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1 Introduction

At the heart of mathematics is the quest to find patterns and order in some set of similar struc-
tures, whether these be shapes, functions, or even numbers themselves. In the late 1800’s, there
was a strong focus in the mathematical community on the study of real numbers and sequences
of real numbers. Mathematicians quickly realized, however, that in order to do any meaningful
investigation into the properties of sequences of real numbers, they needed a better definition of
real numbers than the loose intuitions that had been su�cient for the generations prior. This led
Georg Cantor (March 3, 1845 - January 6, 1918) to create his own definition of real numbers during
his investigations into trigonometric series. As Cantor continued his work in formal definitions of
number systems, he slowly realized that there was good reason to extend the real numbers beyond
their traditional confines into what are now known as transfinite numbers. In doing this, Cantor
set down a road, which, while revealing to him that some infinite sets were bigger than others,
eventually drove him to be institutionalized.

In the discussion that follows, we will provide an exposition on the “sizes” of many familiar sets.
In this context, we will use cardinality as our measure of size. Specifically, we will establish that N
is isomorphic to Q, and thus the two have equal cardinality. After this, we present some of the most
important steps in constructing R via Dedekind cuts (we will not address Cantor’s construction of
R) and show that |R| > |N|, i.e. the cardinality of the reals is greater than that of the naturals. We
will then explore Cantor’s transfinite set theory via the construction of transfinite numbers along
with some of the philosophical implications he found therein. We will conclude with some insights
into the development of another notions related to infinity, particularly the infinitesimal numbers.
There will be an exposition of Cantor’s philosophy of infinitesimal numbers along with a look at
other developments that occurred both during and after his lifetime. Note that for the duration of
this paper, we will define the natural numbers by the counting numbers; that is N ⌘ {1, 2, 3, . . . }.
We also assume the Axiom of Choice.

2 Countable Sets

One of the most fundamental infinite sets is the set of natural numbers N. Although one can
construct N as sets of sets (as we will discuss later in this work), it is valid to consider the natural
numbers the primitive numbers o↵ of which all other (common) number systems are understood.
Since the natural numbers have a definite order and are nowhere dense (i.e. over any finite
interval, there are only finitely many natural numbers), we consider N to be a countable set. When
we say countable, we do not wish that the reader envisions sitting to count all of the natural
numbers, and one day finishing. Since N is infinite, this would be impossible, but that does not
mean that there is not some sensible way to go about counting them if one were to try. The natural
numbers are inherently enumerated since they are the numbers we use to count things, which is
why they are considered countably infinite. The question arises as to whether all sets are countably
infinite and how do we find out if they are. This is the question we explore below.

2.1 The size of N⇥ N
With Cantor’s definition of a countable set in mind, it will be enlightening to establish some
interesting consequences of this simple statement. We will first review some basic definitions as the
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proofs to follow will rely heavily on their consequences.

Definition 1: Let X and Y both be sets, and let f be some function which maps from X into
Y. Then,we define f to be injective if (8x1, x2 2 X)(f(x1) = f(x2) ! x1 = x2).

Definition 2: Let X and Y both be sets, and let f : X ! Y. Then we define f to be surjective
if (8y 2 Y )(9x 2 X) such that (f(x) = y).

For injectivity, if the image of two elements of X are equal, then the elements themselves must be
equal. Note that it is equivalent to say x1 6= x2 ! f(x1) 6= f(x1). If a function is surjective, we can
say that every element in Y has some element in X which maps to it. Equivalently, every element
in the codomain (Y ) is in the image of f, where the image of f, denoted Im(f) = {f(x) 2 Y |x 2 X}.

The first two definitions are basic properties that f may or may not possess. Every function,
however, has an image. In fact, if we restrict f such that f : x ! Im(x), then f must be surjective.
We can use these properties of f in order say something about the sets themselves.

Definition 3: Let X and Y be sets. Then, X is isomorphic to Y, denoted X

⇠= Y, if
(9f : X ! Y ) such that f is injective and surjective.

Our next definition is a property of sets of integers.

Definition 4: Let X ✓ N be non-empty. Then, by the Well-Ordering Principle (9x 2 X)
such that (x is the least element of X).

We now have everything we need to proceed. First, we will show that any infinite subset of N
must be countable in size. This is straightforward if it is assumed that countable is the only (or at
least smallest) form of infinity. Here, we do not make that assumption.

Theorem 1 Every infinite subset of N is countable.

Let A1 ✓ N be infinite. We will show that A1 is countable. We shall construct a sequence
S of the elements of A1. Define the elements of S as follows: By the Well-Ordering Principle,
9a 2 A1 such that a is the least-element of A1. Let s1 = a and A2 = A1 \ {a}. Now, A2 is still
a non-empty subset of N, so the WOP applies. Then, 9b 2 A2 such that b is the least element
of A2. Let s2 = b and A3 = A2 \ {b}. Repeat this procedure to generate S, which is an infinite
ordered sequence of the elements of A1. As S is ordered, we can define a function f : N ! A1

such that f(i) = si. We will show that f is surjective by contradiction. Suppose that f is not
surjective. Then, (9s 2 A1)st(8x 2 N)(f(x) 6= s), ie s is not in the sequence. By construction,
s1 < s2 < s3 < · · · < sn. So, s1 < s2 < s3 < · · · < sn < · · · < s. However, s 2 A1 ✓ N, so s
must be a finite natural number. Therefore, s has only finitely many predecessors 1, 2, . . . , s � 1.
As A1 is infinite, there must be some An such that s is the least element. Therefore, s 2 S, which
contradicts our state that s was not in the sequence. Thus, f must be surjective. So, every element
in A1 must correspond with some element in N, so they must be the same size. Therefore, A1 must
be countable. ⌅

This result may or may not surprise the reader, but it is very important in establishing our next
theorem: If a map from a countable set to an infinite set is surjective, then the infinite set must
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in fact be countable. This is not as straightforward, but we will attempt to impose some intuition
into it. If every item from the infinite set is mapped to by an element in the countable set, then
in a loose sense, the infinite set can be associated with a subset of the countable set, which then
implies that the infinite set must be countable. We put this argument on firm logical footing.

Theorem 2 Let X be countable, Y be infinite, and f : X ! Y be surjective. Then Y is countable.

As f is surjective, (8y 2 Y )(9x 2 X)st(f(x) = y). Define g : Y ! X by g(y) = xy, where xy 2 X

is chosen and guaranteed to exist by surjectivity. Now, g must be injective. If g were not injective,
then two di↵erent y could be mapped to by the same x by f. This would contradict f being a
function. As X is countable and g(Y ) ✓ X, by Theorem 1, we have that g(Y ) must be countable.
So, as the image of g must be countable, and g is injective, g(Y ) ⇠= Y . Therefore, Y must be
countable. ⌅

Finally, our last result in this section is perhaps the most surprising: N⇥N is countably infinite!
Intuitively, we would expect this to be false. After all, we are taking two full instances of N and
creating the set of all possible pairs from their elements. This would seem to suggest that there
must be more elements in their Cartesian product, but, as we will see below, this is simply not true.

Theorem 3 N⇥ N is countable.

We will show that N⇥ N is countable.
Let f : N⇥ N ! N by f(x, y) = 1

2(x+ y)(x+ y + 1) + y.

We will show that f is injective.
Let (x, y), (x0

, y

0) 2 N⇥ N such that f(x, y) = f(x0
, y

0).
Then, 1

2(x+ y)(x+ y + 1) + y = 1
2(x

0 + y

0)(x0 + y

0 + 1) + y

0
.

Assume for contradiction that x+ y 6= x

0 + y

0
.

We will prove that x+ y < x

0 + y

0 produces a contraction.
The case of x+ y > x

0 + y

0 is analogous.
Therefore, x = x

0 and thus (x, y) = (x0
, y

0).
Assume x+ y 6= x

0 + y

0
.

Assume x+ y < x

0 + y

0
. The reverse case will be analogous.

Then, x+ y + 1  x

0 + y

0
.

Then, f(x, y) = 1
2(x+ y)(x+ y + 1) + y  1

2(x+ y)(x0 + y

0) + y as we are multiplying by a positive
(potentially larger) number.
Now, 1

2(x+ y)(x0 + y

0) + y = 1
2(x+ y)(x0 + y

0 +1)� 1
2(x+ y) + y = 1

2(x+ y+1)(x0 + y

0 +1)� 1
2(x+

y)� 1
2(x

0 + y

0 + 1) + y.

Then, 1
2(x+ y+ 1)(x0 + y

0 + 1)� 1
2(x+ y)� 1

2(x
0 + y

0 + 1)+ y  1
2(x

0 + y

0)(x0 + y

0 + 1)� 1
2(x+ y)�

1
2(x

0 + y

0)� 1
2 + y.

Then, 1
2(x

0 + y

0)(x0 + y

0 + 1)� 1
2(x+ y)� 1

2(x
0 + y

0)� 1
2 + y <

1
2(x

0 + y

0)(x0 + y

0 + 1)� (x+ y) + y.
So, 1

2(x
0+y

0)(x0+y

0+1)�(x+y)+y = 1
2(x

0+y

0)(x0+y

0+1)�x <

1
2(x

0+y

0)(x0+y

0+1)+y

0 = f(x0
, y

0).
Therefore, we have shown f(x, y) < f(x0

, y

0), which contradicts our assumption that f(x, y) =
f(x0

, y

0)!
So, x+ y = x

0 + y

0
.

By our assumption, 1
2(x+ y)(x+ y + 1) + y = 1

2(x+ y)(x+ y + 1) + y

0
.

Therefore, y = y

0
.

So, x+ y = x

0 + y.
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Therefore, (x, y) = (x0
, y

0), so f must be injective.
Let I = Im(f) which is a subset of N.
Then, we can define g : I ! N⇥ N by g(i) = f

�1(i).
This must be surjective as f is injective, and we are only mapping from the image of f.
Then, by Theorem 1, I is countable as I ✓ N.
As such, by Theorem 2, N⇥ N is countable. ⌅

This might seem like a lot of hand waving, and non-reflective of the reality of the situation, but
that is simply not true. We created a function, which, although not injective over R, is injective
over the natural numbers. Many of the steps utilize the fact that we are working with only N. For
example, we took the fact that x+y < x

0+y

0 and deduced that x+y+1  x

0+y

0
. This is only true

because there is no number between x+ y and x+ y + 1 in N. If we were in R, this would be false
(for example, x+ y = 3.5 and x

0+ y

0 = 4 so x+ y < x

0+ y

0 6! x+ y+1  x

0+ y

0). This observation
is what allowed the proof to work. After defining f, we took its inverse, which is defined since the
function is injective. We could then take this inverse function and apply the previous results, which
allowed us to show that N⇥ N is countable!

2.2 More on Countable Sets

We will now produce two more sets which are also countable. We will first show that the union
of countably many countable sets is itself countable. We will then conclude with a proof that the
rational numbers Q are also countable. The result of this can be summed up idiomatically by
the idea that any operation applied to countable sets countably many times will always produce a
countable set.

Theorem 4 A countable union of countably many infinite sets is countable.

Let Xi be a countable set for all i 2 I, where I is a countable index set. Without loss of generality,
we can assume that these sets are disjoint, ie (8i, j 2 I)(Xi \Xj = ;). By the well-ordering prin-
ciple, we can define an ordering for every set as exemplified in Theorem 1. We can then identify
any element of any set as xi,j where i is the index value of the set, and j is the index value of the

element in its respective set. Now, define f : N⇥N !
[

i2I

Xi as f(i, j) = xi,j. This function is then

trivially surjective as there are countably many sets (so there is no set which is not indexed) and
each set is countable in size (so there is no value which is not indexed). By Theorem 2, as N ⇥ N
is countable, and f is surjective,

[

i2I

Xi must be countable. ⌅

Theorem 5 Q is countable.

Consider Q+ = {p/q|p, q 2 N}. Let f : N ⇥ N ! Q+ by f(p, q) = p/q. Since the elements of Q+

are defined as p/q, f must be surjective. Then, by Theorem 2, Q+ is countable. Symmetrically,
Q� defined by {�p/q|p, q 2 N} must also be countable. Now, Q = Q+ [ {0} [ Q�

. Then, by the
inductive proof used in Theorem 4, this union must be countable. ⌅

The notion that Q was countable came as quite a shock to Cantor. In some intuitive sense,
the rationals are more dense than the natural numbers. After all, one can define an interval small
enough that it contains no natural numbers (perhaps [0.25,0.75]), but this cannot be done for the
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rational numbers. Between any two rational numbers, there exist infinitely many more rational
numbers. Another way to say this is that Q is everywhere dense. For this reason, it is reasonable
to deduce that Q should, in some way, be bigger than N. However, since we can create Q as a union
of sets equal in size to N⇥ N, this must not be true.

It is tempting to think at this point that all infinite sets must be isomorphic to the naturals as
all of our intuitions thus far have shown to lead us to false conclusions. However, in the next section
we will show that the most common number system is uncountable, and, in fact, it is bigger than
N! These numbers we are speaking of are the real numbers, R.

3 Uncountable Sets

Before discussing the size of the real numbers R, we need some meaningful definition of what we
mean by real numbers. Intuitively, we know what one means when they discuss a real number ; it
is any number which can be represented as a decimal expansion of the digits 0-9. This simplistic
definition, however, is flawed because numbers do not have unique representations. Consider, for
example, the expansion 0.9̄ and 1.0̄. These are obviously distinct decimal expansions, but, as you
may be aware, they represent the same value! In fact, for infinitely many rational number, there
are two unique decimal expansions. (Any number of the form p/(2m + 5n), where p and 2m+5n
have no common factors, and m,n 2 N is in fact such a number.) So, we need some better formal
definition, which is where Dedekind cuts come into play.

3.1 Constructing R
We will consider the rational numbers Q as partitioned into two sets A and B (i.e A \ B = ; and
A [ B = Q) such that A and B are both non-empty, A is closed downward [i.e. (8x 2 Q)(8a 2
A)(x  a ! x 2 A)], B is closed upwards [i.e. (8x 2 Q)(8b 2 B)(x � b ! x 2 B)], and A does
not contain a greatest element. This constitutes a Dedekind Cut. By construction, B is completely
determined by A, and (8a 2 A)(8b 2 B)(a < b). We will refer to a Dedekind cut by the ordered
pair of sets (A,B). We can then associate any real number r with some pair (A,B), which contains
all rational numbers less than r.

Example: Define A = {q 2 Q|q < 0} [ {q 2 Q|q � 0 & q

2
< 2}. Then, (A,B) defines a Dedekind

cut.

Define A as explained above. for (A,B) to be a Dedekind cut, it follows that B = Q \ A.

We must show that A is closed downward, B is closed upward, and A contains no greatest el-
ement. Let x 2 Q and a 2 A. Assume x  a. Case 1: Assume x  0. If x  0, then
x 2 A. Case 2: Assume x > 0. Then, we know a > 0 as a > x > 0. It therefore follows that
a

2
> x

2
. As a 2 A, x

2
< a

2
< 2. So, x

2
< 2. Therefore, x 2 A. So, A is downward closed.

We must now show that B is upward closed. Let x 2 Q and b 2 B such that x � b. As
x � b > 0, x2

> b

2
> 2. Thus, x

2
> 2 so x 2 B. Therefore, B is closed upward. We must

now show that A does not have a greatest element, ie (8a 2 A)(9x 2 A) such that (x > a).
Let a 2 A. Case 1: Assume a  0. Let x = 1. Then, x > a. Case 2: Assume a > 0. Define

x =
2a+ 2

a+ 2
. First, we must show that x 2 A by showing that x 2 Q+ and x

2
< 2. As a 2 Aand

a > 0, a 2 Q+
. Therefore, a = p/q for some p, q 2 N. Then, x =

2p/q + 2

p/q + 2
=

2p+2q
q

p+2q
q

=
2p+ 2q

p+ 2q
2 Q+

.
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Moreover, x2 =
4a2 + 8a+ 4

a

2 + 4a+ 4
<

4(2) + 8a+ 4

(2) + 4a+ 4
=

4(3 + 2a)

2(3 + 2a)
= 2. Therefore, x 2 A. Finally, as

a

2
< 2, a2 + 2a < 2 + 2a. Therefore, a(a+ 2) < 2 + 2a. As a+ 2 > 0, this implies a <

2a+ 2

a+ 2
= x.

Therefore, x > a. Therefore, A has no greatest element. Therefore, (A,B) defines a Dedekind cut. ⌅

It is beyond the scope of this discussion to show that this cut is associated with
p
2, but know

that this is true. We have thus defined a Dedekind Cut and provided one example of a valid cut.
Notice that we can construct both rational numbers and irrational numbers using this method. For
example, we can construct 2 by defining A = {q 2 Q|q < 2}. If we consider R to be the set of all
Dedekind cuts then we can see that Q ⇢ R since we can construct all rationals using this method
as well as numbers such as

p
2, which is not rational. One formality we must address before we can

finish this discussion is the total-ordering of R.

Theorem 6 Let x = (A,B) and y = (C,D) be Dedekind cuts. If we define x  y as an ordering
established by A ✓ C, then  defines a total-ordering.

Let x = (A,B), y = (C,D), and z = (E,F ) be Dedekind Cuts. Then, the relation is antisymmetric
i↵ (x  y & y  x ! x = y) () (A ✓ C & C ✓ A ! A = C). The relationship is transitive i↵
(x  y & y  z ! x  z) () (A ✓ C & C ✓ E ! A ✓ E). Finally, the relationship is total
i↵ (x  y or y  x) () (A ✓ C or C ✓ A). The first two statements are trivially true since
they are true of sets in general. Totality, however, is not generally true of sets. We will prove this
via contradiction. So, assume A 6✓ C and C 6✓ A. Let a 2 A \ C and c 2 C \ A. Without loss of
generality, assume a < c. Then, as C is closed downward, a 2 Q, and a < c, a 2 C. This however,
contradicts our assumption that a 2 A \ C. Therefore, it must be true that the ordering is total.
Therefore, x  y () A ✓ C defines a total-ordering. ⌅

Having thus shown that R is totally order, we propose that R can be used as a formal definition
of R. We will not prove this as it requires showing that R has all of the algebraic properties of R
such as (R,+, ·) is a field (with some sensible definition of + and ·), which is well beyond the scope
of this paper. We do, however, invite the reader to explore any doubts they may have using the
tools described herein. With a solid foundation for these familiar numbers now established, we will
investigate their size.

3.2 The Cardinality of R
So far, we have only considered sets which are isomorphic to the natural numbers, but as we
now begin to explore sets of di↵erent ”sizes” it will be useful to formally state what is meant by
the ”size” of a set. In various sub-fields of mathematics, this can mean a variety of things. In
real analysis, one may be referring to the measure of a set, while in geometry one may be referring
to the area of a surface. Here, when we speak of the “size” of a set, we are referring to its cardinality.

Definition 5: LetX, Y be non-empty sets. Then, the cardinality of X, denoted |X|, is equal to
the cardinality of Y if there exists a bijective function f : X ! Y. That is, |X| = |Y | () X

⇠= Y.

Moreover, |X| < |Y | if there exists an injective function f : X ! Y, but no such surjective function
exists.
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Definition 6: Let X be a non-empty set. Then X is uncountable if |X| > |N|.

It follows from Theorem 1 that N is the smallest infinite cardinality since any subset of N is either
finite or isomorphic to N. Thus, we can meaningfully say that |N| = @0, with the null subscript
suggesting that N is the smallest possible size that an infinite set can hold. It is also true that
the cardinality of infinite sets is discrete; that is, @j+1 is the next largest cardinality after @j. The
symbol we have used here @ is the first letter of the Hebrew alphabet, aleph. This is the symbol
chosen by Cantor to denote the size of infinite sets, and many believe it was due to the religious
connotations behind the letter that he chose this symbol. In the Jewish mystic tradition known
as Kabbalah, @ is the symbol used to denote the transcendent aspect of God: the aspect of God
that is inherently beyond the capacity of human beings to ever understand. Later in Cantor’s life,
he became quite religious, and so, out of a respect of sorts, many believe he chose @ as a sign of
reverence to God who was the Absolute Infinite.

In order to establish the fact that R must be uncountable, we will reproduce the traditional
proof concerning whether the open interval (0, 1) is countable. In introductory texts, this proof
ends here, but we will show that (0, 1) ⇠= (1,1). We could then consider R = (�1,�1) [ {�1} [
(�1, 0) [ {0} [ (0, 1) [ {1} [ (1,1). We will leave it to the reader to show that this union is the
same cardinality as (0, 1).

Theorem 7 The open interval (0, 1) on the real number line is uncountable.

Assume for contradiction that (0, 1) is countable. Then, we can construct an enumerated list
of all the elements of the interval. Assume such a list exists where the elements are written as an
infinite decimal expansion. (If the number terminates, such as 0.25, it will be written as 0.25000̄).
Then,

a1 = 0.a11a12a13 . . . a1j . . .

a2 = 0.a21a22a23 . . . a2j . . .

a3 = 0.a31a32a33 . . . a3j . . .
...

ai = 0.ai1ai2ai3 . . . aij . . .
...

where aij 2 {0, 1, 2, . . . , 9} so that any digit of any element can be identified by its indices. Con-

sider the element a⇤ constructed a

⇤
j =

⇢
ajj + 1 ajj 6= 9
0 ajj = 9

Now, a⇤ 2 [0, 1] since it is still an infinite

decimal expansion of a number between 0 and 1. So, (9aj) such that (a⇤ = aj). a⇤ 6= a1 as they are
not equal in their first index value. Likewise, a⇤ 6= a2 as they are not equal in their second index
value. In fact, by construction, every aj disagrees with a

⇤ at its j-th index. Therefore, a⇤ is not in
the list, which contradicts the fact that the list was supposed to contain all real numbers in (0, 1).
Therefore, (0, 1) cannot be countable. ⌅

Theorem 8 (0, 1) ⇠= (1,1)

Let f(x) = x

�1
. Let x, y 2 (0, 1). Assume f(x) = f(y). Then, x�1 = y

�1
. Multiplying both

sides by xy we find y = x. Therefore, f is injective. Let c 2 (1,1). Let a = c

�1
. Then,
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f(a) = f(c�1) = (c�1)�1 = c

�1·�1 = c. Therefore, f is surjective. Thus, f is bijective. There-
fore, (0, 1) ⇠= (1,1).⌅

By the definition of cardinality, since there exists an injective function from N ! (0, 1) (e.g.

f : N ! (0, 1) by f(n) =

⇢
n

�1
n 6= 1

1/⇡ n = 1
), but there does not exist a bijective function between

the two (otherwise they would be isomorphic), then it follows that the cardinality of (0, 1) must
be strictly larger than that of the natural numbers. This may come as a surprise to a reader who
has not seen these results before; there are in fact ”more numbers” between 0 and 1 than there are
counting numbers. Despite the fact that (0, 1) is a finite length, it contains more elements (in R)
than there are rational numbers in the entire continuum.

You may have noticed that we have only established that |R| > |N|, but we have not given
an aleph assignment to the real numbers. It is tempting to hypothesize that |R| = @1, as the
Continuum Hypothesis states as Cantor himself postulated. Throughout the rest of his life,
Cantor made unsuccessful attempt after unsuccessful attempt to prove his hypothesis, but to no
avail. Until the the very end, Cantor was tormented by this very question, which was the ultimate
source of his mental destabilization. In 1940, Kurt Godël proved that the Continuum Hypothesis
cannot be disproved from the axioms of Zermelo-Frankel Set Theory with Axiom of Choice(ZFC),
which is the system in which we are inherently working. This might seem to suggest that the
statement is true, but in 1963, Paul Cohen proved that the statement cannot be proven from ZFC!
Therefore, assuming ZFC is consistent (which we have reason to believe that it is), it is beyond the
scope of set theory itself to answer this question! All that we know is that |R| > |N| but not how
much bigger.

Two questions naturally arise from these results: are there sets with cardinality between N and
R, and are there sets with cardinality greater than R? We know from the improvable nature of the
Continuum Hypothesis that the first question is unanswerable, but we can make some headway
into answering the second question. In the same way that we took the limit cases of the squares
of rational numbers approaching 2 to define

p
2, we can take the limit case of natural numbers to

define a new number !, which opens us to the world of Transfinite Numbers T.

4 Transfinite Set Theory

Before we begin investigating transfinite set theory, we wanted to clarify a few points about the
topics which will be discussed below. We have given the symbol T to transfinite numbers, but
this is not meant to suggest that there exists some grand set (or even class) which contains every
transfinite number. Such a thing is forbidden in ZFC. One can loosely consider T as the collection
of all number classes (defined below), and as such it is itself a class. However, one can not ask
questions such as “what is the size of T” as this is a meaningless question. An alternative, perhaps
more helpful, way to think of T is that it is the collection of objects which results from Cantor’s
first and second principles of generation (defined below). We call this a collection in order to avoid
any association of T with a set. With that said, let’s begin our investigation into the transfinite
numbers!

4.1 Constructing T
In considering the creation of the transfinite numbers T, Cantor reflected on the process by which
N was generated. He considered this a “principle of adding units” and called it the first principle
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of generation. Today, we may think of this as the successor function, but regardless of its
name, the first principle is responsible for creating N. This principle has no reason to presume
an end, so there is no end to N, which is why it is infinite. Cantor, however, considered a
second principle of generation wherein any sequence of numbers with no largest value can then
define a next number which is the value that comes after all of the numbers in the sequence. This
process is identical to the structure of A in our example presented for Dedekind cuts. There is no
largest rational number in A, and so we can define some new number which is the next value that
supersedes all of the values in A (in the case of our example

p
2). Obviously, the number cannot be

part of the sequence, otherwise it would define a largest value, so it must be a part of some larger
superset (

p
2 is not in Q but it is in R which contains Q).

When Cantor applied this method to the natural numbers, he defined ! as the first number
created by the second principle such that (8a 2 N)(a < !). Then, by the first principle, there must
be a value !+ 1 since we now have a new base onto which we may add new units. The notation of
what exactly ! + 1 represents may be a bit confusing, so we will take a short aside to more fully
understand the first principle of generation. One of the most common ways to construct N is via
the successor function, S(n) = {n}. If we define 0 = ;, then S(0) = {;}, which we will call 1, and
S(1) = {1} = {{;}}, which we can call 2! The second principle of generation essentially gave us
a new starting point ! = N. Then, S(!) = {!} = {N} = ! + 1. In the interpretation of numbers
themselves as simply sets of sets, this is a perfectly reasonable approach.

The application of the first and second principles of generation are both without end. Thus, in
T we have 1, 2, 3, . . . ,!,! + 1,! + 2, . . . , 2!, 2! + 1, . . . And so, in a very natural manner, Cantor
extended the ordinal numbers, or the numbers used to identify a specific item in a list. (Note:
Ordinal is derived from the word “order.” So, the ordinal numbers are the numbers used to specify
an ordering of numbers.)

In the limit of this construction, one encounters a ”natural break” in these new numbers. Just
as !, the first infinite number, defined the limit of the finite numbers, we may now define ⌦ as
the limit to the countably infinite numbers, and thus as the first uncountably infinite number. So,
this produces 1, 2, . . . ,!,! + 1, . . . ,!!

, . . . ,!

!!
, . . . ,⌦, . . . . Cantor used this as inspiration for the

principle of limitation, which defines a number class.

Definition 7: Let ↵ be an ordinal, and A = {t 2 T such that t < ↵}. Then, {↵ 2 T such that
|A| = k} for some cardinal k defines a number class.

The first number class is N, which has size @0. All ordinals from [!,⌦) define sets with cardinality
@0 so this interval define the second class, which has size @1. For further discussion of Cantor’s
number classes, see [2].

4.2 Controversies and Implications

Cantor’s work was not without controversy. Up until this development, infinity was seen as more of
a variable than a number itself (as it is still usually still expressed in most mathematical curricula
up through undergraduate). Infinity, as expressed by the symbol 1, represented a potential infinty
beyond all value and numerical meaning. Cantor believed, however, that this was not the only way
to envision the infinite; instead he proposed a structure for the actual infinite, which was complete
with mathematical soundness and meaning. But what exactly is the di↵erence between 1 and !

(and of course all the ordinals after !)? Cantor argued that 1 was a concept deeply embedded
into the very heart of calculus. An ever-increasing collection of boxes which subdivided a space
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into sub-spaces of ever-decreasing area fundamentally underpins the idea of an integral. Here, the
number of sub-spaces is never understood to be final; a space can always be further subdivided, and
so this forms what Cantor called an improper infinity. The transfinite numbers, however, defined
a new proper and complete form of infinity. ! is the (first) complete value that comes after every
single natural number. There is no other thing that occupies this distinction, which makes ! a
unique number just as 2 is the number that comes after 1 in the natural numbers.

As you might have expected, not everyone considered Cantor’s distinction valid. Carl Gauss
famously wrote to Heinrich Schumacher saying, “I protest above all against the use of an infinite
quantity as a completed one, which in mathematics is never allowed. The infinite is only a façon de
parler, in which one properly speaks of limits.” Thus, the argument over the validity of Cantor’s
transfinite numbers was not a question of mathematical soundness, but of philosophical implication.
Since the time of Aristotle, the general community rejected the concept of any complete infinity
to avoid the paradoxes which followed therein. One can see, then, why Cantor’s conscious reintro-
duction of complete infinities into the discussion provoked such dogmatic responses from across the
disciplines. Cantor, however, believed in his mathematics not only on a conceptual level, but also
on a philosophical level, so he went to great lengths to defend the system from attacks on any front.

Cantor believed that the heart of opposition lay in (false) assumption that the properties of
the infinite reflect those of the finite. From Aristotle through to modern philosophers, this was
the assumption which formed the basis of their objection, and so Cantor set out to refute it. As
formulated by Aristotle, it is true for finite numbers that, given two real values a and b, a+b > a and
a+b > b. However, a+1 = 1, and so infinity seems to violate a fundamental property of addition.
Cantor argued that it was näıve to presume that the properties of the finite fully determined those
of the infinite. Moreover, under the formulation of T that Cantor created, ! + 1 is in fact unique
from ! even though both are infinite. What one loses is the commutative property of addition,
1 + ! 6= ! + 1. In the first case, 1 + ! = ! since 1, 1, 2, . . . is identical to 1, 2, 3, . . . . However, in
the second case, ! + 1 6= ! since 1, 2, . . . , 1 is unique from 1, 2, 3, . . . . Were finite numbers to never
a↵ect the infinite, then this would seriously undermine any meaningful definition of addition, and
Aristotle’s views would be well-founded. However, in Cantor’s formulation, the instances in which
the finite a↵ect the infinite are merely restricted with respect to the instances whereby a finite value
can a↵ect another finite value.

Having addressed the common error behind rejecting the actual infinite, Cantor goes to great
lengths to distinguish between the real numbers R and real numbers, numbers which actually
mapped onto reality in some meaningful way. To Cantor, the counting numbers were just as meta-
physically real as R, as were the transfinite numbers. When pressed for some application of his real
transfinite numbers, Cantor asked the question of the cardinality of the set of “monads” (indivisible
sub-components) which constituted all matter in the universe. Cantor postulated (without explana-
tion) that this was @0, while the cardinality of the the set of monads constituting the aether was @1.

Cantor also argued that the physical reality of T could be supported by its geometric representation.
Just as ⇡ was given real significance as the ratio of the circumference of a circle to its diameter,
so too were the transfinite numbers given meaning by the fact that the set of monads was in fact
infinite. In so far as these numbers could be used to describe some aspect of physical reality, they
must themselves have some objective existence.

Today, there is overwhelming evidence against the existence of the aether (although a small
community of physicists are trying to give it a new validity), but the question as to the cardinality
of the the set of all things that make up matter and energy is an interesting one. On the one hand,
there is the tradition in science to attempt to break things down into their fundamental constituents,
but throughout history this has proven time and again to fail us as we continue to discover further
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sub-units with scientific advancements. To further confound the question, we run into the di�culty
that there is overwhelming evidence to suggest that the “number of monads” in the universe is not
constant. If we accept the common postulate that dark energy exists in the universe, and the less
common postulate that it is vacuum energy, this means that every second more energy is produced,
which means (ultimately) more monads. Does this ultimately a↵ect the cardinality of the set, or
is the change such that we always remain in the same number class? On a smaller scale, we know
that particles are created and destroyed on time-scales smaller than it is (fundamentally) possible
to constrain. How then do we account for these monads? Thus, it is intrinsically impossible to
take a snapshot of the universe and “count” all of the monads, as fundamental physics tells us that
the uncertainty with respect to our count must be infinite. Nonetheless, it is reasonable to assume
that these fluctuations cannot change the number class (and therefore the cardinality) of the set of
monads in the universe, and so there must in fact be some cardinality to this set. Any speculation
beyond this postulate is ultimately unfounded, and so it is irresponsible to actually prescribe a
cardinality to the set.

Cantor also argued for the reality of T using the traditional arguments of finitists. Understanding
that there was no end to the real number line, finitists allowed that for any arbitrarily large N, there
exists a number n such that n > N. Cantor responded by concluding that this implicitly assumed
the existence of all such n, the collection of which Cantor dubbed to be the Transfinitum. He then
proceeded to argue that “Every potential infinity (the wandering limit) leads to a Transfinitum
(the sure path for wandering), and cannot be thought of without the latter” when explaining an
analogy of a wanderer taking a journey. In this, we see that Cantor understands T as essential to
understanding the traditional 1.

Along this line of thought, Cantor came to the surprising conclusion that the existence of ir-
rational numbers, which were well accepted at the time, was equivalent to that of the transfinite.
Irrational numbers can exist if and only if transfinite numbers exist. Cantor’s construction of the
irrational numbers is very similar to Dedekind cuts, which rely on the existence of a potentially
infinite set. If A were not infinite in size, there would be a greatest element, which would contradict
the construction of A. As argued above, where there is a potential infinity, there is a Transfinitum.
Thus, one cannot construct the real numbers without the transfinite numbers. This led Cantor to
assert that logically a mathematician could not accept the irrational numbers without the trans-
finite, and very few people were willing to give up the irrationals. Despite this argument, most
mathematicians were still unwilling to accept the transfinite numbers.

5 Infinitesimal Numbers

5.1 Infinitesimal Numbers during Cantor’s Life

In a review of Cantor’s work on the transfinite numbers, Benno Kerry proposed the following formal
definition for the infinitesimal numbers E : “In my opinion a formal definition of definite,infinitely
small numbers is indeed given in fixing the greatest of such numbers as one which produces the
sum 1 by adding itself to itself ! times; the next smaller is then the one which produces 1 by
adding itself to itself ! � 1 times, etc. The definite, infinitely small numbers would be denoted

as:
1

!

,

1

! + 1
, . . . ,

1

2!
, . . . ,

1

!

2
etc.” In fact, many mathematicians argued that Cantor’s transfinite

number led naturally to such a definition of the infinitesimals. This, however, was completely out
of the question for Cantor. In an argument strikingly similar to those lobbed against the transfinite
numbers, Cantor claimed that any attempt to codify infinitesimals was unfounded and senseless.
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He even went so far as to formulate his opposition in the form of a theorem.

Theorem 9 Cantor’s Infinitesimal Theorem Non-zero linear numbers ⇠ (in short, numbers
which may be thought of as bounded, continuous lengths of a straight line) which would be smaller
than any arbitrarily small finite number do not exist, that is, they contradict the concept of linear
numbers.

Cantor’s proof was based on the Archimedean Axiom, which asserts that (8a, b 2 R|a < b)(9n 2
N) such that (na > b). He argued that if we tried to extend this into the infinitesimal numbers,
then there would never exist an n 2 T to satisfy this condition. Since linear numbers are closed
under multiplication, and (8n 2 T)(na 62 R), infinitesimals cannot be considered linear numbers and
thus had no metaphysical meaning. Without metaphysical meaning, these were nothing more that
“paper numbers.” Despite entreatments and logical arguments to Cantor to see the infinitesimal
as equally critical as the infinite numbers, Cantor remained stubborn due to his conviction that
such numbers cannot exist due to the completeness of R. Because he assumed a bijection from R
to a geometric line, there was no room for infinitesimals. Ultimately, he saw the infinitesimals as
inconsistent, and as such rejected them without question. Without physical correspondence, there
was nothing to be understood about the infinitesimals. For further discussion on Cantor’s life, work,
and philosophy, see [1].

5.2 Developments of E
The work developed herein is drawn primarily from [3]. Much to Cantor’s dismay, most of the
mathematical community did not agree with his outright objection to infinitesimals, and, hence,
much has been developed over the years. Since its conception, mathematics has asked strikingly
similar questions. In the birth of the irrationals, the Greeks asked what would satisfy the equation
x

2 = 2 was. Later, mathematicians wondered what would be the e↵ect if we defined a value
such that x

2 = �1 had a solution, and thus arose the complex numbers. In constructing E,
we ask the question what would happen if x

2 = 0 were not simply solved by x = 0. We can
then define D = {�|�2 = 0},E = {a + b�|a, b 2 R & � 2 D}, and axiomatically establish that
(8f : E ! R)(9 a unique b 2 R) such that (8� 2 D)(f(x + �) = f(x) + b�). In is important to
note that D must contain at least two elements. It is true that 0 2 D, but any b 2 R satisfies
f(0 + 0) = f(0) + b · 0. So, there must exist at least one element �0 such that �0 6= 0 and �

2
0 = 0.

Just as with the transfinite numbers, we must sacrifice something in order to work in E. For
transfinite numbers, we lost commutativity of addition. Here, we lose the Law of the Excluded
Middle, which we will define here as a number is either equal to zero or not equal to zero.

Theorem 10 The Law of the Excluded Middle is incompatible with the infinitesimal numbers.

Let f : E ! R by f(x) =

⇢
1 x 6= 0
0 x = 0

This is an example of the Law of the Excluded Middle.

Assume for contradiction that the two are compatible. Then, as we argued before, �0 must exist
with some unique b for this function. Since �0 6= 0, 1 = f(�0) = f(0) + b�0 = b�0. Then, squaring
both sides yields 1 = b

2
�

2
0 = b

2 · 0 = 0. This, however, is a contradiction. Therefore, the Law of the
Excluded Middle does not exist in E.⌅

It is natural to wonder how to find this b 2 R.
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Theorem 11 Taylor’s Formula (8f : E ! R)(8x 2 R)(8� 2 D)(f(x + �) = f(x) + f

0(x)�)
where f

0(x) represents the derivative of f.

Example Use Taylor’s Formula to show that (f · g)0 = f

0 · g + f · g0.

By Taylor’s Formula, (f · g)0(x+ �) = (f · g)(x) + (f · g)0�.
We know, however, that

(f · g)0(x+ �) = f(x+ �) · g(x+ �)

= (f(x) + f

0(x)�) · (g(x) + g

0(x)�)

= f(x)g(x) + f

0(x)g(x)� + f(x)g0(x)� + f

0(x)g0(x)�2

= f(x)g(x) + f

0(x)g(x)� + f(x)g0(x)�.

So, (f · g)(x) + (f · g)0(x)� = f(x)g(x) + f

0(x)g(x)� + f(x)g0(x)�. Therefore, (f · g)0 = (f 0(x)g(x) +
f(x)g0(x))�. As this relation is true for all � 2 D, we can drop the �. Therefore, (f · g)0(x) =
f

0(x)g(x) + f(x)g0(x).⌅

Notice that Taylor’s Formula is in fact the first two terms of a Taylor series! If we define
d = �1+ �2, then we can expand this to include the third term (thus defining the second derivative).
If we want to continue this to higher orders, however, we need to generalize our set D.

Definition 8: Let Dk = {x|xk+1 = 0}. Then, (8k 2 N)(8f : Dk ! R)(9 a unique b 2
R) such that (8� 2 Dk)

⇣
f(�) = f(0) +

Pk
i=1 bi�

i
⌘
.

With this generalization of D, we can also extend Ek =

(
a0 +

kX

i=1

ai�
i|a0, ai 2 R

)
. Thus,

although we will not, we now have the tools to prove (8f : Ek ! R)(8x 2 R)(8� 2 Dk)✓
f(x+ �) = f(x) +

Pk
i=1

�

i

i!
f

i(x)

◆
.

Although we have provided only the most cursory of overviews with respect to modern develop-
ments of infinitesimal numbers, it is clear that they are a fully developed extension of the number
line with no less validity that Cantor’s transfinite numbers. For readers interested in further ex-
ploring the construction and results of formal models, it is important to note that it is necessary to
approach the topic using a new class of logic called intuitionistic logic. Moreover, if one is interested
in exploring items of the form x

k = 0, we would point the reader to ring theory, where there is

much work in nilpotent objects; for example, x =


0 1
0 0

�
is nilpotent as xk = 0 for all k > 1.

6 Conclusion

Without putting much thought into it, one might assume that all infinite sets were of equal size as
measured by cardinality. With a little more thought, our hypothetical thinker might decide that
there are in fact many sizes of infinity noting that there seem to be more rationals than naturals
since the rationals are everywhere dense while the naturals are nowhere dense. As we have seen in
this exposition, our thinker was on the right path to conclude that some infinities are larger than
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others, but the relative sizes of the sets come as quite a surprise. As it turns out, N,N⇥N, and Q
are all equal in that they are all countable sets. The real number line R, as we have seen, however,
is intrinsically somehow di↵erent from these sets in that it is uncountable.

In an attempt to understand other sets larger than N, we extended the natural numbers into the
transfinite numbers T. We did this by introducing a new principle of generation which defines a new
number as the value that comes after an infinitely increasing set. In this, we created ! and then
explained how this provided a new basis for generating numbers in the traditional fashion. When
we noticed that a “special” occurrence of the new principle of generation occurred in the limit of
countably infinite applications of the second principle, we gave this number a new name ⌦, and it
defined a new number class.

We then took some time to address the ways in which Cantor justified his new number system
to mathematicians, theologians, and philosophers alike, from addressing fundamental errors in un-
derstanding the infinite numbers to arguing that accepting the irrational numbers was equivalent
to accepting the transfinite, as one cannot exist without the other since their method of generation
is nearly identical.

Finally, we looked at the “inverse” of the transfinite, the infinitesimals. Cantor was objectively
opposed to the infinitesimals since they seemed to undermine the completeness of the reals, which
he valued so strongly. In this, however, Cantor was wrong, and infinitesimals have since proven to
be just as valid as the transfinite. We explored one of the constructions of the infinitesimals, which
is intimately related to di↵erentiation.

We hope that our survey of the sizes of infinity and the philosophical discussions inherent therein
have proven insightful to the reader. The infinite is not a topic to be considered lightly, but we have
attempted to make the subject as approachable as possible. In the end, we are forced to remember
that many of our questions are simply unanswerable in the current formulation of set theory, but we
surely hope that the reader has still found the subject engaging, worth while, and understandable.
If we have succeeded in this, there is nothing more we can ask.
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