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ABSTRACT

WARRENER, MICHAEL Constraining Cosmological Parameters Using the Cor-

relation Function

ADVISOR: Jonathan Marr

As the European Space Agency prepares to launch the space telescope Euclid

in 2020, we are interested in using its observations of galaxy clustering as a new

geometry-based tool to constrain the cosmological parameters ΩM and ΩΛ. In this

work, we use data simulated by Magneticum (a high-resolution cosmological struc-

ture simulation) to model the correlation functions of both galaxies and clusters at

several redshifts. We fit analytic models to the simulated data centered at the baryon

acoustic oscillation peak to extract both the matter density parameter ΩM and the

dark energy density parameter ΩΛ. We find that the correct cosmology is within the

68% confidence interval for both galaxies and clusters of galaxies.
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1 Introduction

Since the onset of modern cosmology, with Hubble’s discovery of the expansion of the

universe (Hubble 1929), astronomers have sought to determine both the origin and

fate of the universe. By correlating the distance to a particular galaxy to its recessional

velocity, Hubble derived a linear relation v = H0d, where H0, the Hubble Constant,

had a value of 550 km/s/Mpc. Today, we measure the Hubble Constant to actually

be 70.4 km/s/Mpc, as shown in Table 1. Hubble’s relationship was true regardless

of direction and implied one of two things: either we are at the very center of the

universe, or space itself is expanding, thus moving everything away from everything

else. Originally differentiated by the Copernican Principle (which states that we are

not special) then later by observations, Hubble concluded that space itself must be

expanding. This led to the Big Bang Theory, in which the universe had a beginning,

since extrapolating backwards in time leads to a situation in which all matter is

together (Alpher, Bethe, & Gamow 1948). An alternative model, the Steady State

Theory, in which matter is created as the universe expands, competed for a while

but was disproved in 1964 with the discovery of the relic radiation left over from the

hot early universe (Penzias & Wilson 1965). With an evolving universe, the question

arose as to what the universe looked like in the past. Earlier work by Alexander

Friedmann (1922) revealed that in order to study the evolution of the universe, its

composition and structure must be known.

Instead of talking about the composition of the universe in absolute terms like

total energy, or even density, we use a parameter Ω, which is the ratio of the actual

density to the critical density. In the early days of modern cosmology, before the

discovery in 1998 that the universe’s expansion is accelerating, the critical density

was defined as the density at which the universe would recollapse under its own

gravity. The case of the increase in the universe’s expansion rate is not, at this time,

known, but it requires an additional energy term, which is referred to as dark energy,
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or Λ. In order to make it easier to measure Ω, it is decomposed into the constituent

components of the universe, namely ΩM ,ΩΛ, & Ωrad, the matter density, the dark

energy density, and the radiation density, respectively. ΩM includes both baryonic

matter, which makes up all visible matter (gas, stars, and galaxies) and dark matter,

which is composed of a currently undetected particle. The total ΩM is dominated

(∼ 80%) by dark matter. By the Friedmann Equations, knowing these values makes

it possible to understand the entire large-scale history of the universe from inception

to any time in the future.

To quantify the composition of the universe, we can utilize the structure formed

by the matter. One fundamental assumption in cosmology concerning the structure is

that the universe is homogeneous and isotropic, that is, at large enough scales, there is

no preferred direction or position to space, as initially shown by Hubble’s observations.

This assumption was supported by observations of the cosmic microwave background

in 1964 by Penzias and Wilson (Penzias & Wilson 1965), which showed that the

universe is awash in a ∼ 2.7 K background thermal radiation field. This background

is the relic of high-energy photons in the early universe. However, as the universe

expanded, the wavelengths of the photons were stretched as space expanded, thus

shifting the high-energy photons to lower energy over time. As observations improved,

astronomers noticed that the background varied on the order of 10−4 K (Mather et

al. 1990). Although small, these large-scale fluctuations added one more question to

an already significant list of critical questions still open in cosmology: How can the

universe both have structure and follow the cosmological principle, and why does the

universe appear to be so close to being perfectly geometrically flat (Ω = 1)?

In 1981, Alan Guth developed a new theory: inflation, which gave answers to all

of these questions (Guth 1981). Inflation posits that during a very early time of the

universe (t = 10−36 to t ≈ 10−32 seconds), when the universe was around 1016K, the

entirety of existence underwent a moment of extreme exponential expansion multi-
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plying the size of the universe by a factor of about 1050. This explosion of space-time

expanded geometric distortions to such scales that the universe became everywhere

homogeneous, isotropic, and flat, i.e. Ω = 1 (Ryden 2002). For example, the degree

of curvature κ of a circle is simply given by

κ =
1

r
,

where r is the radius of the circle. So, a circle of unit radius which underwent inflation

would go from curvature κ = 1→ κ = 10−50, which is well below current sensitivity.

So, this circle would, for all practical purposes, appear to be flat. In three dimensions,

this also explains how the universe is homogeneous and isotropic. To understand how

structure arises, however, we will invoke quantum mechanics in the next section.

1.1 Baryon Acoustic Oscillations

One of the peculiarities of quantum mechanics is the notion that infinitesimal fluc-

tuations in the energy profile (or field) of some sample of space must occur over

sufficiently small time scales as quantified in the Heisenberg Uncertainty Principle.

Normally, these fluctuations are so small that they are absolutely negligible. How-

ever, in the very early universe, these fluctuations caused microscopic perturbations

in the density profile of all matter (and light, in fact), which expanded by about

50 e-foldings during the inflation epoch. These seemingly negligible inhomogeneities

became large enough in size to create significant gravity wells.

During this time, all electrons were free (unbound to any atom) and could in-

teract with all wavelengths of light because tcould undergo any change of energy.

Thus, the baryonic matter was coupled to the photons. This coupling caused the

baryonic matter profile to exactly reflect that of the photon profile. So, even though

the baryonic matter attempted to collapse into the local gravity wells, the radiation
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pressure (caused by the ten billion to one photon to baryon ratio) completely dwarfed

the gravitational force, thus arresting the collapse. This did, however, create acoustic

waves in the baryonic matter density profile, otherwise known as baryon acoustic os-

cillations (BAOs). Moreover, dark matter, which contributes significantly more mass

than baryons, is presumed not to interact with with photons, so it was free to col-

lapse into the potential wells, thus forming increasingly larger gravitational potentials

centered on the initial perturbations.

At around 378,000 years after the Big Bang, the baryons had finally cooled enough

for neutral hydrogen to form—an epoch known as Recombination. After the electrons

became bound, they could only interact with light at very specific wavelengths (an-

other effect of quantum mechanics), thus decoupling the light and baryonic matter.

As there were now much fewer photon-baryon interactions, there was no longer any

opposition to gravitational collapse. Thus, the matter could now collapse into the

huge gravity wells created by the dark matter, which is why, we suspect, ordered

structures appeared so quickly after Recombination. These regions resulted both

from the initial quantum fluctuations and the acoustic waves. Simple expansion cal-

culations predict that these gravity wells, and thus the resulting structures, would

have a preferential separation distance equal to the horizon size at Recombination.

This separation corresponds to approximately 105 Mpc/h today (or approximately 1◦

on the cosmic microwave background), where h = H0

100 km/s/Mpc
and H0 is the current

value of the Hubble Parameter (Peebles & Yu 1970).

The horizon size is a measure of the furthest space-time distance that an event

could influence in the history of the universe to that time. Propagation of informa-

tion is limited to the speed of light, and so for some given time interval, there is a

characteristic distance that the information could travel. In a simplistic, flat, static

universe, this would be simply d = ct0, where c is the speed of light and t0 is the age

of the universe. In an expanding universe, the horizon size is larger because the light
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traveled at the same speed when the universe was small and so traveled distances

that, today, are much larger. For example, we expect that the during the epoch of

Recombination, the horizon size is dictated by d = 3ct0. Although our universe is nei-

ther simplistic nor static, this method nonetheless provides a measure of the largest

influence that the dark matter gravity wells could have by Recombination.

1.2 The Two-Point Correlation Function

In order to utilize the theory of BAOs, we can use a statistical tool known as the

two-point correlation function (Peebles 1980). The correlation function is applied to

discrete distributions and measures the excess probability of finding an object at a

given distance from another object. In its simplest form, the correlation function is

ξ(r)dr =
DD(r)dr −RR(r)dr

RR(r)dr
(1)

where DD(r)dr is the number of pairs of objects in the distribution which are sepa-

rated by a distance between r and rdr and RR(r)dr is the number of pairs of objects

in a random sample separated between r and rdr. For example, if there are no over

densities, then DD=RR, and ξ(r)dr = 0 meaning that there is no preference in the

collection to be separated by a distance r.

The exact form of the correlation function that we use is from Landy & Szalay

(1993)

ξ(r)dr =
DD(r)dr

RR(r)dr

(
nR

nD

)2

− 2
DR(r)dr

RR(r)dr

(
nR

nD

)
+ 1 (2)

where DD(r)dr and RR(r)dr are defined as above, nD & nR are the mean number

densities of the data and random sample, respectively, and DR(r)dr is the number

of pairs of objects that are separated by a distance between r and rdr between the

two catalogues.

We can compile a list of ξ for a set of separation distances, thus allowing us to
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create a profile of the over density probability. When applied to observations of low

redshift galaxies (0 ≤ z ≤ 0.47), a preferential separation distance around 105 Mpc/h

is, in fact, found (Eisenstein et al. 2005; and citations therein).

It has been shown that the precise location of the BAO peak in the ξ(r) profile is

directly related to the values of the cosmological parameters, which we will explore

in the next section (Eisenstein et al. 2005). Depending on the values of specific cos-

mological parameters, the inferred length scale of the peak in the correlation function

shifts ever so slightly to larger or smaller separation distances. This length scale is

affected by the dark matter quantity, the amount of dark energy, as indicated by

the value of Λ, the amount of baryonic matter, and the Hubble Constant. In this

work, we assume that the baryonic matter density is well-determined, and we leave

all results in units of Mpc/h, so we need not assume a value for the Hubble constant.

Therefore, we seek to use the BAO peak in the correlation function to measure ΩM

and ΩΛ.

1.3 The Comoving Volume Distance

In compliment to the results of luminosity-based methods (such as using Type Ia

supernova (Riess et al. 1998)), the BAO peak can be a very powerful geometry-based

tool in constraining many fundamental parameters in cosmology (Blake & Glazebrook

2003). Unlike measurements of Type Ia supernova, which use the concept of a stan-

dard candle (in which the intrinsic brightness of the object is assumed and distance

is thus calculated), the BAO acts as a standard ruler. Here, we know the physical

size of an object, and thus infer the distance using geometric arguments.

In order to infer the distance, however, some measure of distance must be agreed

upon. Here, we use a distance derived from the differential comoving volume, which

is defined as follows

dVc =
c

H0

(1 + z)2D2
A(z)

E(z)
dΩdz (3)
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where H0 is the Hubble Constant, z is the redshift, DA is the angular diameter

distance, Ω is a solid-angle, and E(z) is a dimensionless factor containing the z-

dependence of H(z), i.e. H(z) = H0E(z), where H(z) is the Hubble Parameter

(Hogg 2000). Following Peebles, p. 319, (1993) DA is defined by equating an object’s

angular size on the sky (in radians) to the ratio of its physical length to its distance,

and, in the case of a flat universe, is given by

DA =
Dp

1 + z
(4)

where Dp is the proper distance given by the Robertson-Walker Metric as

Dp = a0

∫ t0

te

c

a(t)
dt (5)

where a0 is the current scale factor of the universe, te is the time when the tracer

photon was emitted, and t0 is the current age of the universe. We can change to an

integration over scale factor a by realizing

dt =
da

ȧ
. (6)

So,

DA =
a0

1 + z

∫ a0

a(te)

c

aȧ
da. (7)

Using H ≡ ȧ/a, this may be written as

DA =
a0

1 + z

∫ a0

a(te)

c

Ha2
da. (8)

Having simplified our expression this far, it is helpful to convert into a function of
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redshift z instead of a. We can do this by using the basic cosmological relation

a0

a
≡ 1 + z. (9)

So

da

a0

=
−dz

(1 + z)2
(10)

da = −a
2

a0

dz. (11)

Substituting in for da, we find

DA =
a0

1 + z

∫ 0

z

− c

Ha2

a2

a0

dz′. (12)

Using the fact that H(z) = H0E(z), and simplifying the above equation, we find

DA =
c/H0

1 + z

∫ z

0

dz′

E(z′)
. (13)

The function E(z), which contains the z-dependence of H, also depends on ΩM and

ΩΛ can be found any introductory cosmology text (such as Ryden (2002)) and is given

by

E(z) =
√

ΩM(1 + z)3 + (1− ΩM − ΩΛ)(1 + z)2 + ΩΛ. (14)

Thus, as dVc is a function of both DA and E(z), which both depend on ΩM and ΩΛ,

we see that the differential comoving volume is itself fundamentally a function of ΩM

and ΩΛ.

We can define a “distance” scale by considering
dVc
dzdΩ

. Taking the cube root of

this yields a Comoving Volume Distance DV that can be used to define an internal
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measurement.

DV =

(
c

H0

(1 + z)2D2
A(z)

E(z)

)1/3

. (15)

This is a spherically averaged distance measure, so it incorporates all three dimensions

of space, which is the case with observational data.

By creating a set of DV values at specified redshifts, we can find (ΩM ,ΩΛ) satis-

fying Equation 15, and thus, observations of galaxy distributions can be related back

to the cosmological parameters. Such a distribution is one of the many capacities of

the European Space Agency’s telescope Euclid set to launch in 2020. Thus, we seek

to finalize the analysis method in time for the telescope’s launch.

2 Methods

2.1 Sample Preparation

In order to create the simulated observations, we used a program known as Mag-

neticum, a high-resolution, entropy-conserving, smooth particle hydrodynamic (SPH)

simulation covering about 0.7(Gpc/h)3 using WMAP7 cosmology as given in Table

11. Magneticum is based on GADGET-3 (Springel et al. 2005) and incorporates a

low-viscosity SPH regime to track turbulence (Dolag et al. 2005). The simulation

begins at z = 120 when the universe is still very smooth, and so the power spectrum

is linear (Dolag in prep).

We calculated the correlation function from the Magneticum output at four red-

shifts: 0.20, 0.52, 0.72, & 1.00. This required us to choose a spatial resolution for

our analysis. It was important to make the spatial resolution fine enough to see the

morphological features in question but no smaller. If the resolution was too fine, the

errors in the correlation function were so large than no meaningful data could be

1http://www.magneticum.org/simulations.html
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extracted. If it were too coarse, we could not constrain significantly the location of

the BAO peak in the correlation function.

We also reduced the errors in the analysis using a technique called jackknife,

wherein we subdivided the sample volume into a number N of spatial cubes called

mocks. We calculated the correlation function for all of the data less one mock, then

averaged over all N of these partial correlation functions. This method dramatically

decreased the uncertainties in the correlation function with greater decrease as the

number of mocks increased. The limiting factor on the number of mocks was compu-

tational time as more mocks required more calculations of the correlation function.

2.2 Fitting the Correlation Function

In order to fit the cosmological parameters, we compared the simulation data to

two theoretical distributions using the Code for Anisotropies in the Microwave Back-

ground (CAMB) (Lewis & Bridle 2002) and a pre-BAO model from Eisenstein and

Hu (Eisenstein & Hu 1998). These are independent codes designed to calculate the

power spectrum at a given redshift in different ways. The Eisenstein-Hu (EH) model

is formulated without a BAO peak, and thus we include it as a control. Unlike

Magneticum, which evolves a system using some assumed cosmology, these models

calculate the correlation function, which is the Fourier transform of the power spec-

trum, using a theoretical evolution model. The correlation functions of these models

were then fit to the correlation function obtained from Magneticum using

ξsim(r) = b2ξmodel(r · α) (16)

where ξsim and ξmodel are the correlation function derived from Magneticum and the

correlation function produced by our theoretical model, respectively, b is the ratio

between the mean over density of galaxies to the mean over density of dark matter (i.e.
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the bias), and α is a distance scaling factor. The b2 factor is necessary because galaxy

clustering does not exactly mirror the over densities in the bulk matter. A useful

analogy would be that of “snow-capped mountains,” where the altitude represents

the dark matter density and the snow represents the galaxies. Only the tallest peaks

are snow-capped with a strongly defined border to the snow. Meanwhile, the rest of

the range is much more evenly distributed in mass with no defined borders even if

there might be small peaks scattered about. In the same way that the snow does not

completely reflect the topography of the ridge, galaxies do not completely reflect the

overdensities in the bulk matter.

The scaling factor α enables adjustment of all length scales in the simulation to

fit the model when the two involve different cosmological parameter values. Thus, α

provides the key to inferring the correct cosmology. If α = 1, then the cosmology used

to create the models is the same as that of the observations. If, however, there is a

discrepancy, the models will predict a different preferential separation distance (thus

a different peak in ξ) than the data. We use that discrepancy to infer the correct

cosmology for the data. As Eisenstein-Hu does not include a BAO peak, there is no

reason to include a horizontal scaling factor α; therefore α ≡ 1 for all Eisenstein-Hu

fits.

We determine the fit paramerers α and β by minimizing χ2, which is defined as

follows

χ2 =
N∑
i=0

N∑
j=0

(∆ξ(ri))C
−1
ij (∆ξ(rj)) , (17)

where ∆ξ(rk) = ξ(rk) − ξm(rk), ξ(rk) is the value of the correlation function of the

simulation (i.e. Magneticum), ξm(rk) is the value of the correlation function at corre-

sponding separations for a given model, and C is the covariance matrix between the

correlation values at different length scales, ri and rj. Because a spatial resolution had

to be chosen to create the correlation function, the normally continuous correlation

function became incremental allowing us to index the separation distances.
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Using the generated χ2 matrix, the uncertainty in α was also calculated. Since

α is the only value that we used in our analysis, we fixed b2 to be the value at the

minimum χ2. We then calculated the two α values at which χ2
r = 2(χ2

r,min). This

allowed us to obtain a 68% confidence interval in our α fit.

2.3 Extracting the Cosmological Parameters

At this point, the cosmology used to create the models is known, so DV can be

calculated for the four redshifts tested (z = 0.20, 0.52, 0.72, & 1.00). The final DV

values for the data are the product of α and Dm
V resulting from the fiducial cosmology

assumed in the models. That is, we can scale all lengths in the model (CAMB or

EH) to match those in the simulation, thus finding the cosmology of the simulation.

As such, the best-fit cosmology is the one that solves

α ·Dm
V (0.272, 0.728) = DV (ΩM ,ΩΛ), (18)

where Dm
V is the comoving volume distance of the model. Thus, since we are creating

our initial models using WMAP values, ΩM = 0.272,ΩΛ = 0.728 for Dm
V . Had we

created our models under a different cosmology (such as an Einstein-deSitter universe

where ΩM = 0,ΩΛ = 1), then those would be the values present in Equation 18. We

can find the best-fit cosmology by calculating DV over a grid of ΩM and ΩΛ values

using the simpler definition of χ2 given below.

χ2 =
N∑
i=0

(
α ·Dm

V (zi)−DV (zi)

∆α ·DV (zi)

)2

, (19)

where Dm
V (zi) is the fiducial comoving volume distance and DV (zi) is the comoving

volume distance of the cosmology being tested.

Finally, the same method as before can be used to find the uncertainties on ΩM
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and ΩΛ, and the fiducial cosmology can be compared with the best-fit cosmology.

If the fiducial cosmology is within the error of the fit, there is promise for using

correlation functions and the BAO to determine cosmological parameters.

3 Results & Discussion

The raw best-fit values of α, b2, and χ2 for each run and model are shown in Table 2.

One way to obtain a quantitative measure of the strength of the BAO peak is by

the ratio of the χ2 value of the best fit of Eisenstein-Hu as compared to that of CAMB,

as shown in Figure 1. We can see that strength of the BAO peak behaves strikingly

differently for galaxies and clusters. That is, the strength of the BAO evolves in the

opposite sense for clusters and galaxies. For clusters, the ratio decreases as a function

of redshift for all observations except z = 1.00, indicating that, on average, the BAO

becomes less pronounced at larger redshifts. Contrarily, the strength of the BAO

peak increases as a function of redshift for galaxy observations, except at the largest

redshift as shown in Figure 8. These results can be seen in the correlation functions

in Figures 2 through 17.

As shown in Table 3, α = 1 is within the 68% uncertainty for all simulations,

except for galaxies at z = 0.52. This is important because, in theory, α should be

identically one as the same cosmology was used in the Magneticum data and the

model. It is, therefore, expected that unity be within the errors of any calculated

value.

Another important result of our analysis of the χ2
r map is that α and b2 are only

weakly covariant. As an example, consider Figure 18, wherein a larger range of α and

b2 values are considered than in other samples. The most important feature is that

the best fit value falls at the center of an egg-shaped contour plot. Secondly, this

“egg” is vertically oriented, indicating that the fit parameters are independent. This

13



is fundamental to our ability to define meaningful errors on α without reference to

the bias. We see that the error is around 10%, which is reasonable as an upper limit

on observational precision. The local minimum around α = 0.7, b2 = 0.4 is negligible

because it is unrealistic for b2 < 1, as this would imply that galaxies are more over

dense than dark matter, which only occurs on very small scales (less than 10 Mpc/h)

(Myers et al. 2005).

Knowing that we can consider α independently from the bias, we calculatedDV (z),

which is plotted in Figure 19, where the best fit cosmology is ΩM = 0.350 and

ΩΛ = 1.00 for galaxies and ΩM = 0.340 and ΩΛ = 1.00 for clusters. We also create

maps of probabilities for any given cosmology. Figure 20 shows the probability space

for galaxies and Figure 21 gives the data for clusters. The ellipses represent the space

for 68%, 95%, and 99.5% confidence intervals. The diagonal dotted line runnning from

the upper left to the lower right represents possible cosmologies for a flat universe.

The white point represents the fiducial WMAP-7 cosmology.

We can see that the correct cosmology is near the 68% confidence interval of

the best-fit calculation for both galaxies and clusters. However, the 68% confidence

interval is extremely large, indicating that something in our model needs to be more

constricted for this method to be useful.

We believe the source of the unreasonably large uncertainty stems from the size

of our sample. The data herein were created such that there were on the order of

106 objects in the sample, with fewer objects as we look further back in time. We

believe that the number of objects in the random sample determines these uncertain-

ties, and so increasing the number of objects in the simulation should decrease the

uncertainties.

The number of objects in the sample also affects the noise in the correlation

function itself. We saw that at large redshifts, the correlation function becomes very

erratic, while still following the general shape of the BAO. This is most likely due
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to the fact that there are simply not enough clusters in our sample to overcome this

noise. So, a larger sample volume would also smooth the correlation function at high

redshifts. Increasing the sample size also brings the simulation more in accord with

the potential Euclid data, which is projected to measure photometric redshifts of over

50 million objects. (Laureijs et al. 2011)

There is also a dependence of signal detection on distance. Using R(χ2) as our

metric, Figure 16 shows the most well-defined BAO peak, which occurs at z = 1.00,

while Figure 2 shows the least well-defined BAO peak, which occurs at z = 0.20. In

the high redshift case, it is both visually and mathematically clear where the BAO

peak is. In the low redshift correlation function, however, it is much less clear: does

the peak span 90 to 100 Mpc/h or is it the single bump at r ≈ 103 Mpc/h? This,

we expect, is the cause of the large α values at low redshifts, and thus the resulting

extreme ΩΛ values.

4 Conclusions

We sought to develop a method to constrain ΩM and ΩΛ using the peak in the corre-

lation function caused by BAO. Using Magneticum, a smooth particle hydrodynamic

simulation, we created eight correlation functions using both galaxies and clusters of

galaxies as our tracers at four different redshifts. We fit those functions with theoret-

ical models centered around the Baryon Acoustic Oscillation peak to obtain two fit

parameters, α, which is a horizontal scaling factor, and b2, which is a vertical scaling

factor associated with the bias. Using α, we found the cosmology that best replicated

the comoving volume distance associated with our data. We found that we can re-

produce the correct cosmology with 68% confidence using both galaxies and clusters

of galaxies, although the best-fit cosmology (ΩM = 0.350,ΩΛ = 1.00 for galaxies and

ΩM = 0.340,ΩΛ = 1.00 for clusters) is far from the fiducial cosmology of WMAP7
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(ΩM = 0.272,ΩΛ = 0.728). We see that the strength of the BAO signal (measured

by R(χ2), the ratio of the goodness of fit of the Eisenstein-Hu model divided by that

of the CAMB model) is roughly dependent on the redshift of the observation, with

higher redshifts corresponding to stronger signals. We also see, however, that the

smoothness of the signal deteriorates with redshift, causing cluster correlation func-

tions to become very noisy. These results suggest that a larger sample volume is

critical to the potential success of this method to usefully constrain ΩM and ΩΛ.

Further tests of this method have begun where the Magneticum volume is 19.4

(Gpc/h)3, or 27 times the volume of the current simulation. Such a large data set

provides many opportunities to assess the detailed application of this model, but also

provides a number of challenges, some of which are still being addressed. The first of

these difficulties is the sheer number of objects. The run time of the calculation of the

correlation function is in O(N2). As such, we must artificially limit the number of ob-

jects being considered in our analysis given our computational restrictions. The most

reasonable method to accomplish this is via a cut-off of objects above some minimum

mass. We chose a minimum mass of the tracer such that there are around one million

objects in our sample. Altering the lower mass limit to maintain one million objects

also ensures that the statistical significance of the results do not depend on extrinsic

factors such as the number of objects. In order to accomplish this, we calculate the

number of galaxies in the sample with mass greater than each given mass, as shown

in Figure 22.

After this, our analysis method continues as before. However, the correlation plots

which result from this simulation are peculiar when compared to those of the smaller-

volume simulation as exemplified in Figure 23. In fact, the correlation function is

much more erratic in its shape with unreasonably small error bars. As we are not

yet able to explain this strange behavior in the data, we do not plan to extract the

cosmological parameters for this new simulation until the correlation function can be
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justified.

Overall, the theory behind constraining the cosmological parameters using the

correlation function is sound, but there are still many functional hurdles to overcome

before the method can be expected to produce significant results. Both the precision

and the accuracy need significant improvements in order to reflect the input parame-

ters of Magneticum. We believe this can be accomplished using larger sample volumes

if internal inconsistencies can be accounted for. If this occurs, then we look forward

to applying this new geometry-based method to the Euclid data in the near future

to further restrict the values of ΩM and ΩΛ.
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Table 1. Current Accepted Values of Cosmological Parameters. All results taken
from (Komatsu et al. 2011)

Parameter Description Value

H0 Hubble Constant 70.4+1.3
−1.4 km/s/Mpc

t0 Age of the Universe 13.75± 0.11 Gyr
Ω Total Density Parameter 1.0023+0.0056

−0.0054

ΩM Total Matter Density 0.272
ΩBM Baryon Density 0.046± 0.002
ΩDM Dark Matter Density 0.227± 0.014
ΩΛ Dark Energy Density 0.728+0.015

−0.016

Table 2. Best Fit Parameters for all ξ. Note that α ≡ 1 for all EH models.

Tracer Redshift Model χ̄2 α b2

galaxy 0.20 CAMB 17.589 1.101 1.986
galaxy 0.20 EH 20.879 – 1.773
galaxy 0.52 CAMB 22.412 1.083 3.630
galaxy 0.52 EH 27.972 – 2.659
galaxy 0.72 CAMB 13.026 1.008 2.962
galaxy 0.72 EH 19.722 – 2.342
galaxy 1.00 CAMB 5.687 1.029 3.647
galaxy 1.00 EH 7.356 – 3.433
cluster 0.20 CAMB 1.415 1.026 1.613
cluster 0.20 EH 2.193 – 1.293
cluster 0.52 CAMB 0.771 1.090 1.840
cluster 0.52 EH 1.049 – 1.330
cluster 0.72 CAMB 1.117 1.032 2.652
cluster 0.72 EH 1.44 – 2.342
cluster 1.00 CAMB 0.904 1.056 3.576
cluster 1.00 EH 1.564 – 1.644
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Table 3. Best Fit α Values and Associated Uncertainties for the CAMB Model

Tracer Redshift α −∆α ∆α

galaxy 0.20 1.101 0.177 0.078
galaxy 0.52 1.083 0.063 0.045
galaxy 0.72 1.008 0.108 0.120
galaxy 1.00 1.029 0.072 0.105
cluster 0.20 1.026 0.075 0.102
cluster 0.52 1.090 0.130 0.180
cluster 0.72 1.032 0.093 0.141
cluster 1.00 1.056 0.084 0.099

1.2
1.3
1.4
1.5
1.6
1.7
1.8

R(χ
2 )

Galaxies
Clusters

1
1.1
1.2

0 0.2 0.4 0.6 0.8 1 1.2
z

Figure 1: The ratio of the best fit χ2
r for the Eisenstein-Hu model compared to

that of the CAMB model, denoted R(χ2). Notice that for clusters, the ratio of the
goodness of fit decreases excluding the measurements at z = 1.00. This is the complete
opposite of the results for galaxies, where EH has a decreasing goodness of fit relative
to CAMB for all by the last observation.
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Figure 2: Correlation function at z = 0.2 for galaxies in the Magneticum Simulation
(blue), CAMB (green), and EH (red). At low redshifts, the BAO peak is very weak. The
signal at 78 Mpc/h is not associated with the BAO and is of unknown origin.

Figure 3: Notice that there are two minima in the reduced chi squared. Although the
minimum around α = 1, is the preferable choice, χ2

r is smaller at the minimum at α ≈ 1.1.
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Figure 4: Correlation function at z = 0.52 for galaxies. The BAO peak is beginning to
appear in the correlation function, but still can be explained as a noise peak.

Figure 5: Because the correlation function is still very flat, there is a large range of bias
values which fit the data reasonably well.
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Figure 6: Correlation function at z = 0.72 for galaxies. Here, we have the first verifiable
trace of the BAO peak in the correlation function. As such, the best fit scale parameters
now match visual expectations much more strongly.

Figure 7: The minimum χ2
r is now much lower than previous samples. We also see that

the range of reasonable fit parameters is starting to shrink.
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Figure 8: Correlation function at z = 1.0 for galaxies. At the largest redshift analyzed,
the BAO peak is very well defined. We see that CAMB well predicts the correlation function
from Magneticum, and the Eisenstein-Hu model does a poor job of fitting the function.

Figure 9: Although the range of acceptable α is larger, the minimum χ2
r is much smaller

than any other observation with galaxies.
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Figure 10: Correlation function at z = 0.2 for clusters. Even at low redshift, the cor-
relation function of clusters has a broad peak due to the BAO. However, there is also
significantly more noise in the signal, which will only get worse.

Figure 11: Cluster correlation functions are much more in accordance with prediction,
which is evident from the fact that the minimum χ2

r is around one.
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Figure 12: Correlation function at z = 0.52 for clusters. The BAO peak is still very
broad likely due to the fact that this is still a low redshift observation.

Figure 13: The reduced chi squared shows that there is a large range of fit parameters
within 68% of the minimum, but this range is a much better fit than most of those for
galaxy observations.
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Figure 14: Correlation function at z = 0.72 for clusters. The correlation function is
becoming very noisy at larger redshift, which is likely due to under-sampling as Magneticum
is volume-limited.

Figure 15: With the increase in noise, the range of acceptable fit parameters becomes
even larger.
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Figure 16: Correlation function at z = 1.0 for clusters. At the largest redshift considered,
the BAO peak is very well defined (and well modeled), even though the signal is beginning
to degenerate due to under sampling.

Figure 17: Even with all of the noise in the correlation function itself, the goodness of
fit is not strongly affected.
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Figure 18: A plot of χ2
r over a larger range than normally considered using clusters as

the tracer at z = 0.52. Notice that the contour lines are vertically oriented, implying
that α and b2 are independent, allowing us to consider the uncertainty in α without
concern for the bias.

Figure 19: Notice that the DV (z) values are all larger than that due to the fiducial
cosmology as all α > 1. This pulls the best fit cosmology upward, which requires
ΩM = 0.34 and ΩΛ = 1.00.
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Figure 20: The actual cosmology used to create the data, given by the white point,
is right on the edge of the 68% confidence interval. Surprisingly, the best fit cosmology
requires ΩΛ = 1.00.

Figure 21: The actual cosmology used to create the data is within the 68% confidence
interval, although said interval is quite large. Again, the best fit cosmology requires ΩΛ =
1.00.
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Figure 22: Requiring an object to be at least 4× 1010M� (approximately the size of the
Large Magellanic Cloud) to be considered a galaxy allows us to have approximately one
million objects in our galaxy sample. We see that as we go to smaller masses, the slope
increases, indicating that that are more less massive objects in our sample than massive
objects.
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Figure 23: The correlation function at z = 1.98 created using the larger-volume sample
does have significantly smaller inherent uncertainties, but the function itself is so erratic
that no meaningful analysis can be extracted.
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