1n −

α

β
ρ̃2ũ2n], (3.2)

and Equation 2.44 becomes,

dΦ̃y

dy
= − sec ηx

[
ρ̃1u

′
1nũ
′
1y −

1

β
ρ̃2u

′
2nũ
′
2y

]
+ p2ỹ′

Φ̃2
m

Φ̃y

− 2p
Φ̃mΦ̃x

Φ̃y

, (3.3a)

dΦ̃x

dy
= − sec ηx

[
ρ̃1u

′
1nũ
′
1x −

1

β
ρ̃2u

′
2nũ
′
2x

]
+ p2x̃′

Φ̃2
m

Φ̃y

+ 2pΦ̃m. (3.3b)

Note that Equation 2.45 remains the same. The parameters α and β develop in the second

wind terms only. The parameter β is set to unity for the remainder of this chapter.
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3.2 Second Wind Trajectory and Velocity

In this section, we re-derive the trajectory and velocity of a fluid element emitted from

the second line wind. Starting from Equation 2.19, we write this as,

~R2(τ) = −R2(cos(ωτ2), sin(ωτ2))− (t− τ2)[R2ω(− sin(ωτ2), cos(ωτ2)) + v2(cos β, sin β)]

(3.4)

where β = π + θ2 + ωτ2. We require τ2 because for the case of unequal wind velocities

fluid elements emitted from their respective winds need not be emitted at the same time to

strike the same point. This is due to the fact that for α non-unity one wind has a higher

velocity, and this wind requires a different, most likely shorter, s value to strike the same

point as the other wind. We use the coordinate transformation from the inertial frame to

the corotating frame, Equation 2.4, to get the fluid trajectory in the corotating frame. We

nondimensionalize using the usual p and s2 = vw(t− τ2)/Ro,

~r′2 = 〈 − R̃2 cos(ps2) +
s2
α

cos(θ2 − ps2)− ps2R̃2 sin(ps2), (3.5)

R̃2 sin(ps2) +
s2
α

sin(θ2 − ps2)− ps2R̃2 cos(ps2)〉.

The distance from the second wind to the origin is equivalent to the distance of the first

wind from the origin which means that R̃2 = R2/Ro = 1. This is due to the assumption of

a circular orbit. Therefore the above equation becomes,

~r′2 = 〈 − cos(ps2) +
s2
α

cos(θ2 − ps2)− ps2 sin(ps2), (3.6)

sin(ps2) +
s2
α

sin(θ2 − ps2)− ps2 cos(ps2)〉.
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Taking the derivative of ~r′2 with respect to s2 we find the dimensionless velocity of a fluid

element to be,

~u′2 = 〈 − p2s2 cos(ps2) +
1

α
cos(θ2 − ps2) +

ps2
α

sin(θ2 − ps2), (3.7)

p2s2 sin(ps2) +
1

α
sin(θ2 − ps2)−

ps2
α

cos(θ2 − ps2)〉,

which agrees with Equations 2.20b and 2.20c up to the appearances of α.

3.3 Second Wind Fluid Density

We re-derive the fluid density for the second line wind using the method described in

Section 2.1.2. Using Equation 3.6 in conjunction with Equation 2.9 we find that the basis

vectors are,

bθ2 = 〈−s2
α

sin(θ2 − ps2),
s2
α

cos(θ2 − ps2)〉, (3.8)

and bs2 = ~u′2. The magnitude square of the basis vectors are,

u′22 =
1 + p2s22(1 + α2p2)− 2αp2s2(cos θ2 + ps2 sin θ2)

α2
, (3.9a)

|bθ2|2 =
(s2
α

)2
. (3.9b)

We also find that gθs2 = gsθ2 = bθ2 · bs2 = ps2(α p sin θ − 1)/α2. The determinant, g, of

the metric tensor is,

g =
s2(1− α p2s2 cos θ2)

2

α4
. (3.10)

Similarly solving Equation 2.14 using A2 = ρ̃2~u
′
2 we find,

√
gρ̃2 = f2(θ). (3.11)
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Matching Equation 3.11 to the behavior of the winds in the limit s → 0 we find that the

fluid density is,

ρ2 =
λ

Rouw

α2

s2(1− αp2s2 cos θ2)
, (3.12)

which nondimensionally is,

ρ̃2 =
α2

s2(1− αp2s2 cos θ2)
. (3.13)

This is equivalent to Equation 2.18 for α = 1, which represents the equal winds case.

3.4 Streamlines Near the Origin

Here we re-derive the equations for streamline labels representing streamlines through

points close to the origin, θ2 and s2. As in Section 2.1.4, we use the change of variables

k2 = θ2− θo and t2 = s2− so with the purpose of expanding in Maclaurin Series. We then

use k2 and t2 to expand Equation 3.6. The expansion results in,

θ2 = θo +
α[y p2soα cos(pso)− (psox+ y) cos(pso − θo) + x p2soα sin(pso) + (y pso − x) sin(pso − θo)]

so(p2soα cos θo − 1)

(3.14a)

s2 = so +
α[y sin(pso − θo)− x cos(pso − θo)]

p2soα cos θo − 1
(3.14b)

These equations are used in the power series expansions of Equations 3.2, 3.3, and 2.45.

3.5 β Non-Unity and α Non-Unity Expansion

As for the case of equal winds, we must expand our set of four differential equations

around the stagnation point to avoid a singular point. The difficulty, in the case of unequal

winds (either β or α non-unity), is the possibility that the stagnation point is no longer at

the origin. For β non-unity, it is well known that the stagnation point is moved closer to
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the weaker wind, as seen in the inertial two wind problem. To determine the location of the

stagnation point we define the arbitrary point (a, b) to be the stagnation point. The expan-

sions for β = 1 are incredibly long, and far more complicated than when the parameter is

set to unity. We were unable to complete the determination of (a, b) for β non-unity. This

will be the discussion of future work.

We focused instead on β = 1 and α non-unity. The simplest way to determine whether

the stagnation point is at the origin was to expand the equations about (a, b) to see if the

expansions give the result (a, b) = (0, 0). To do this, we set b = 0 and then solve for a.

Expanding Equations 2.45, 3.2, 3.3a, and 3.3b in y and p we find that a = 0, which means

that the stagnation point is in fact at the origin. This greatly simplifies the expansion,

because we already know the θ and s values through the origin, and near the origin. The

streamlines that strike the origin are labeled similarly by Equations 2.21 and 2.25 for both

the second and first wind.

3.6 β Unity and α Non-Unity Expansion

In this section the ratio of momentum loss rates is equivalent (β = 1), therefore the

stagnation point is at the origin. For the remainder of this section, the term unequal winds

refers to α non-unity only. In these expansions, the equations used to represent the first

wind do not change from those used in Section 2.8. The only equations that change are

those for the velocity, density, and streamline labels of the second wind, which were devel-

oped in Sections 3.2, 3.3, and 3.4. We expect that the series defined for the flux functions

enter at the same order as in Equations 2.55 and 2.56 where f1 and g1 are identically zero.

This can be explained by ram pressure balance at the stagnation point, but it is simpler to

consider the composition of the flux functions. The x-component of momentum flux Φx

is defined by the series f and is a composition of Φm and ux. We find that m1, the series

for the mass flux Φm, enters at order y, and therefore Φx = Φmux must enter at a higher
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order. Therefore, it makes sense that the first non-zero term in the series f and g enter at

order y2. Table 2 shows the orders of the flux function coefficients in the notation fij where

i represents the order in y and j represents the order in p. It is clear that the coefficients

maintain the parity of the equal winds case by alternating orders in p.

Φm Φy Φx x
m g f h
m10 g20 f20 h10
m11 g21 f21 h11
m12 g22 f22 h12
m13 g23 f23 h13
m14 g24 f24 h14
m15 g25 f25 h15

Table 2: The coefficients for the flux function series are shown. The notation, using f as
an example, fij shows the order of y and p respectively. The slashes indicate coefficients
that have been verified to vanish, demonstrating the given functions have either even or odd
parity to this order.

To the leading order, we find that the coefficients h1, m1, f2, and g2 are,

h1 =
2(2 + α + α2)

3(1 + α)
p+

4(2 + α + α2)2(3 + α + 2α2)

27(1 + α)3
p3, (3.15a)

m1 = 1 + α2 +
2(1 + α2)(2 + α + α2)

3(1 + α)
p2, (3.15b)

f2 =
1

3
(2 + α + α2)p+

(2 + α + α2)(21 + α(16 + α(31 + 2α(3 + 5α))))

27(1 + α)2
p3, (3.15c)

g2 =
1

2
(1 + α) +

3 + 2α + 5α2 + 2α4

6(1 + α)
p2. (3.15d)

These represent the first two non-zero terms in orders of p. In our integrations we use the

first three non-zero terms, but they are too long to write here. The first order terms match

our previous work, Equation 2.57, for the case of equal winds, α = 1.
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3.7 Integration

Substituting Equation 3.15 into Equations 2.55 and 2.56 determines the initial condi-

tions for the integration of our set of differential equations. The determination of θ and s

values, in Section 2.8, for points far from the stagnation point remains the same in the case

of unequal winds. This is the case for both the first and second wind.

Numerical integration of the four differential equations, using the initial conditions in

Equation 3.15 returns the shell shape. The output produces the shape of the thin shell

shown in Figure 12. The upper and lower bounds were y = 0.05 to 6 with p = 0.1 and

α = 0.1.

-6 -4 -2 0 2 4 6
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Figure 12: Unequal winds shell for p = 0.1 and α = 0.1 integrated from yi = 0.05 to
yf = 6. A different color is used for the top and bottom halves of the shell to demonstrate
that the breaking of symmetry in the α non-unity case.

For the case of unequal winds, which for α = 0.1 is equivalent to the second wind

having a ten times faster wind velocity, it is expected that the axisymmetry of the shell is

broken. To demonstrate the breaking of symmetry, we plot both halves of the shell shown

in Figure 12 in the same quadrant; this is done in Figure 13.
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0 1 2 3 4 5 6
0

1

2

3

4

5

6

x

y

Figure 13: Both halves of the shell shown in Figure 12 have been plotted in the same
quadrant to demonstrate the broken symmetry of the problem.

Figure 13 clearly represents the broken symmetry of the α non-unity case. The curves

are no longer perfectly overlayed, and do not follow the same curve as they did in the equal

winds case for α = 1. Near the stagnation point, the Coriolis term dominates and is the

leading cause of asymmetry. This is due to the scaling of the Coriolis term which is ∝ pv.

In the wind with a lower velocity, the Coriolis term is less significant. On the other hand,

the centrifugal term, which scales as ∝ p2y, increases with distance and therefore far from

the stagnation point this term becomes more dominant. In Figure 14, we show the full

curves for α = 0.1, 0.5, 1 similarly with p = 0.1.

α = 0.1

α = 0.5

α = 1
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Figure 14: Different Shell shapes for p = 0.1 with α = 0.1 in blue, α = 0.5 in red, and
α = 1 in black. Note that β = 1.
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Figure 14 shows that as the velocity of the second wind increases, the solutions become

more distorted from the equal winds shell. This represents the importance of the parameter

α in fully describing the possible shell structures for binary line wind collisions. Table 1

also presses the significance of α, the stellar binaries shown in the table are all of unequal

wind speeds. It is therefore critical to study α as a parameter to allow for meaningful

comparisons with physical systems.

3.8 Tilt of the Collision Surface

The tilt of the collision surface is an important factor to grasp prior to beginning an

integration of these differential equations. The expansions return the tilt of the collision

surface as h1 = dx/dy which is given by Equation 3.15a. It is important to note that the

tilt of the collision surface is not a necessary factor for non-rotating systems like the one

described in Section 1.2. The tilt is pivotal to the full description of the physics of this

problem, and beginning the integration at the correct angle with respect to the symmetry

axis is important in correctly representing the structure of the collision surface. Parkin et

al. found a skew angle µ which is the angle relative to the symmetry axis of the collision

surface and the line of centers of the stars [29],

tan µ =
vorb
vw

= p, (3.16)

where we have determined that tan µ is equivalent to the definition of our parameter p. It is

also worth noting that Lamberts et al. uses the skew angle in their simulations of colliding

wind binaries [24]. Lamberts et al. notes that µ remains small for systems where orbital

motion is unimportant, which is in agreement with our determination of its proportionality

to our parameter p. We compare the tilt given by the skew angle with our h1. To convert µ
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to a slope, where it is simple to plot it alongside h1, we use simple trigonometry to find,

m = cot µ =
1

p
, (3.17)

where m is the slope associated with the skew angle. A comparison of the slope given by

Equation 3.15a versus the slope m is shown in Figure 15.

m

h1
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-0.2

-0.1

0.0

0.1

0.2
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Figure 15: A comparison between the tilt given by Parkin et al. m and the tilt found through
the Taylor expansion method h1.

There is a significant difference between the two slopes. Numerically we find that h1 is

approximately 80% of m.
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4 Conclusions

Binary star collisions are a well observed phenomenon in astrophysics. The winds emit-

ted from both stars collide to form a shocked structure, which due to the orbital motion of

the system is distorted into a spiral pattern. Hydrodynamic simulations have been success-

ful in predicting the shape of these structures [29] [24], but simple analytic models have yet

to be found when both Coriolis and centrifugal forces are accounted for. In this paper, we

formulated a method for finding the shocked structure shape using analytic methods and

numerical integration techniques.

We demonstrated the concept of a line wind to serve as a simplification to a difficult

problem. A line wind emits fluid radially away from a line and has a density ρ ∝ 1/r

(cylindrical radius) whereas a point wind’s density scales ∝ 1/r2 (spherical radius). We

applied the CRW96 flux function consideration of mass and momentum to the line wind

geometry to solve for the shape of the unmoving two line wind collision surface. A flux

function describes the rate of flow of a property, in this case mass, linear, and angular

momentum, through an area. Flux function descriptions allow for simple conservation

of mass and momentum arguments within the shell that give the shape of the curve. We

demonstrated that the line wind analogy to the analytic solution of CRW96 has a simpler

form, and most notably does not require numerical solutions for the value of θ2. For winds

with equal momentum loss rates, we find that the shell produced in the unmoving two wind

interaction (Figure 3) is commensurate with the shell for no orbital motion in a binary line

wind system. This line wind analogy serves as a useful introduction to the concept of a

line wind, as well as a possible comparison for future work. It is also possible to provide

simpler forms for W96’s analytic solution for stellar wind bow shocks.

We have presented the formalism applicable to the binary line wind system with orbital

motion. We considered the line winds in the corotating frame, the reference frame of
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the line winds, and therefore included Coriolis and centrifugal effects. The symmetry of

the corotating frame allowed us to consider steady state solutions which meant that the

necessary differential equations are ordinary differential equations (ODEs). We derived a

set of four ODEs representing the momentum and conservation of mass in the shell. The

line wind geometry removes one dependent variable Φz and one independent variable z,

which makes the problem more tractable. The trajectory and velocity of fluid elements in

the corotating frame is borrowed from WH17, where we altered their formulas to fit the

line wind geometry and determined the trajectory and velocity for a second wind. The

wind density also follows from the method described by WH17. Taylor expansion of the

differential equations was necessary to avoid a singular point at the origin. The singular

point is caused by the vanishing coefficient multiplying a higher order derivative at this

location. This is caused by the fact that the velocity of fluid in the shell starts at zero at

the origin which means that the mass and linear momentum fluxes at the origin are zero.

Following successful Taylor expansions, we find the necessary initial conditions that allow

for numerical integration of the four ODEs. We first solved the orbiting line wind collision

problem for equal winds with both β and α unity, where β is a ratio of wind momenta

and α is a ratio of wind speeds. For small values of the dimensionless parameter p, which

represents the line winds orbital speed versus the wind launch speed, the shocked surface

(Figure 10) is similar to the CRW96 analogy shell (Figure 3).

Furthermore, we followed the same formalism for the equal winds case and applied it to

systems where the stellar wind speeds are not equivalent, α non-unity. It is clear from Table

1 that in many binary systems the wind velocities of the primary and secondary stars are not

equivalent. This provides context for the decision to consider the α non-unity case. This

case required a new non-dimensionalization of the differential equations, wind velocities

and trajectories, and the wind density due to the fact that the unit of wind speed is no

longer the same for both winds. As in the equal winds case, the stagnation point is located

at the origin and we were forced to Taylor expand the equations to avoid the singular point.
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We determined that there is a clear asymmetry in the shells produced in this case. This is

caused by the Coriolis and centrifugal terms at different length scales from the stagnation

point. Further work is required to allow for β non-unity and unequal mass stars. These

cases move the stagnation point and the center of mass which creates a difficult problem.

We derived analytic equations representing a streamline through a specific value along

the x-axis. We also demonstrate that our Maclaurin series methods using k and t are accu-

rate to first order and do not necessarily require higher order corrections. This is important

due to the fact that higher order coefficients become difficult to handle. Proving that ap-

proximate functions to the first order are acceptable was helpful in completing the Taylor

expansions of the differential equations for both the equal winds case and α non-unity.

The results of the binary line wind interaction can not be directly compared to observa-

tions of binary star systems, because stars do not have cylindrical symmetry. The relevance

of this work is to develop a method for solving binary wind collisions with orbital motion

that will be applicable to stars with isotropic winds, removing the line wind approximation.

This requires a substantially more complicated geometrical model. This work serves as

an important stepping stone, and reaffirms the usefulness of analytic work in the theory

of stellar winds. Future work will be done to remove the simplification of line winds and

solve the isotropic wind collision problem with orbital motion.
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5 Appendix

5.1 Appendix A: Streamlines

The flow of fluid elements radially from each line wind are described by streamlines,

an example is shown in Figure 16.

Figure 16: A streamtube bounded by streamlines. The arrows represent the velocity tan-
gential to the streamlines. Taken from Wikipedia.

It is important to note, that streamlines cannot cross one another because it is physically

impossible for a fluid to have two different velocities at the same point in space at a given

time. Fluid may not cross the streamlines by the same physical reasoning; the streamlines

describe the flow of the fluid and they therefore move in the same direction.

Streamlines are described mathematically by a stream function (ψ). The stream func-

tion describes the path of a fluid element that is always tangent to the velocity, ~u, in the

same way that electric field lines are always tangent to ~E [21]. To understand how the

stream function is defined we must first consider the divergence of the flow (∇·F ). In fluid

mechanics, the physical definition of the divergence of a vector field is the rate at which

density dissipates through a given region. With respect to the streamtube represented in

Figure 16, the continuity equation of fluid mechanics states that the rate at which density
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changes inside the streamtube is proportional to the mass flux of the fluid flowing out of

the streamtube,

∇ · (ρ~u) = −∂ρ
∂t

(5.1)

where ~u is the flow velocity vector of the fluid. Often, stream functions are defined for

incompressible fluids, this assumes that the density of the fluid is uniform and constant and

therefore obeys the approximation that ∇ · (~u) = 0. In the case of the line-wind, we have

a compressible fluid due to the fact that the density of the line-wind changes with distance

(∝ 1
r
) from z-axis. Therefore, in the steady state approximation, and to conserve mass flux

through the stream tube ∇ · (ρ~u) = 0 must be satisfied by the stream function. This states

that the rate of mass ρAu, where A is the surface area of the opening, through one end

of the streamtube is the same as the mass flux through the opposite end. Consequentially,

ρAu = constant.

However, we must now examine a two-dimensional velocity field parallel to the xy-

plane that is tangential at every point to the flow of fluid along the shell. In cartesian

coordinates the continuity equation therefore becomes,

∂(ρu1)

∂x
+
∂(ρu2)

∂y
= 0 (5.2)

where u1 and u2 are the respective velocity components of ~u. We can introduce a vector

stream function Ψ that describes the flow velocity for an incompressible flow as,

~u = ∇× ~ψ (5.3)

where ψ = (0, 0, ψ) is normal to the flow velocity vector ~u = (u1, u2, 0). Note that

when the flow velocity is described in the form of Equation 5.3 the continuity equation is

automatically satisfied by ∇ · (∇× A) = 0 [21]. For a compressible flow in steady state,
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we define a vector function ~f = ρ~u which we substitute into Equation 5.3 in place of ~u,

~f = ∇× ~ψ (5.4)

and as a result of Equation 5.4,

~f =
∂ψ

∂y
î− ∂ψ

∂x
ĵ (5.5)

and replacing ~f = ρ~u we find that the flow velocity vector equals,

~u =
1

ρ

∂ψ

∂y
î− 1

ρ

∂ψ

∂x
ĵ (5.6)

therefore the components of the flow velocity vector are,

u1 =
1

ρ

∂ψ

∂y
and u2 = −1

ρ

∂ψ

∂x
(5.7)

providing the solution to Equation 5.2. In cylindrical coordinates the velocity vector com-

ponents become,

ur =
1

ρr

∂ψ

∂θ
and uθ = −1

ρ

∂ψ

∂r
(5.8)

where r is the cylindrical radius. Now, consider two points in the two-dimensional plane

P = (x, y) and Q = (x + dx, y + dy), where dx and dy are infinitesimal distances of

separation. It is clear that,

ψ(x+ dx, y + dy)− ψ(x, y) =
∂ψ

∂x
dx+

∂ψ

∂y
dy

= ∇ψ · d~r (5.9)

if ψ has the same value at both points P and Q then the two points lie on the same stream-

line. The equation of the streamline is therefore ψ = c, where c is a constant. As shown in

Figure 16, lines of constant stream function are streamlines. It is clear that d~r is tangent to
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the streamline ψ = c at P and Q. It follows from Equation 5.9 that,

∇ψ · d~r = 0 (5.10)

which implies that∇ψ is normal to the streamline from P toQ. Because the streamfunction

is everywhere tangent to the flow velocity vector in the shell ~u · ∇ψ = 0. It is important to

note that a change in the value of the stream function is equal to the mass flow rate between

the two streamlines,

Φm =

∫ 2

1

dψ = ψ1 − ψ2 (5.11)

where Φm is the mass flow rate per unit length, for the case of the line-wind. It is important

to recognize that throughout this thesis the angles θ1 and θ2 are specific streamlines and are

therefore equivalent to ψ1 and ψ2 in this appendix. It is possible to write a similar analytic

equation for Φm for the binary line wind collision problem in terms of θ1 and θ2. The an

analytic solution for Φm can be understood by inspection of Figure 9. The amount of mass

flowing along the shell does not depend on where the streamlines strike the shell, but instead

is determined by the number of streamline striking the shell between specific θ values for

the two winds. Due to the plane geometry, all the mass flux striking the shell between given

streamlines must flow along the shell to conserve mass. The analytic solution is,

Φm = λ2 (θ2 − θo)− λ1 (θ1 − θo). (5.12)

The analytic solution requires information about the shape of the shell, thus we used the

differential equation for Φm (Equation 2.48) in our numerical integration, and subsequently

used the analytic solution as a check on the numerical integration for Φm. The solution

depends only on the streamline launch angles as θo is a constant for a specific value of p.

For winds with both β and α set to unity the mass flux simplifies to Φm = θ2 − θ1.
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Figure 17: The radial lines extending from the source at the origin are streamlines, and the
circles surrounding the origin are lines of constant velocity potential. [23]

5.2 Appendix B: Streamline Description

In this appendix, we discuss the computation of the streamline equations as well as

techniques for manipulating the equations. The streamline equations for a line wind lo-

cated at x = 1 is Equation 2.5, and is represented visually in Figure 9. There is a clear

importance to streamlines through the origin in the equal wind case, α = 1, as it represents

the streamlines that collide at the stagnation point. But, it is equally important to have a

description of streamlines that intersect with the x-axis.

Using the FindRoot function in Mathematica, we solved Equation 2.5 for the streamline

labels, θ and s, that represent streamlines passing through the points (x, 0), where x is from

0 to 1. We did this for five p values ranging from 0.01 to 0.9 to show the progression of θ

and s values required to strike the x-axis as the rotation of the system increases. The results

are represented in Figure 18.
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Figure 18: Plot of s versus θ for the point on a given streamline that lies on the x-axis for
values of p from 0.01 to 0.9.

As p increases, the parameter s also increases for a streamline through a specific x-

value. This is due to the rotation of the system, and the greater angle the streamline must

rotate before striking the x-value. In Figure 19, we plot a geometric representation of the

numerical calculations presented in Figure 18. This figure visually represents the stream-

lines represented by the values plotted in Figure 18 for p = 0.9.
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Figure 19: Streamlines that intersect the x-axis for p = 0.9 plotted for θ values from 0 to
θo in steps of θo/6.

From Figure 19, we can clearly visualize the useful information in Figure 18. It is clear

that as θ increases the s value required to strike the x-axis increases as well. We expect to

observe the same action for smaller values of p, but there would be less visual streamline
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crossings this close to the x-axis and substantially less curvature of the streamlines. The

cusp region, described by WH17, moves further from the origin. The cusp is defined as the

innermost point on the shock surface, for a more in depth description see WH17 [18]. The

streamline that initially enters the cusp tangentially has θ and s values given by,

θcusp = θo, (5.13a)

scusp =
1

p2
√

1− p2
. (5.13b)

The streamline that enters the cusp tangentially is the same streamline that passes through

the origin. It is also clear that scusp has a similar form to so with an extra factor of p2 in the

denominator.

In Figure 20, we plot the θ values for streamlines crossing (x, 0) versus the x values

where the streamline intersects the x-axis. Note that the intersection of the plotted lines

with x = 0 are θ values of streamlines through the origin. These values agree with the

analytic solution for a streamline through the origin found by Equations 2.21 and 2.25.
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Figure 20: Plot of x versus θ for values of p from 0.01 to 0.9.

In Figure 20, we observe that as p increases the value of θ also increases which fits with

the prior observation from Figure 18 showing a similar increase in s. Both of these changes

in streamline label values through specific x-values are caused by the increased rotation of
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the system for larger p values. Also, as x → 1, we require the streamline initially tangent

to the x-axis, which is labeled by θ = 0. Therefore, it is expected that all of the plotted

lines originate similarly from (x, θ) = (1, 0).

We use the analytic solution for the θ value of the streamline that strikes the origin,

θo, in conjunction with the fact that the lines plotted in Figures 18 and 20 appear largely

linear to develop an analytic fit to the numerical root solutions. The analytic fit to the data

represented in Figure 18 is,

sanalytic = (1− x) so, (5.14)

where so is given by Equation 2.25. This linear interpolation is indeterminate for p ≥ 1

due to the inclusion of so. Likewise, the analytic fit to Figure 20 is,

θanalytic = (1− x) θo, (5.15)

where θo is represented mathematically by Equation 2.21. From Equations 5.14 and 5.15,

it is easy to see that both of the analytic fits have similar forms. We performed a test to

check the accuracy of our analytic fits by comparing the values provided by the analytic

fit to the numerical roots. To do this, we subtract the value determined by the numerical

solution from the value given by the analytic fit for a specific value of x. The differences

between the values are plotted in Figure 21. We do not divide by the value of the analytic

fit because it causes an asymmetry to appear in the residual plots.This is due to the fact that

for different x-values we divide by numbers ranging three orders of magnitude.
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Figure 21: Residual plots representing the difference between the numerical solution and
analytic solution for θ and s-values, given by Equations 5.14 and 5.15, through the points
(x, 0).

Figure 21 proves that the analytic fit is accurate to five decimal places. Therefore, the

analytic fit is a good approximation for streamline labels through (x, 0).

5.3 Appendix C: Expansion of θ and s

The determination of certain θ and s values that constitute streamlines through specific

points given by (x, y) is important, most generally for the case of stagnation points. But,

of equivalent importance are equations for streamlines that pass through points a small

distance away from the stagnation point. Such equations are necessary to Taylor expand

the conservation equations about the stagnation point. As discussed briefly in Section 2.1,

Equations 2.26 and 2.27 were determined by expanding Equations 2.5 and 2.20a around θo

and so. In this section, we elaborate on the technique used to handle this expansion.

In Wolfram Mathematica, the command Series is used to Taylor expand a given expres-

sion. The order and variable of expansion are specified through the Series command. As

stated, the goal of our expansion of Equations 2.5 and 2.20a was to find θ and s values

that produce streamlines through arbitrary points close to the stagnation point. Recogniz-

ing that the streamline through the stagnation point was given by θo and so we naturally
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expanded about those values. But, to develop Maclaurin series, which are much simpler,

we developed the change of variables to k and t where,

k = θ − θo, (5.16a)

t = s− so. (5.16b)

These equations allow us to expand the streamline equations to develop a series in k and t

to the first-order. The expansions develop series of the form,

x = x10 k + x01 t+ x11 kt, (5.17a)

y = y10 k + y01 t+ y11 kt, (5.17b)

where the x and y coefficients are determined by the series, and are strictly functions of p.

In the above equations, there is a kt cross term that seemingly should not develop to the

first-order in k and t. But, consider the possibility that a large change in k is matched by

a small change in the parameter t, or vice versa. In this case, the magnitude of the cross

term may be similar to the normal first-order k and t terms, and therefore should be kept.

To check the magnitude of the cross term we solved Equation 5.17a for k and t keeping

the cross term, and then again without the cross term. When using the cross term, we

find quadratic solutions to k and t, and when ignoring the cross term we develop linear

solutions. To test the size of the cross term correction we define the function f to represent

the relative size of the cross term correction to the linear solutions that ignore the cross

term,

f =

√(tcross − tlinear
tlinear

)2
+
(kcross − klinear

klinear

)2
, (5.18)

where the t and k terms are functions of x, y, and p. This function, f , is plotted in Figure

22 for the range −0.1 ≤ x ≤ 0.1 and −0.3 ≤ y ≤ 0.3 for p = 0.1.

64



5.3 Appendix C: Expansion of θ and s 5 APPENDIX

-0.10 -0.05 0.00 0.05 0.10
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

x

y

0.04

0.08

0.12

0.16

Figure 22: Contour plot representing Equation 5.18 for the range −0.1 ≤ x ≤ 0.1 and
−0.3 ≤ y ≤ 0.3 for p = 0.1.

From Figure 5.18, we see that as expected the contour plot depends more on one vari-

able than the other, in this case it depends more on x than y. A large change in y is required

to match a small change in x, which means that it may be required to keep the cross term

for certain values of x and y. However, from the contour plot we can visualize that for

small values of x and y that represent points near the origin, the cross term correction may

not be necessary.
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