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Chapter 1

Introduction

Our purpose here is to give a basic introduction to Einstein’s theory of relativity, both in the special
and general cases. The basis of the theory is that the laws of physics should be independent of
reference frame: physics should, in essence, look the same regardless of where a person is, how fast
they are moving, or how much they are accelerating. This leads to a theory of physics which has
pronounced effects on what one might have assumed we well understood classical problems.

We first start by talking about the action principle, the classical principle of motion which can
be used to find the laws of motion given the potential energy of the system. This is the main
principle which will give us our laws of motion, however, we will increasingly redefine the action
to make the principle more “geometric”. We will make it of a form such that the laws of motion
come from the very shape of the universe.

This is first done in special relativity which introduces the idea of spacetime. This lets us treat
both time and space as geometric quantities and make the fact that the speed of light is the same
for all observers a simple geometric result. General relativity then makes the force of gravity a
mere mater of the curvature of spacetime.

Underlying all of this is the mathematics of differential geometry. Differential geometry is the
study of generalized spaces upon which one can perform calculus. These spaces are of most interest
to physics since it is hard to imagine how one could perform physics without calculus, and allowing
are spaces to be more general than the usual Euclidean 3-space we are use to allows us to encode
physical laws as more fundamental properties of geometry the universe.

While continuing to improve the theory of relativity, we shall examine the effects on the test
case of a satellite in orbit around a star. In particular we will look at how increasingly relativistic
theories effect the shape of bound orbits. This is a system which is well understood, and most
readers should be familiar with Kepler’s laws which govern the behavior classically. The effects
of relativity will at first distort the orbits from their classical closed ellipses, and then make them
only calculable numerically.

However, before we can get into all that, we must first start with the the principle of least
action.
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Chapter 2

The Principle of Least Action

In order to develop the theory of relativity we will find it useful to forgo Newton’s laws in favor of
the principle of least action. Not only is this a far more elegant tool, it makes for a straightforward
transition to the relativistic regime and allows for a greater intuition.

The Principle of Least Action simply states that the path an object takes is that which minimize
the action. However, the action does not have a simple formula, and it changes depending on the
physical system. One of the goals of relativity is to generate a more natural explanation for the
action principle.

2.1 Fermat’s Principle

The simplest application of the action principle is Fermat’s principle, which states that the path
that light takes between two points is that which minimizes the time it takes the light to make
the journey. This is an incredibly powerful assumption to make; we can derive many of our basic
optical laws, such as the laws of reflection and refraction from this one idea.

Newtonian mechanics conceives of physics as actions and reactions, or a objects acting on each
other. Fermat’s principle introduces a new way of thinking about physics: things occur they way
they do because it is the optimal way of doing them for some idea of “optimal”. This shifts the
picture away from causes and effects, and forces us to think of physics being linked to the away
things are arranged. In other word, Fermat’s principle derives physical law from the geometry
system instead of the interactions of its components. This is also the way we will think of physics
in relativity.

The idea of minimizing the time the light travels will come back when we explore relativity,
where we will minimize the proper time an object experiences. This is not quite the case for
Classical Mechanics, though a similar principle applies which is of less natural significance.

2.2 The Action in Classical Mechanics

In classical mechanics, we define the Lagrangian, L, to be the difference between the kinetic and
potential energy of a system. We will start in one dimension, so the Lagrangian is a function of
position q, velocity q̇, and time t. The action is then defined as:

S[q] =

∫ tf

ti

L(q, q̇, t)dt, (2.1)
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where the integral is taken over the time the object is traveling. From here it is just a mater of
finding which paths extremize the action.

It is worth noting that that action is not an ordinary function, but is a mathematical object
called a functional. Where a function maps one value to another, a functional maps a function to
a value. In this case the action is mapping the path, which is a function of time, to a number. We
indicate that the action is a functional by using square brackets around its argument, as opposed
to the parentheses used for ordinary functions.

The fact that the action is a functional means that we cannot use our standard methods
for extremiziation from ordinary calculus; instead we must use a method called the calculus of
variations.

Regardless, the action is an odd quantity to consider, and it is not immediately obvious that
extremizing the action will yield the physical laws we expect. It does turn out to work, but
moreover, it is a limit case of extremizing the proper time, as we shall see later.

The extremize the action integral, we will consider varying the path the integral is taken
over while fixing the end points. The idea is that at an extremum, the value of the intergral
will not change for a small variation. To this end, we can imagine an arbitrary, small path
difference δq which perturbs the path the object takes, but leaves the end points the same, i.e.,
δq(ti) = δq(tf ) = 0. The action taken along this new path q + δq is:

S[q + δq] =

∫ tf

ti

L(q + δq, q̇ + δq̇, t)dt =

∫ tf

ti

L(q, q̇, t) + δq
∂L

∂q
+ δq̇

∂L

∂q̇
+O(δq)2dt, (2.2)

where in the last step we expand for small δq and assume δq̇ is on the order of δq. We may note
that, by integration be parts:∫ tf

ti

δq̇
∂L

∂q̇
dt =

[
δq
∂L

∂q̇

]tf
ti

−
∫ tf

ti

δq
d

dt

∂L

∂q̇
dt = −

∫ tf

ti

δq
d

dt

∂L

∂q̇
dt, (2.3)

where the first term is a zero because we required δq(ti) = δq(tf ) = 0. Thus the action from caused
by a small path change is:

S[q + δq] =

∫ tf

ti

L(q, q̇, t) + δq

(
∂L

∂q
− d

dt

∂L

∂q̇

)
+O(δq)2dt

= S[q] +

∫ tf

ti

δq

(
∂L

∂q
− d

dt

∂L

∂q̇

)
+O(δq)2dt. (2.4)

For S(q) to be an extremum, we must require S[q+ δq]−S[q] = O(δq)2 for an arbitrarily small
path differences δq. This analogous to requiring the derivative of a function to be zero; it means
that any path “near” the path q must not effect the value of the action to first order. By equation
(2.4) this means: ∫ tf

ti

δq

(
∂L

∂q
− d

dt

∂L

∂q̇

)
dt = 0 (2.5)

Where we can neglect the order δq2 terms since δq is sufficiently small. For equation (2.5) to be
true regardless of the choice of δq, it must be that:

∂L

∂q
=

d

dt

∂L

∂q̇

3



This can easily be extended to any number of coordinates. If we had coordinates qi, for
i = 1, 2, . . . , N , we could repeat the process above for a path difference δqi which effects only the
qi position. Since S must be at a minimum for each such path difference we have:

∂L

∂qi
=

d

dt

∂L

∂q̇i
, (2.6)

for each i = 1, 2, . . . , N . These equations are known as the Euler-Lagrange equations.
For each coordinate qi, we call the factor:

pi =
∂L

∂q̇
,

the conjugate, (or canonical) momentum of qi. We call it such because for a free particle moving

in the x direction, L =
1

2
mẋ2, and so px = mẋ, which is exactly the momentum term we would

expect. However, the conjugate momentum does not need to be ordinary momentum.
We call the quantity

H =
N∑
i=1

q̇ipi − L (2.7)

the Hamiltonian. In most cases1 this works out to be the energy of the system. In both special
and general relativity, the Lagrangian will not be the difference in kinetic and potential energy,
and so it will become more convenient to arrive at the Lagrangian from the Hamiltonian.

2.3 Lagrangian Densities

The above discussion allows us to find the laws of motion for particles which follow a path through
space. This is only one class of objects of interest in physics. If we wish for the Action Prin-
ciple to give us a full description of physics we need it to generate laws for objects which exist
simultaneously everywhere in space: we need a principle of least action for fields.

As before we will use the one dimensional case for our derivation with the multidimensional
case being nearly identical. For a field, φ(x, t), defined at every point x in space at all times t we
will define the action as

S[φ] =

∫ tf

ti

∫ ∞
−∞
L(x, t, φ, φ′, φ̇)dxdt, (2.8)

where the prime indicates a derivative with respect to x, the dot represents a derivative with
respect to t, and L is called the Lagrangian density. The Lagrangian density, like the Lagrangian
from before, is some function which will describe the physics of the field. It is related to the
Lagrangian by

L =

∫ ∞
−∞
Ldx

To extremize the action we will consider some deviation of the field δφ which does not change
the boundary conditions of the field, much as we considered a path variation previously. The
process here is essentially the same as it was previously, except that deviation is not in a path,

1Essentially boiling down to the coordinates being scleromic, meaning that they are not dependent on time. For
every situation we will consider this will be the case.
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but a field. This means out deviation will be a function of both time and space, just like the field
is, and must also fix the boundary conditions of the field. This requires:

lim
x→∞

δφ = lim
x→−∞

δφ = lim
t→ti

δφ = lim
t→tf

δφ = 0 (2.9)

Which is analogous to to having the path deviation, δq, be zero at the end points of the path.
We then consider the action for the new field φ+δφ and Taylor expand about δφ = δφ′ = δφ̇ = 0

S[φ+ δφ] =

∫ tf

ti

∫ ∞
−∞
L(x, t, φ+ δφ, φ′ + δφ′, φ̇+ δφ̇)dxdt

=

∫ tf

ti

∫ ∞
−∞
L(x, t, φ, φ′, φ̇) + δφ

∂L

∂φ
+ δφ′

∂L

∂φ′
+ δφ̇

∂L

∂φ̇
+O(δφ)2dxdt (2.10)

We then use integration by parts on the δφ′ and δφ̇ term similar to our previous method in
equation (2.3), except that for the first we instead integrate the δφ′ terms over x. This yields:∫ ∞

−∞
δφ′

∂L
∂φ′

dx = −
∫ ∞
−∞

δφ
d

dx

∂L
∂φ′

dx, (2.11a)

and ∫ tf

ti

δφ̇
∂L
∂φ̇

dt = −
∫ tf

ti

δφ
d

dt

∂L
∂φ̇

dt, (2.11b)

since δφ vanishes at the boundaries.
Substituting equations (2.8), (2.11a), and (2.11b), into equation (2.10) gives us:

S[φ+ δφ] = S[φ] +

∫ tf

ti

∫ ∞
−∞

δφ

(
∂L
∂φ
− d

dx

∂L
∂φ′
− d

dt

∂L
∂φ̇

)
dxdt+O(δφ)2 (2.12)

The conversation from here is nearly identical to that in section 2.2. The change in the action due
to δφ must vanish, and so the integral must as well. Since the function δφ is arbitrary, this must
mean that:

∂L
∂φ
− d

dx

∂L
∂φ′
− d

dt

∂L
∂φ̇

= 0 (2.13)

This process can be easily extended for any number of fields, φi for i = 1, 2, . . . , N , dependent
on any number of independent variables xj for j = 1, 2, . . . ,M . The more general form of equation
(2.13) is:

∂L
∂φi
− d

dt

∂L

∂

(
∂φi
∂t

) − M∑
j=1

d

dxj

∂L

∂

(
∂φi
∂xj

) = 0, (2.14)

which holds for every field φi, i = 1, 2, . . . , N . In most cases we will have n = 3, where x1 =
x, x2 = y, and x3 = z.

Just as we defined a Lagrangian density, we would also like to have a Hamiltonian density, H,
analogously to equation (2.7). Since φi and L are analogous to qi and L respectively, we need only
come up with a substitute for the conjugate momentum pi. We defined the conjugate momentum
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for a coordinate, we define the conjugate momentum field, πi, for a field φi as:

πi =
∂L
∂φ̇i

. (2.15)

This allows us to define the Hamiltonian density as:

H =
N∑
i=1

φ̇iπi − L, (2.16)

and for most cases, this quantity is equivalent to the energy density of the system.

2.4 Symmetries and Conservation Laws

A quantity X is a conserved quantity if
dX

dt
= 0 (2.17)

If the Lagrangian is not explicitly dependent on a coordinate qi, then Euler-Lagrange equation,
(2.6), for this coordinate becomes:

dpi
dt

= 0, (2.18)

and hence the conjugate momentum pi is conserved.
We can also get a similar conserved quantity associated with time dependence. Consider the

time derivative of the Hamiltonian from equation (2.7).

dH

dt
=
∑

(q̈ipi + q̇iṗi)−
dL

dt

=
∑(

q̈i
∂L

∂q̇i
+ q̇i

∂L

∂qi

)
−
(∑(

q̇i
∂L

∂qi
+ q̈i

∂L

∂q̇i

)
+
∂L

∂t

)
= −∂L

∂t
(2.19)

Which means that the Hamiltonian is conserved if the Lagrangian has no explicit time dependence.
Looking in terms of the Euler-Lagrange equation. This makes the Hamiltonian the time conjugate
momentum.

We will say we have a translation symmetry with respect to some coordinate if a translation
that coordinate preserves the Lagrangian, i.e., L(q) = L(q + ∆q). In most cases this will mean
that the coordinate in question does not appear explicitly in the Lagrangian, and in particular,
the Hamiltonian is conserved if the Lagrangian does not explicitly depend on time. There are
other types of symmetry, but we will not consider them here. It turns out that every continuous
symmetry of the Lagrangian generates a conservation law, and that conservation laws come only
from such symmetries. This is called Nöther’s theorem, and is an extremely important tool in
physics which we will use to our advantage.
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Chapter 3

The Classical Treatment of the Two
Body Problem

To illustrate how to use the principle of least action in a physical example we will look at the
two body problem, where two objects interact gravitationally with each other. This example will
also allow us to compare the results of relativity to the classical case. We will use this example
because it is easy to look at in both classical and relativistic way, and shows some clear differences
in behavior. The two body problem can always be thought of as a single body acting in a central
potential. It is not useful for our purposes to go into why here and an explanation can be found
in any classical mechanics textbook1.

We will be particularly interested in the case where the object is bound in an orbit: unable to
escape or crash into the larger object. This partially to limit the number of comparisons we will
have to do once we move into relativity, but it is also the most physically interesting case. These
bound orbits are what governs the motion of the Moon around the Earth, and the planets around
the Sun. In fact, as we shall see later, it was in the motion of Mercury that we found some of the
earliest evidence for the validity of general relativity.

3.1 Set Up

. We will start by considering an object of mass m and a central potential induced by a mass M
of the form:

U = −GMm

r
, (3.1)

where G is Newton’s gravitational constant and r is the radial position of our object of interest.
It is worth noting that since we are dealing with a central potential, which cannot cause a

torque about the center, and we have no external forces to cause torques; the angular momentum
of the system must be conserved. This can also be though of as a consequence of Nöher’s theorem
with the rotational symmetry of the system. The angular momentum is, as always:

Λ = r× p (3.2)

Where r and p are the position and momentum vectors respectively, and we use Λ for angular
momentum to distinguish it from the Lagrangian. This conservation means that the plane spanned

1I recommend Taylor’s Classical Mechanics.
Taylor, John R. Classical Mechanics, Sausalito, Calif.: University Science Books, 2005. Print.
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by r and p is constant. We will call this plane the orbital plane. The facts that the motion of the
system is confined to this plane and that the potential depends only on r makes it natural for us
to work in polar coordinates.

This allows us to write our Lagrangian as:

L =
1

2
m(ṙ2 + r2θ̇2) +

GMm

r
. (3.3)

We note from the Lagrangian that there are two conserved quantities; one associated with time
translational symmetry and one with rotational symmetry. These quantities are:

E = H =
∑

q̇ipi − L =
1

2
m(ṙ2 + r2θ̇2)− GMm

r
, (3.4)

Λ =
∂L

∂θ̇
= mr2θ̇, (3.5)

where the first, which is the Hamiltonian, is the same as the total energy, and that the conjugate
momentum of θ is the angular momentum.

This gives us two partially coupled, first order differential equations with two unknowns: r(t)
and θ(t). Thus the system has a unique solution for r and θ so long as we specify the initial
conditions. We can set the initial t = 0 position of the orbiting body at whatever angle in the
orbital plane we desire by simply choosing a value for θ(0). This will have no impact (up to
rotation) on the overall shape of the orbit, because as we noted before, we have a symmetry with
respect to θ.

In Newtonian mechanics, one may be used to having to specify four initial conditions to solve
differential equations of this form. The reason we can get away with not specifying ṙ(0) and θ̇(0)
is because we instead substitute in E and Λ as specified in (3.4) and (3.5) for ṙ and θ̇ respectively.
This allows us to solve the system with these constant quantities being arbitrary, and we can then
find a specific solution by choosing values for E and Λ.

3.2 Non-Dimensionalization

With all of theG, M , andm’s in these equations, it is convenient at this point to non-dimensionalize.
We will take our units to be:

E0 = mc2 e =
E

E0

(3.6a)

ρ0 =
GM

c2
r̃ =

r

ρ0

(3.6b)

t0 =
GM

c3
t̃ =

t

t0
(3.6c)

Λ0 =
GMm

c
l =

Λ

Λ0

(3.6d)

where the second column lists our dimensionless quantities for energy, the Lagrangian, distance,
time, and angular momentum respectively. We choose these to be our units mostly because they
are suggestive of what is to come. Readers already familiar with relativity may recognize E0 as
the rest-energy of our object and ρ0 as the Schwarzschild radius of the mass causing the potential.
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This is unimportant for the classical material, but will make the transition to relativistic mechanics
smoother.

Factoring out the units, equations (3.4) and (3.5) become:

e =
1

2

(
˙̃r2 + r̃2 ˙̃θ2

)
− 1

r̃
, (3.7a)

l = r̃2 ˙̃θ. (3.7b)

For notational convenience we will now drop the tildes from our dimensionless quantities. All
quantities for the rest of this section may be assumed to be dimensionless.

3.3 The Effective Potential

Something to note is that we can find information about the orbits using an effective potential,
allowing us to think of this system as a single object moving in a one dimension with position r(t).
We will rewrite e as e = KE(ṙ) + Ueff(r). The first step is to solve for θ̇ in equation (3.5), which
give us:

θ̇ =
l

r2

Using the total energy from equation (3.7a) and removing the one dimensional kinetic portion by
setting ṙ = 0 we can then find an effective potential:

Ueff(r) =
1

2

l2

r2
− 1

r
. (3.8)

A plot of Ueff can be seen in figure 3.1 for various values of l. By choosing values for e and l we
can see qualitatively what possible trajectories should look like, as in figure 3.2. Note that since
the kinetic energy must always be greater than zero, the total energy of the system must greater
than Ueff. When the total energy is less than zero, the object will be bound between two positions
rmin and rmax, neither falling in nor escaping but bouncing back-and-forth between its maximum
and minimum distances from the center. For e ≥ 0, the object will be unbound to the star, but
will instead ricochet off the potential and escape to r → ∞, having no maximum distance from
the center. In fact, for any value of l 6= 0, the object will never fall in to the center due to the
“barrier” in front of r = 0.

We can use the effective potential to find the minimum acceptable value of e, whoch is the
minimum value of Ueff. By taking the derivative of equation (3.8), we find that this corresponds
to:

rc = l2, (3.9)

And so:

emin = − 1

2l2
(3.10)

We can also learn the maximum possible energy for a bound orbit from the effective potential.
Since the effective goes to infinity at r = 0 and zero for r →∞ for any value of l > 0, the maximum
value for e must be 0, since this otherwise there is no barrier to stop the satellite from going out
infinitely.

We can solve for acceptable values of l which will produce bound orbits. We require that l
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Figure 3.1: The effective potential for various values of l. When l = 0, the potential goes to −∞
as r becomes small. For all other values of l there is a barrier before r = 0, and so we have bound
orbits for e < 0. The minima of these plots correspond to circular orbits.

must be greater than zero2, and the eccentricity must have a real value, so l <
1√
−2e

.

The effective potential gives us intuition for what should happen, but it is not the same as
actually solving the system. We will find that in the relativistic problem we will be able to
construct an object similar to the effective potential. However, it will not have the same meaning.
Nonetheless it will again provide helpful intuition.

3.4 Solving the System

The effective potential allows us to qualitatively describe the orbits, but how can we get a quan-
titative treatment? For this we must solve our differential equations (3.7a) and (3.7b). However,
there is a problem: radius has no analytic solution3 as function of time. The solution to this is to
think of the radius as a function of angle. This allows to find the shape, if not the time evolution,
of the orbits. The main obstacle to this is that we have time derivatives and so to resolve this

we write u(θ) =
1

r(t(θ))
. (Working with

1

r
actually simplifies our calculations). This allows us to

express ṙ as:

ṙ =
dθ

dt

dr

dθ
=

l

r2

d

dθ

(
1

u

)
= lu2

(
− u

′

u2

)
= −lu′, (3.11)

2Technically, we could allow l to be negative, but physically this would be identical to the case where l were
positive accept the object would move in the opposite direction. Since the direction of the orbit is not terribly
important, we simplify by only considering the positive l cases.

3Here we us “analytic” in the sense of an exact solution being derived through analysis rather as opposed to
being solved numerically. This is not to be confused with the mathematical notion of an analytic, or holomorphic,
function.
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Figure 3.2: Choosing l = 1, we consider objects with total energy e = −0.3,−0.1, and 0.1. We
can note that the orbits with e < 0 are bound by the potential, being confined to a smaller region
as e decreases. Orbits at e = 0 will not be bound, but will have an interesting shape, since Ueff

approaches 0 as r approaches infinity. For values of e > 0, there is no outer boundary, but there
is a barrier before r = 0. The orbits for e ≥ 0 will “bounce” back from the source of the potential
before striking.

where primes indicate a derivative with respect to θ. We may now rewrite our energy as:

e =
1

2

(
l2u′2 + l2u2

)
− u, (3.12)

and solving for u′ yields:

u′ =
du

dθ
= ±
√

2e− l2u2 + 2u

l
(3.13)

This is a separable differential equation, which can be solved by integration. We will pick our
constant of integration to be zero as this simply forces the orbit to take place in the plane and
does not effect the orbit’s shape. Thus:

± θ = ±
∫
dθ =

∫
ldu√

2e− l2u2 + 2u
. (3.14)

We can compute this integral by completing the square in the radical and substituting in:

ε =
√

1 + 2el2 (3.15)

We call this quantity the eccentricity of the orbit. This gives us:

cos θ =
l2u− 1

ε
(3.16)
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and so

r(θ) =
1

u
=

r0

1 + ε cos θ
, (3.17)

where
r0 = l2 (3.18)

is a factor relating to the scale of the orbit.

3.5 Analysis

This equation gives us the general formula for conic sections with eccentricity ε for our orbits.
Geometrically speaking, the eccentricity represents how “circular” a conic section is. For real
eccentricities 0 < ε < 1 we get ellipses, for ε = 1 we get a parabola, for ε > 1 we get hyperbolas,
and for ε = 0 we get circular orbits where r(θ) = r0 = rc. Parabolas and hyperbolas are unbounded,
and so for a bound orbit we must have 0 ≤ ε < 1. The eccentricity we found will always be a

real number when e > − 1

2l2
, will always be non-negative when real, and will be less than one for

e < 0. This imposes a limit on e in agreement with our limits from equation (??).
Examples of bound orbits can be seen in figure 3.3. We can see that all of the orbits are closed,

meaning they are periodic and return to some initial position. The fact that we get closed orbits
is important, because we will see that once we consider special relativity we will no longer have
this behavior. Instead, the orbit will precess and not close back on itself.

-10 -8 -6 -4 -2 2
x

-4

-2

2

4

y
e=-0.1

l =0.4

l =0.8

l =1.2

l =1.6

l =2.0

Figure 3.3: This is the orbit, r(θ) =
r0

1 + ε cos θ
, for an energy of −0.1 and various angular

momenta. The orbit is a closed ellipse. Here we can see that the larger the angular momentum,
the less eccentric the orbit is.
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Chapter 4

Special Relativity

The main idea behind Einstein’s special relativity is that the laws of physics should work in all
inertial reference frames. Most important is that requiring that Maxwell’s equations hold for all
frames means requiring the speed of light to be the same in all reference frames. Moreover, the
invariance of the speed of light is an experimental fact, and as such we need an adequate theory
to explain why this must be the case. The principal idea behind special relativity is the idea of
space-time.

4.1 Space-Time

In order to keep the speed of light invariant, it is necessary to think of space and time as a
unified entity called space-time. To make our discussion of space-time simpler we will use a unit
convention called geometric units. In this system distance is measured in light seconds. This allows
us to write the speed of light as one light-second per second and greatly simplify our equations
and can be thought of as a non-dimensionalization of sorts, in agreement with our previous non-
dimensionalization in section 3.2. We will also treat light-seconds and ordinary seconds as the
same, omitting the one light-second per second conversion factor. The main benefit of this system
is that it allows us to treat space and time on a more equal footing, and helps us realize Einstein’s
idea of treating time as simply another dimension. The conversion back to conventional units is a
simple matter of dividing by a factor of c in the time coordinate.

To illustrate how to preserve the speed of light, consider the following example. Consider two
inertial reference frames, each of one spatial and one temporal dimension, one moving with a speed
v relative to the other as in figure 4.1. The higher dimensional system is completely analogous as
the only interesting geometry happens on the axis parallel to the relative motion of the frames.
We will collectively call the rays emitted from the origin in the ±x directions at the speed of light
the light cone. For the speed of light to be constant in any other frame the transformation from
one to the other must preserve the light cone. This transformation must also be linear, i.e., map
straight lines to straight lines, because while the two frames may disagree about the speed and
location of an object, they must agree that inertial objects have constant velocity.

This can then be broken down into an eigenvalue problem. Say we have two frames moving
with constant velocity v relative to each other. We must find a linear transform which has the
vectors (1, 1) and (1,−1) as eigenvectors, i.e., returns the vectors back multiplies by some scalar.
We also know that, by the definition of inertial reference frames, the map must send the x = 0

13



t

x
v

t’

x’

Figure 4.1: Two t-x space-time reference frames where the primed frame is moving with a speed
of v relative to the other. In geometric units the speed of light is 1, so we must conceive of a
transformation which converts from unprimed to primed coordinates yet also preserves the line of
slope 1.

line to a line with slope v. This is enough to ensure that this transformation must be:

Bv =
1√

1− v2

(
1 v
v 1

)
. (4.1)

We will call this matrix the Boost or Lorentz matrix. Since it can be written as a matrix the
transformation is linear. To see that this matrix satisfies our problem, first apply it to the vector
(t, 0):

Bv(t, 0) =
1√

1− v2

(
1 v
v 1

)(
t
0

)
=

1√
1− v2

(
t
vt

)
=

t√
1− v2

(
1
v

)
, (4.2)

which is a point along the line of slope v as desired. We can also show:

Bv(1, 1) =
1√

1− v2

(
1 v
v 1

)(
1
1

)
=

1√
1− v2

(
1 + v
v + 1

)
=

1 + v√
1− v2

(
1
1

)
, (4.3)

so the vector (1, 1) is an eigenvector of our boost matrix. It is easy to show that the same is true
of (1,−1).

By applying this linear transformation to an arbitrary (t, x) space-time vector, this leads to
the standard special relativity coordinate transformation of:

x′ =
x√

1− v2
+

vt√
1− v2

, (4.4)

t′ =
t√

1− v2
+

vx√
1− v2

, (4.5)

which should look familiar to readers with exposure to relativity.
We should note here that these equations do not make sense for v > 1, i.e., velocities faster

than light. This is not the easiest idea to accept, but we will give a physical justification later. For
now, the best way of understanding this is that there is no linear transformation which preserves
the light cone from a rest frame to one moving superluminally. Nothing can go faster than the
speed of light.
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4.2 Minkowski Space

What are the implications of this? For one thing, the spatial distance between two points is no
longer the same between two frames. It would appear that by fixing the speed of light in all
frames we have destroyed any meaningful way of measuring spatial separation. However, there
is a quantity that is preserved. By design this system preserves the light cone, the set of x and
t such that t2 − x2 = 0. It turns out that this holds for t2 − x2 = τ 2 for any constant τ , and
furthermore for t2− x2− y2− z2 = τ 2 in a full four dimensional space-time1. This quantity can be
thought of as the distance of (t, x, y, z) from the origin, and so we could easily extend this to see
that the distance between any two points in space-time is preserved. The quantity τ is of great
physical importance. We will call τ the proper time because it is the invariant quantity of the
time as perceived by object. To see this, imagine a reference frame which kept the object at the
origin. This would cause t2 − 02 − 02 − 02 = t2 = τ 2. As all objects see themselves at rest, τ in
this “special” frame is the time as felt by the object in question2.

It will be useful for later to define a differential element of proper time: the amount of proper
time which infinitesimally infinitesimal two events. This can be done as:

dτ 2 = dt2 − dx2 − dy2 − dz2 = dt2

(
1−

(
dx

dt

)2

−
(
dy

dt

)2

−
(
dz

dt

)2
)

= dt2
(
1− v2

)
, (4.6)

and so
dt

dτ
= γ(v), where

γ(v) =
1√

1− v2

is call the Lorentz Factor. This will allow us to take derivatives with respect to proper time.
We can think of the property of the Lorentz matrix preserving proper time as the result of a

modified dot product of a space-time vector with itself. We define the Minkowski Inner Product
for two space-time vectors u = (t1, x1, y1, z1) and w = (t2, x2, y2, z2):

η(u,w) =
(
t1 x1 y1 z1

)
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




t2
x2

y2

z2

 = t1t2 − x1x2 − y1y2 − z1z2 (4.7)

We will also use η to represent the matrix used in this definition, and will call our choice of η
the metric3. One may note that we could construct the classical (or Euclidean) dot product by
changing η to the identity matrix and ignoring the terms associated with time.

Similar to how we can define the length of a vector to be the square root of the vector dotted
into itself, we can use the Minkowski inner product to define a new kind of “length” for a space-time
vector. An issue arises though, as the Minkowski inner product is not positive-definite (always

1We could also talk about conserving −t2 +x2 + y2 + z2, which would lead to the same geometry, but with some
sign changes. The literature on relativity uses both with equal frequency, and so it is important to know which is
being discussed. We will say the system we are using has signs (+−−−), and the other (−−−+).

2The importance of the proper time cannot be overstated. Philosophically it is nice because it means that while
two observers may not agree on how old an object is, they will always agree on how old the object believes itself
to be. More importantly for physics, is that an unstable particle’s half life is measured with respect to its proper
time, not the time of an observer.

3Were we to use the (−−−+) convention, we would choose η to have opposite sign.
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greater than zero unless involving a zero vector), so we cannot simply take the square root and
get a real value. To rectify this we will consider three cases.

We will call a spacetime vector, u, time-like if η(u, u) > 0, space-like if η(u, u) < 0, and light-
like or null if η(u, u) = 0. We then define the Minkowski norm, which will act differently on time,
space, and light-like vectors. The Minkowski norm of a spacetime vector, u, takes the form of:

‖u‖M =


√
η(u, u), if u is time-like√
−η(u, u), if u is space-like

0 if u is light-like

(4.8)

Where we use the subscript M to distinguish the Minkowski norm from the Euclidean norm. This
gives us a concept of length for space-time vectors which will be equal in all inertial frames. It is
also simple to define something analogous to distance, which we will call the space-time interval
between u and w, as ‖u− w‖M .

Now, none of the results of the Minkowski norm would have changed had we simply defined the
matrix η differently. Depending on our choice of η, we can define a different geometry, meaning
different notions of lengths and distances. We call the geometry generated by choosing the identity
matrix Euclidean Geometry, and we call the geometry we generated above Minkowski geometry
or Minkowski space. We will consider more general spaces and geometries when we talk about
relativity, the main difference being that we will define a different matrix for our inner product.

4.2.1 Index Notation

It is useful here to define some new notation. We shall relabel our coordinates t, x, y, and z as
x0, x1, x2, and x3 respectively. This is helpful for thinking about the space and time coordinates
in the same way, but is also more powerful than that. We will also define ηµν as the element in
the µth row and νth column of η and introduce implicit summation whenever we have matching
upper and lower indices. This allows us to rewrite the Minkowski norm as ‖u‖2

M = xµηµνx
ν . This

notation allows for much more elegant equations.
We will also define xµ = ηµνx

ν , which we will call the contravariant coordinates. We call them
this to distinguish them from the xµ coordinates, which we will call the covariant coordinates. For
our case here x0 = x0 and xµ = −xµ.

4.3 Mechanics in Minkowski Space

Now that we have a geometry which explains the invariance of the speed of light, the question
becomes: what does this mean for physics?

We shall call the location of an event in space-time the 4-position:

r = (x0, x1, x2, x3) = (t, r), (4.9)

where r is the position in 3-space. It is natural to consider how velocity looks in space-time. We
want some facsimile of the velocity which behaves nicely under Lorentz transformations, i.e., has
invariant magnitude. We shall define the 4-velocity :

V =
d

dτ
(x0, x1, x2, x3) =

dt

dτ
(1, vx, vy, vz) = γ(v)(1,v), (4.10)
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where v denotes the ordinary velocity vector we are used to in 3-space. The differential position
transforms as expected, and the differential element of proper time is invariant. This means the
ratio of the two will transform in the same way that the 4-position does when we switch reference
frames, that is to say, it can be transformed by applying the Lorentz transformation. We call all
vectors which transform in the same way as the 4-position 4-vectors. Also, we can easily note
that in a frame where v � 1, γ(v) ≈ 1, and so the 4-velocity becomes (1,v), where the spatial
component is the classical velocity.

To do mechanics in Euclidean space, we usually think in terms of the momentum of an object,
and so we would like to define a 4-momentum so that we can do physics in Minkowski space. The
obvious idea is to multiply our 4-velocity by the mass of the object. This will clearly create another
4-vector since we are simply multiplying a 4-vector by a scalar. Thus we define the 4-momentum
as:

P = mV = γm(1,v). (4.11)

We will call the spatial component of the 4-momentum p = γmv the relativistic momentum.
We would like to preserve the form of Newton’s Laws for our space-time physics, and so we

will define the 4-force as:

F =
dP
dτ
, (4.12)

Which is a 4-vector for the same reasons the 4-velocity was. We will call the spatial component of

the 4-force F =
dp

dτ
the relativistic force.

From this we can justify why objects cannot travel faster than light. Consider the work it
would take to accelerate an object to light speed:

W =

∫
path

F · dx =

∫
path

dp

dτ
· dx =

∫
path

v · dp =

∫
path

v dp (4.13)

We know the expression for the relativistic momentum p =
mv√
1− v2

, and can find
dp

dv
=

m

(1− v2)3/2
.

Substituting into equation (4.13) yields:

W =

∫ 1

0

mv

(1− v2)3/2
dv =

m√
1− v2

]1

0

, (4.14)

which is clearly divergent, meaning it would take infinite energy to accelerate a massive object to
light speed.

This also gives us a way to find the energy of a moving object. By changing the limits on the
integral in (4.14), we can find the kinetic energy as:

KE =
m√

1− v2
−m, (4.15)

which we can see approaches the classical expression for v � 1 by Taylor expanding the first term:

KE =

(
m+

1

2
mv2 +O

(
v4
))
−m ≈ 1

2
mv2 (4.16)

Note that the first term in equation (4.15) is the first component of the 4-momentum P0 = γm.
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Since this quantity seems to be associated with energy, we shall call it relativistic energy E. This
approaches the classical energy in the non-relativistic limit plus a mass term, but this extra term
is unimportant since it is just a constant additive factor. We will call this the rest energy.

We should note that in classical situations the magnitude squared of the 4-momentum is

‖P‖2 = γ2m2(1− v2) = m2 = E2 − p2 (4.17)

This quantity is invariant by construction since P is a 4-vector. If we convert back to conventional
units, this gives us Einstein’s famous energy equation:

E2 = p2c2 +m2c4, (4.18)

or, for an object at rest:
E = mc2. (4.19)

One of the things we saw in special relativity was that nothing can go faster than the speed
of light. However, we can use the same basic principal as before, the minimization of action, to
find a solution which takes special relativity into account. For this section we will revert back to
conventional units to better elucidate the physics.

To do this we must find the expression for the special relativistic Lagrangian, which we will
derive from the Hamiltonian, assumed to be the total energy. We note that energy of a relativistic
free particle is given by E2 = p2c2 +m2c4, where p is the magnitude of the momentum, and so the
Hamiltonian must be:

H =
√
p2c2 +m2c4 = γmc2 (4.20)

Where γ is the Lorentz factor.
The relationship between the Hamiltonian and the Lagrangian is H =

∑
q̇ipi − L, where the

factors of q̇ipi here become γmv2
i , and so the Lagrangian for a free particle in special relativity is:

Lfree = γmv2 − γmc2 = −mc2

√
1− v2

c2
(4.21)

Reconfiguring terms this becomes L = −mc
dt

√
dt2 − dx2 − dy2 − dz2. This last factor should

familiar. It is the differential element of proper time, dτ . This makes the action:

S =

∫
Ldt = −mc

∫
dτ = −mc(τ2 − τ1) (4.22)

This means that the action principle for a free particle can really be thought of as the extrem-
ization of change in proper time! The importance of this is not explored here, but will become
important in later sections where we will see that objects in a curved spacetime follow geodesics,
paths which extremized proper time. This can be thought of as an extension of Fermat’s Principle,
in which light is thought to travel along the path which minimizes the time traveled. To account
for interactions, we will write:

L = −mc2

√
1− v2

c2
− U, (4.23)

Where U is the potential energy.
The action principal itself is unchanged in Special Relativity, so our equations of motion still
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come from the Euler-Lagrange equation:

∂L

∂qi
=

d

dt

∂L

∂q̇i
. (4.24)

19



Chapter 5

The Bound Orbits in Special Relativity

5.1 The Action Principle in Special Relativity

Again, we will consider the system of a body in a gravitational well. Since our treatment of the
classical two body problem put no limit on ṙ, the solution for the orbit must be wrong in the

relativistic limit. We have a central gravitational potential of U(r) = −GMm

r
, and so we have a

Lagrangian of

L = −mc2

√
1− v2

c2
+
GMm

r
.

Non-dimensionalizing as we did for the classical system, and using polar coordinates, we get:

L = −
√

1− ṙ2 − r2θ̇2 +
1

r
. (5.1)

We also find it useful to non-dimensionalize the energy, (given by the sum of the free-particle
Hamiltonian and the potential energy). The total energy in special relativity has a term associated
with the rest mass of the object, with the rest being the relativistic energy. We will split this term
off, and call the remaining energy Erel, and so:

E = Erel +mc2 (5.2)

Thus when we non-dimensionalize using equation (3.6a) we get:

e+ 1 =
1√

1− ṙ2 − r2θ̇2
− 1

r
, (5.3)

where we modify (3.6a) so that e =
Erel

mc2
. We do this since e is the component of the energy

which is related to the motion and gravitational potential, and so will the part we vary to describe
different orbits. Note that when v � c, Erel becomes the classical energy from earlier chapters.

We should use different symbols for the non-dimensionalized coordinates and quantities, but
that becomes cumbersome. So we will use the same symbols for our convenience. It will be obvious
from context whether or not an equation is non-dimensionalized, and can usually be determined
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at a glance by the presence/absence of c terms.
From using the θ coordinate in the Euler-Lagrange equation (4.24), we get:

d

dt

∂L

∂θ̇
= 0 (5.4a)

This constant quantity
∂L

∂θ̇
is the angular momentum, l, and is given by

l =
r2θ̇√

1− ṙ2 − r2θ̇2
(5.4b)

These quantities for e and l are similar to those we got in the classical treatment, and they
reduce to the originals in the limit v2 = ṙ2 + r2θ̇2 � 1:

e =
1

2
(ṙ2 + r2θ̇2)2 +

1

r
+O(v3) ≈ 1

2
(ṙ2 + r2θ̇2)2 +

1

r
, (5.5a)

l = r2θ̇
(
1 +O(v2)

)
≈ r2θ̇, (5.5b)

as we got before in equations (3.7a) and (3.7b).

5.2 The Pseudopotential

As before, we can find a useful quantity by setting ṙ = 0 and substituting the angular momentum
(5.4b) into the total energy (5.3). In the special relativistic case this yields:

Uψ = −1− 1−
√
l2 + r2

r
(5.6)

However, unlike the classical case, this is not an effective potential. We cannot write the total
energy as the sum of a portion corresponds to some motion, ṙ, and a component corresponding
to the position, r. To distinguish the quantity we have just derived and the classical effective
potential, we shall call Uψ the pseudopotential.

Despite the pseudopotential not having the same physical interpretation as an effective poten-
tial, it is not useless. It still acts as a lower bound on e, since the energy with ṙ 6= 0 must be
greater than the energy if ṙ = 0. It can also still find circular orbits since ṙ = 0 for any circular
orbit, and so ecirc = Uψ,min.

Taking the derivative of Uψ from equation (5.6) and setting it equal to zero we find a minimum
at:

rc = l
√
l2 − 1. (5.7)

This allows us to find a minimum energy, which is:

emin = Uψ(rc) = −1 +

√
l2 − 1

l
. (5.8)

This is the minimum energy of a bound orbit can have.
Note that emin ceases to have a real value for l < 1. We can also see from figure 5.1 that the

pseudopotential looks qualitatively different for l = 1. It would appear that if l is too low then
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Figure 5.1: The pseudopotential for various values of l. When l = 1 the pseudopotential goes to
−1 as r becomes small. For all other values of l there is a barrier before r = 0, and so we have
bound orbits for e < 0. The minima of these plots correspond to circular orbits.

the object will fall in to the center. This was not a feature we saw of non-relativistic orbits, where
we could not fall in so long as l 6= 0.

We can also see from the pseudopotential that we have an upper limit on what energies are
allow for bound orbits. Since the limit of Uψ(r) as r approaches infinity is zero, the maximum
energy for a bound orbity is:

emax = 0 (5.9)

We will see that these observations will agree with the results from our solution.

5.3 Solving the Equation of Motion

The special relativistic system has an analytic solution much like the non-relativistic one did, and
it will be found in a similar way.

As before, we want to solve for θ̇ so that we can rewrite our equations to remove the time
dependence. We will use the same technique as we used in the classical problem and substitute

u =
1

r
and ṙ = θ̇r′ = −θ̇ u

′

u2
. By manipulating equation (5.4b), we get:

ṙ =
lu′√

1 + l2u2 + l2u′2
. (5.10)

By using equation (5.10) we can rewrite the total energy (5.3) as:

e+ 1 =
√

1 + l2u2 + l2u′2 − u (5.11)
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We can then solve for u′ and get

du

dθ
= ±

√
(e+ 1 + u)2 − 1− l2u2

l
. (5.12)

By separating the differential we can integrate, and so:

±
∫
dθ =

∫
ldu√

(e+ 1 + u)2 − 1− l2u2
. (5.13a)

As in the non-relativistic case, we have the choice of initial conditions by choosing the additive
constants in the anti-derivatives. We will again choose them so that they are both zero, and so:

± θ =

∫
ldu√

(e+ 1 + u)2 − 1− l2u2
. (5.13b)

It is not immediately obvious how to solve this integral. However, the term in the radical can be
cleaned up by completing the square. Then with some clever substitutions we can get:

r(θ) =
r0

1 + ε cos ηθ
, (5.14)

where

η =

√
l2 − 1

l
, (5.15a)

ε =

√
e2l2 + 1 + 2el2

(e+ 1)2
, (5.15b)

and

r0 =
l2 − 1

e+ 1
, (5.15c)

5.4 Analysis

Equation (5.14) looks very similar to our original solution for r, but has an important distinguishing
feature; The factor of η in the cosine. This factor causes the orbit to precess, and so relativistic
orbits will not form the closed ellipses of Newtonian orbits. An example of such an orbit can be
seen in figure 5.2.

This precession factor has another interesting implication. If l < 1, then η is imaginary, and

so the position becomes r(θ) =
r0

1 + ε cosh |η|θ
. This causes the orbit to collapse in on the central

body. This behavior can be seen in figure 5.3. This makes sense given what we saw from the
effective potential in section 5.2.

We should also note that ε and r0 are different here than they were in the classical case. The
eccentricity is more complicated and the scale factor r0 is smaller. However, we will see that these
still limit to their original values in the non-relativistic limit. Also, if for e = 0, we get ε = 1,
which indicates that, as we saw in the pseudopotential, the (non-rest-mass) energy of a bound
orbit cannot exceed zero.
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Figure 5.2: This is the orbit, r(θ) =
r0

1 + ε cos ηθ
, for the energy and angular momentum values

of −1.9 and 2.1 respectively. The orbit is near elliptical, but does not close back on itself. Instead
it precesses about the origin.

5.4.1 Non-Relativistic Limits

In order to fully understand the non-relativistic limits, we would like to know the behavior of l
and e when v is always very much less than c.

From equation (5.11) we can solve for l in terms of e, u and u′. This yields:

l =

√
(e+ 1 + u)2 − 1

u2 + u′2
. (5.16)

Since we want v � c at all points on the orbit, let us consider when the object is at the minimum
distance from the star, and so has the greatest velocity:

umax =
1

rmin

=
1 + ε

r0

= (e+ 1)
1 + ε

l2 − 1
, (5.17)

u′ = 0. (5.18)

However, e is itself a function of u. From equation (5.3) we know that e + 1 =
1√

1− v2
− u.

Plugging this into (5.17) and solving for u yields:

umax =
1√

1− v2

1 + ε

l2 + ε
. (5.19)

Equations (5.16), (5.18), and (5.19) gives us:

l = v
l2 + ε

1 + ε
, (5.20)
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Figure 5.3: This is the “orbit”, r(θ) =
r0

1 + ε cos ηθ
, for the energy and angular momentum values

of −1.5 and 0.5 respectively. This causes η to be imaginary, and so the object falls in to the center
and cannot have a stable orbit.

which means that:

l =
1 + ε

2v
+

√
−ε+

(1 + ε)2

4v2
, (5.21)

where we only concern ourselves with the positive solution since we assume l is positive. For a
bound orbit the eccentricity is always between zero and one, so the limit of l as v becomes small
is positive infinity. In other words, our non-relativistic limit on l is:

l� 1. (5.22)

From here we know that the maximum energy of a bound orbit is zero, and the minimum is
given by equation (5.8). However, in the non-relativistic limit, where l becomes large, the minimum
becomes:

emin = −1 +

√
l2 − 1

l
≈ 0. (5.23)

Thus in the non-relativistic limit, e is forced to be near zero, and approaches zero at the same rate
that l approaches infinity. In other words:

|e| � 1. (5.24)

By approaching our e and l limits our orbital parameters become:

η ≈
√
l2

l
= 1,

ε ≈
√

0 + 1 + 2el2

12
=
√

1 + 2el2,

r0 ≈
l2

1
= l2.

All of which line up with the values we got in the classical case.
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Chapter 6

Relativistic Electrodynamics

One of the nice things about electromagnetism is that it already works in relativity with no need for
modification. This is unsurprising since Maxwell’s equations were a motivating factor in Einstein’s
theory. However, there are transformation rules: what is an electric field to one observer may be
a magnetic field to another, because what was a stationary charge in the first frame is a current
in the second.

The issue with electromagnetism is not how it changes under relativity, but it is how we
represent it, and that starts with the electromagnetic 4-potential.

6.1 The 4-Potential

Maxwell’s equations can be split into two categories: the homogeneous and inhomogeneous equa-
tions. The homogeneous equations are:

∇× E = −B

∂t
, (6.1a)

∇ ·B = 0. (6.1b)

These equations ensure that we can express the electric and magnetic fields in terms of an electric
potential V and a magnetic vector potential A:

E = −∂A

∂t
−∇V (6.2a)

B = ∇×A (6.2b)

For example, we can express the x component these of these fields as:

Ex = − ∂

∂t
Ax −

∂

∂x
V, (6.3a)

Bx =
∂

∂y
Az −

∂

∂z
Ay, (6.3b)

and we can write the other components in a similar manner by cycling (x, y, z) in the equations.
Suppose we have a 4-vector, which we shall call the 4-potential :

A = (V,Ax, Ay, Az), (6.4)
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with components Aµ. This should feel like a natural way to combine the two classical potentials
into one 4-vector, though I will not go though argument to prove it transforms as a 4-vector.

Consider then the expression:

F µν =
∂Aν

∂xµ
− ∂Aµ

∂xν
= ∂µAν − ∂νAµ, (6.5)

where we define the operator ∂µ =
∂

∂xµ
and similarly ∂µ =

∂

∂xµ
. We should be careful to note

that the derivatives in the above equation are with respect to the covariant coordinates, and that
x0 = −x0, and so ∂0 = −∂0. This ensures that F µν transforms covariantly, which is the tensor
equivalent of transforming like a 4-vector. We can also see that F µν = −F νµ and that for µ = ν,
F µν = 0.

Note that for µ = 0,

F 0ν = ∂0Aν − ∂νA0 = − ∂

∂t
Aν − ∂

∂xν
V

Which is equal to components of electric field for µ 6= 0. Also, when both µ and ν are non-zero
and unequal F µν looks like components of the magnetic field.

These F µν are components of an object called the Electromagnetic tensor :

F µν =


0 Ex Ey Ez
−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 , (6.6)

so F µν is the µth row and νth column of F .
The electromagnetic tensor in this form is covariant, as we can tell from the upper indices. We

can construct a contravarient electromagnetic tensor by lowering the indices, which is accomplished
by multiplying twice by ηµν :

Fµν = ηµαηβνF
αβ =


0 −Ex −Ey −Ez
Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 . (6.7)

6.2 The 4-Current

If we pick units such that ε0 = µ0 = 1, (which is consistent with our previous unit choice of c = 1),
we can write the inhomogeneous Maxwell equations in terms of the charge density ρ and current
density J as:

∇ · E = ρ, (6.8a)

∇×B =
∂E

∂t
− J. (6.8b)

We can right away note that we can rewrite (6.8a) as:

∂νF
0ν = ρ. (6.9)

27



This should be immediately suggestive that we should create a 4-vector with ρ as the zeroth
component. The natural partner of charge density is of course the current density, and so we shall
define the 4-current as:

J = (ρ, Jx, Jy, Jz). (6.10)

To show this is a useful expression consider:

∂νF
1ν =

∂F 10

∂x0
+
∂F 11

∂x1
+
∂F 12

∂x2
+
∂F 13

∂x3

= −∂Ex
∂t

+
∂Bz

∂y
− ∂By

∂z

=

(
−∂E

∂t
+∇×B

)
x

= J1 = Jx

The results are similar for µ = 2 and 3, and the three together get equation (6.8b). This also
allows us to write

∂νF
µν = Jµ, (6.11)

which gives the full information of the two inhomogeneous Maxwell equations.

6.3 Electromagnetic Lagrangian and Energy Density

We should note that the inner product of the electromagnetic tensor with itself gives us:

FµνF
µν = 2

(
E2 −B2

)
, (6.12)

which is a quantity very much like the energy density:

u =
1

2

(
E2 +B2

)
, (6.13)

but it is off by a factor of 4 and has the electric and magnetic components with opposite sign: for
the energy density we want the sum of the squares, not the difference. Similarly, we can construct
a term similar to the potential energy with:

JµAµ = −ρV + J ·A (6.14)

Now, while (6.12) is not the energy density, it is related to another quantity with the same units:
the Lagrangian density.

The Lagrangian density for electromagnetism is:

LEM =
1

4
FµνF

µν − JµAµ

=
1

4
(∂µAν − ∂νAµ) ηµαηβν (∂αAβ − ∂βAα)− JµAµ (6.15)

To see that this is the proper Lagrangian, we plug it into equation (2.14) with j = ν and
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φi = Aµ. This yields:

−∂LEM

∂Aµ
= −∂ν

∂LEM

∂ (∂νAµ)
,

and so:

Jµ = −∂ν (∂νAµ − ∂µAν) = −∂νF νµ = ∂νF
µν , (6.16)

which is identical to equation (6.11). So LEM yields the proper equations, and is thus clearly the
proper choice.

Now that we have the Lagrangian, we can find the Hamiltonian density:

HEM = (∂0Aµ)
∂LEM

∂ (∂0Aµ)
− LEM,

=
1

2

(
E2 +B2

)
− ρV + J ·A + (∇V ) · E, (6.17)

which is almost what we expect for the energy density.
Now, when you integrate the last term over all space using integration by parts we get:∫∫∫

∇V · Edx3 = V E|∞−∞ −
∫∫∫

V (∇·E) dx3, (6.18)

where if we assume that the electric field vanishes at infinity and there are no source terms, (and
so ∇ · E = 0), then equation (6.18) becomes zero.

Since (6.17) is the Hamiltonian density, we can ignore terms which integrate to zero, and so
the electromagnetic Hamiltonian density in the absence of sources is:

HEM(ρ = 0,J = 0) =
1

2

(
E2 +B2

)
, (6.19)

which is exactly our expected energy density.
The terms which mattered to the source free Hamiltonian density were:

F0µF
0µ − 1

4
FµνF

µν

The presence of zeros in the indices suggests that this is one term in a larger object. The fact that
there is an upper zero an a lower zero means we should have a two index object, for if we were
to put the same index in both those slots we would simply sum over that index, which does not
seem right since with zeros there we have a physical term we are already familiar with. Also, the
second term in this expression would appear to have no dependence on the zeroes, however, we
can remedy this by putting an η00 there, which is just one and so does not effect the value. This
would make our new tensor:

T µν = ηµβFβαF
να − 1

4
ηµνFαβF

αβ. (6.20)

We call the tensor T µν from equation (6.20) the electromagnetic stress-energy tensor. We have
seen that T 00 corresponds to the energy density of the electric and magnetic fields. It is natural
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to ask what the other terms correspond to. Since T µν is symmetric with respect to µ and ν, we
need only explore one half of the tensor, as the other will be the same.

Let us start with the rest of the µ = 0 row:

T 01 = η0βFβαF
1α − 1

4
η01FαβF

αβ

= −Sx (6.21)

Where Sx is the x component of the Poynting vector. Similarly, we find that:

T 02 = −Sy, (6.22)

T 03 = −Sz. (6.23)

So we see that the energy-stress tensor is also related to the energy-flux density: the rate at which
electromagnetic radiation delivers energy to a surface.

The other terms of the stress energy tensor T µν for µ, ν ≥ 1 form the classical Maxwell stress
tensor. This is why we call T µν the energy-stress tensor. It is the relativistic object which relates
the energy-density and the electromagnetic stress.
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Chapter 7

The Effects of Relativistic
Electromagnetism on Bound Orbits

In chapter 5 we saw how the invariant of the speed of light, one of the most important aspects of
special relativity, affected the shape of closed orbits. Here we will examine the effect of one of the
other important results of relativity: the mass-energy equivalence.

We will do this by imagining that the body our object of interest is orbiting is charged. Classi-
cally this would change nothing about the orbits. The electric field only affects charged objects, so
as long as the orbiting body is not charged we would expect the orbits to be unchanged. However,
while the electric field will not exert an electric force on our satellite, it does contain energy. Under
special relativity this energy is mass, and so the electric field will exert a gravitational force.

7.1 Charged Star

We have so far ignored that the object we are orbiting has a radius, however we it is now important
since we need to find the total energy in the electric field between the star and the orbiting satellite.
Consider the electric field from a star with radius R and charge q:

E(r) =
1

4πε0

q

r2
r̂ (7.1)

We can use the shell theorem which states that for any inverse square law in a spherically symmetric
situation we need only consider the volume within a sphere up to the radius of interest, as the
effects from positions farther away will all cancel out. This means the energy stored in the electric
field within the orbit is:

UEM =
ε0

2

∫∫∫
E(r′)2dV ′

=
q2

8πε0

(
1

R
− 1

r

)
(7.2)

Thus, by equation (4.19), the “mass” of the electric field inside the orbit is:

MEM =
UEM

c2
=

q2

8πε0c2

(
1

R
− 1

r

)
. (7.3)
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We don’t want to carry all these annoying constants around, so we will substitute in:

κ =
q2

8πε0Mc2
, (7.4)

where M is the mass of the larger body. This allows us to rewrite equation (7.3) as:

MEM = Mκ

(
1

R
− 1

r

)
. (7.5)

This makes the gravitational force:

F (r) = −Gm(M +MEM)

r2
= −GmM

r2
− GmMκ

Rr2
+
GmMκ

r3
, (7.6)

where m is the mass of the orbiting satellite and G is the gravitational constant. This makes the
gravitational potential:

U(r) = −
∫ r

∞
F (r′)dr′ = −GmM

r′
− GmMκ

Rr′
+
GmMκ

2r′2

∣∣∣∣r
∞

= −GmM
r
− GmMκ

Rr
+
GmMκ

2r2
(7.7)

Note that before when we did not care about the star’s radius we also ignored the possibility
of crashing into the star and only considered r → 0 as falling in. Now, we must also assume that
we are in the region outside the star, i.e., r > R. Thus we will replace the notion of r → 0 with
r → R.

7.2 Finding the Equations of Motion

Unfortunately, unlike before, this system does not have an analytic solution even if we consider
r a function of θ. To find the shapes of the orbits we must instead use numerical methods. To
do this we will do as we did before and use angular momentum to remove the θ̇ terms and then
solve for ṙ as a function of r. This allows us to use Runge-Kutta methods to numerically solve
the differential equation given initial conditions. But before any of this we must first set up our
Lagrangian.

If we non-dimensionalize we can construct the Lagrangian as:

L = −
√

1− ṙ2 − r2θ̇2 +
1

r
+

κ

Rr
− κ

2r2
, (7.8)

where we omit writing our dimensionless quantities with tildes for notation convenience.
We should note that when κ = 0, we return the Lagrangian for the uncharged case in equation

(5.1). This means that our solution in this section should reduce to the previous case when κ = 0.
In particular, we can find values for the precession factor, the eccentricity, and scale factor, and
they should approach the values from equations (5.15a) through (5.15c) when κ goes to zero.

Since we did not add or change any θ̇ terms in the Lagrangian, we can make the same derivations
for angular momentum as we did in chapter 5. This makes the angular momentum:

l =
r2θ̇√

1− ṙ2 − r2θ̇2
. (7.9)
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The total energy of this system is given by the Hamiltonian as defined in equation (2.7). However,
since the canonical momenta of this system are the same as in chapter 5, the energy is the same
as in equation (5.3) except with the modified potential of equation (7.7). It is thus:

e+ 1 =
1

r

√
l2 + r2

1− ṙ2
− 1

r
− κ

Rr
+

κ

2r2
. (7.10)

We can solve the above to get equations for θ̇ and ṙ, which yields:

ṙ2 = 1− l2 + r2

r2

(
e+ 1 +

1

r
+

κ

Rr
− κ

2r2

)2 (7.11a)

θ̇ =
l

r2

(
e+ 1 +

1

r
+

κ

Rr
− κ

2r2

) (7.11b)

To find the shape of the orbits we will rewrite our equations to instead think of r as a function
of θ. We can do this as we did before by remembering that ṙ = θ̇r′, where r′ is the derivative of r
with respect to θ.

Thus equations (7.11a) and (7.11b) become:

r′2 =
r4

l2

[(
e+ 1 +

1

r
+

κ

Rr
− κ

2r2

)2

− 1

]
− r2. (7.12)

It is preferable when using numerical methods to use second order differential equations when
we have a sign ambiguity as we do in the above equation. To this end we then differentiate with
respect to θ. This gives us an equation for r′′:

r′′ =
2r3

l2

[(
e+ 1 +

1

r
+

κ

Rr
− κ

2r2

)2

− 1

]
− r4

l2

(
e+ 1 +

1

r
+

κ

Rr
− κ

r2

)(
1

2r2
+

κ

Rr2
− κ

r3

)
− r

(7.13)
This cannot be solved analytically, but can be solved numerically. However, numerical methods

require knowing our initial conditions. So we want a way of knowing which initial conditions give
us bound orbits. To do this we again create a pseudopotential, which will also give us intuition
into the physics of the system.

7.3 Pseudopotential With Charge

As before we can create a pseudopotential by evaluating the energy e at ṙ = 0, which becomes:

Uψ = e (ṙ = 0) = −1 +
1

r

√
l2 + r2 − 1

r
− κ

Rr
+

κ

2r2
, (7.14)

which, it should be noted, is the equal to the pseudopotential from equation (5.6) but with the
modified potential term. A plot of the pseudopotential can be seen in figure 7.1.

Note that we can only get meaningful information when r > R, as this was assumed when we
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Figure 7.1: Figure (a) plots the pseudopotential for various values of l with κ fixed at 2. Figure
(b) plots the pseudopotential for various values of κ with l fixed at 2. Both have R = 1. Note that
the graphs for l = 0 and l = 1 with κ = 2 have local minima, seemingly implying that there can
be bound orbits in these cases. This is fallacious as the minima occur at an r less than 1, and so
would be inside the star. This is unphysical, and so they can be discounted.

set up our initial equations. So while it is possible to get turning points at radii less than R, these
are unphysical and are not true orbits.

We will again find it useful to find the radius and energy of circular orbits. To do this we try to
minimize Uψ with respect to r. This results in the following equation for radius of circular orbit,
rc:

∂Uψ
∂r

∣∣∣∣
rc

=
1

r2
c

(
1 +

κ

R
− l2√

l2 + r2
c

)
− κ

r3
c

= 0, (7.15)

which can be rewritten as a quartic equation of rc:

r4
c (κ+R)2−2κr3

cR(κ+R)+r2
c

(
−l4R2 + l2(κ+R)2 + κ2R2

)
−2κl2rcR(κ+R)+κ2l2R2 = 0. (7.16)

Luckily, quartics can be solved explicitly. There exists an explicit formula for the roots of a quartic
function, however, we will gain little by writing it out. Instead we plot the quartic and so can see
the roots clearly. A plot of the solution for various l can be seen figure 7.2. Note that for κ = 0,
equation (7.16) becomes:

R2
(
r4
c + l2r2

c

(
l2 + 1

))
= 0, (7.17)

Which has the radius found in equation (5.8) as a solution. This confirms that our equation
reproduces the behavior we found in the uncharged case.

It continues to be true that the energy of circular orbit is the minimum allowed energy for a
bound orbit, so for our numerical solutions, we will want to only use energies greater than it.

7.4 Numerical Methods to Solve the Equations of Motion

Our numerical calculations were done using Mathematica and an adaptive step 4th-order Runge-
Kutta method to calculate the shape of the orbit. The code I wrote to implement the method can
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Figure 7.2: A plot of the circular radius for R = 1 as a function of κ for several values of l. We
can see that the eventually cut off, at which point there is no circular orbit possible. Also, we
must cut off the plot when rc = 1, because below that the orbit is unphysical.
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Figure 7.3: A plot of the circular radius for R = 1 as a function of l for several values of κ. We
can see that the eventually cut off, at which point there is no circular orbit possible. Also, we
must cut off the plot when rc = 1, because below that the orbit is unphysical.

be seen in the appendix. Applying this method to our differential equations, we can generate a
list of r and θ values, corresponding such that the nth r-value occurs at the nth angle in the θ list.
This allows us to plot the orbits. An example of an orbit generated using this method can be seen
in figure 7.4.
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Orbit for R = 1, κ = 5, l = 7, and e = -0.1

Figure 7.4: A plot of the numerical approximation the orbit around a charged star with R = 1,
κ = 5, l = 7 and e = −0.1. At a glance it may look very similar to the solutions to the non-charged
star, but this is not the case.

To ensure that all orbits we generate are bound, we can take our energies to be fraction (less
than one) times the energy of a circular orbit because the allowed energies for a bound orbit are
between the energy of a circular orbit and zero.

Once we generate a numeric orbit, we would like to extract several quantities: the characteristic
radius, r0; the eccentricity, ε; and the precession angle, η. To do we define quantities we believe
to will become those found in equations (5.15a) to (5.15c) when κ = 0. Then we run the code in
the appendix called Charged Orbital Analysis to obtain the quantities from the numerical data.

We get an approximation for ε by recalling equation (5.14), and noting that in the uncharged
case:

rmin =
r0

1 + ε
, (7.18a)

rmax =
r0

1− ε
, (7.18b)

which can be solved for ε, yielding:

ε =
rmax − rmin

rmax + rmin

(7.19)

Since rmin and rmax are easy to obtain from a numeric solution, we shall use (7.19) as our approxi-
mation for the eccentricity. Equation (7.18a) can be trivially rearranged to find r0 in terms of rmin

and ε, both of which we can now get from our numerical solution. We will take our approximation

36



of r0 as:
r0 = rmin(1 + ε). (7.20)

To find η, we start by finding the angular differences between local maxima, and then average
them over the whole orbit to minimize numerical defects, then divide 2π by the result. This works
to find the precession factor since, in a precessing orbit, the angular difference between two local
maxima is such that ηθ = 2π. Finding the local maxima is fairly simple, we simply compare a
point to its nearest neighbors and see if it is greater. We then find the difference in the θ values
corresponding to the maxima from one to the next. We can write a formula which tell us how to
find η as:

η =
2π

∆Θmax

, (7.21)

where ∆Θ is the difference between the θ values of adjacent point in our numerical data
To see that these approximations of r0, ε, and η are actually what we want, we can extract

them from the orbit in figure 7.4 and then overlay a plot of (5.14) using our values of them. If they
indeed give us the desired information the two plot should look similar. This is done in figure 7.5,
and we can see the two orbits almost match, except that the fit is “thinner” than the numerical
solution. This can be better seen in figure 7.6, where we plot the data except that we multiply
the θ coordinate of each point by the η found from (7.21). Also plotted is the ellipse whose scale
factor and eccentricity are those found by Charged Orbital Analysis. We can see that data is
not elliptical, and produces and orbit whose bulbs are wider than would be expected if it were.
However, this is only noticeable for small l, i.e., the most relativistic values of l. This can be seen
in figure 7.7, where we repeat the above process for a large value of l.
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Orbit for R = 1, κ = 5, l = 7, and e = -0.1

Figure 7.5: A plot of the numerical approximation the orbit around a charged star with R = 1,
κ = 5, l = 7 and e = −0.1 in blue, along with an non-charged approximation orbit using the values
of r0, ε, and η, 5.14, 0.907, and 0.821 respectively, obtained from the numerical orbit plotted in
red. The two look extremely similar, and so we can say with fair certainty that our approximations
are good.
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Figure 7.6: A plot of the numerical approximation the orbit around a charged star with R = 1,
κ = 5, l = 7 and e = −0.1 in blue, along with an non-charged approximation orbit using the values
of r0, ε, and η, 5.13, 0.907, and 0.820 respectively, obtained from the numerical orbit plotted in
red. The two look extremely similar, and so we can say with fair certainty that our approximations
are good.

To verify that these numerical solutions match with what we found in the uncharged case, we
simply pick values of e, l, and R, and then find the characteristics for various κ. We then compare
the characteristics at κ = 0 with what we would expect from our earlier formulas. This is done in
figure 7.8, and we see that they agree at the limit. It should be noted that the behaviors for all

38



-40 -20 20 40
x

-40

-20

20

40

y
Orbit for R = 1, κ = 5, l = 12, and e = -0.1

(a)

-40 -30 -20 -10 10
x

-20

-10

10

20

y

(b)

Figure 7.7: Analogous plots to those in figures 7.5 and 7.6, except using l = 12. These plots show
that the orbits are much closer to the uncharged case for large l.

the parameters is monotonic, and so we do not expect there to be critical values of κ, (other than
zero), which dramatically change to effects of the charge.
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Figure 7.8: Plots of r0, ε, and η as functions of κ. These were made keeping e and l constant at
−0.02 and 5 respectively. The red bars indicate the values for each orbital characteristic we expect
for the give e and l values as given in equations (5.15a),(5.15b), and (5.15c). The plots clearly
converge on their expected κ = 0 values.
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Chapter 8

Manifolds, Metrics, and Covariant
Derivatives

Before we can move on to Einstein’s general theory of relativity we need to establish the geometry
we will be using, much as we constructed Minkowski space before we started working with special
relativity. The key idea used in general relativity is that gravity is expressed as the curvature of
spacetime.

However, what exactly curvature means in spacetime is non-obvious. The traditional metaphor
is bowling balls on a sheet: The bowling ball will sink into the sheet, creating an indentation around
it, and any object which rolls near it will bend in the well created by the bowling ball. This makes
for a good insight, but does note extend nicely to the spacetime. The idea being that the metaphor
uses extrinsic curvature, curvature which is seen by someone not on the surface. We cannot leave
the confines of spacetime, and so need a notion of the intrinsic curvature.

What we want is a notion of curvature which is inherent to the space itself, and not reliant on
it curving in an ambient direction. To develop such a notion, we must first develop a language to
talk about these spaces in: the language of Riemannian manifolds.

8.1 Manifolds, Tangent Spaces, and Riemannian Metrics

In general a manifold is any space which is locally Euclidean. What this means is that in any
neighborhood of any point on an n-dimensional manifold, or n-manifold, the space will look like
Rn. We will only consider manifolds which are themselves subsets of Euclidean space. Note that
with our definition, the dimension of the manifold is not the dimension of the Euclidean space it is
a subset of, but rather the dimension of the manifold itself. For example consider the sphere, which
is a subset of R3: it is two dimensional, in that around each point you can put a two dimensional
coordinate grid.

Now, we define a path in a manifold M as a smooth function γ : R→M . We say a path goes
through a point p is there exists a t ∈ R such that γ(t) = p. We can take derivatives of the path at
a point p. This allows us to define directions one can go from a point. In fact, we can use this to
define vectors tangent to M at a point. If M is some n-dimensional manifold, then at every point
p on the manifold, the set TpM is the set of vectors tangent to M at point p, and is called the
tangent space of M at p. To say this more formally, TpM is the vector space composed of vectors
γ′(t), where γ is a path in M and γ(t) = p. The tangent space will have dimension equal to that
of the manifold. For example, if our manifold is a sphere, a two dimensional manifold, the tangent
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space at a point p will be the set of vectors which lie in the plane tangent to the sphere at p, and
so will be isomorphic to R2.

What tangent spaces mean for us is that we can no longer think of vectors as free floating
arrows, now they must be based at a specific point, and two vectors based at different points
are not the same object. For example, consider two points, p1 and p2, of equal height on the
upper hemisphere of a sphere, neither on the equator nor at the pole. Consider the two paths
which connect each of the points to the pole, and consider the unit vectors generated by these
paths. Both can be thought of as the “up” unit vector at these points, however, they are not the
same vector, as both will have a slight tilt to them depending where on the hemisphere they are.
Essentially, what tangent spaces do is allow us to consider direction locally, and not globally.

To finalize this geometry we need only define the metric. For a manifold, M , a Riemannian
metric g is a function which maps vectors from the same tangent space, v, w ∈ TpM , for all p ∈M ,
to a real numbers with the following properties:

• Symmetric: g(v, w) = g(w, v)

• Positive definite: g(v, v) ≥ 0 and g(v, v) = 0 iff v = 0

• Bilinear: g(u+ v, w) = g(u,w) + g(v, w) and g(ku, w) = kg(u,w)

We will call a manifold equipped with a Riemannian metric a Riemannian manifold.
The metric is analogous to the dot product, and in the same way we can use the dot product

to define lengths and angles, we can use the metric g. We will say the length of a vector v is:

‖v‖ =
√
g(v, v)

and we will define the angle between to non-zero vectors v, w in the same tangent space as:

cos θv,w =
g(v, w)

‖v‖‖w‖

Also, the fact that g is linear means that we can represent it as a matrix. Suppose we are on a
2-dimensional manifold. Then all the tangent spaces are planes, and we can write the vectors v and
w in terms of a basis. Let e1 and e2 form a basis for some tangent space TpM , with v = v1e1 +v2e2

and w = w1e1 + w2e2 as vectors in TpM . Thus:

g(v, w) = g(v1e1 + v2e2, w1e1 + w2e2)

=
(
v1 v2

)( g(e1, e1) g(e1, e2)
g(e2, e1) g(e2, e2)

)(
w1

w2

)
This is done here in only two dimensions, but can be trivially extended to the n-dimensional case.

This means that to know how g acts on any vectors, we need only know how it acts on a basis.
We will denote the matrix form of the metric as:

g =

(
g(e1, e1) g(e1, e2)
g(e2, e1) g(e2, e2)

)
And we will label the entries as gij = g(ei, ej). Since the metric is invertible (do to positive
definiteness), we write the entries of the inverse matrix as gij. We can use this notation with
the summation notation we set up in section 4.2.1 to then say that gijg

jk = δki , the Dirac delta
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function. Also, note that the metric is symmetric, and so gij = gji. We shall similarly take the
inverse metric to be symmetric.

Similarly, we can use index notation to rewrite our definition of length as:

‖v‖ =
√
vivjgij (8.1)

This means that the arclength of a curve γ(t) = (x1(t), x2(t), . . . , xn(t)) from t0 to t1 is:

τ =

∫ t1

t0

√
dxi

dt

dxj

dt
gijdt (8.2)

8.2 The Geodesic Equation

If we call the term in the integral L, then we can find the curve which extremizes length between
γ(t0) and γ(t1) using the calculus of variations we used in chapter 2. We call such curves geodesics.
Geodesics will become important to physics for the same reason as before: in general relativity,
objects will follow paths which extremize this length. We will later make this connection more
concrete.

In any case, the equations which define geodesics are the Euler-Lagrange equation:

d

dt

∂L

∂dxl/dt
=
∂L

∂xl
. (8.3)

Also note, that we write L as the derivative of τ with respect to t. This allows us to reparametrize
in terms of arclength should we need to.

The left side of the (8.3) is a simple derivative if we assume the coordinates xi and the derivatives

of the coordinates
dxi

dt
are independent:

∂L

∂xl
= − 1

2L

dxi

dt

dxj

dt

∂gij
∂xl

= −L
2

dxi

dτ

dxj

dτ

∂gij
∂xl

,

where in the last step we convert t derivatives to τ derivatives by the relation
d

dt
= L

d

dτ
. The

other side is:

∂L

∂dxl/dt
= − 1

2L

(
dxj

dt
glj +

dxi

dt
gil

)
= −dx

i

dτ
gil.
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Next, we take the t derivative, which we can convert into an arclength derivative:

d

dt

∂L

∂dxl/dt
= L

d

dτ

(
−dx

i

dτ
gil

)
= −L

(
d2xi

dτ 2
gil +

1

2

(
∂gjl
∂xi

+
∂gil
∂xj

)
dxi

dτ

dxj

dτ

)
,

where in the last step we duplicate the derivative of the metric and divide by half to compensate.
Putting both sides of equation (8.3) together yields:

d2xi

dτ 2
gil = −1

2

(
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
dxi

dτ

dxj

dτ

In order to make our equations look nicer, we will multiply both sides of the above by gkl in
order to isolate the second derivative term. This gives us:

d2xk

dτ 2
+

1

2
gkl
(
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
dxi

dτ

dxj

dτ
= 0.

We will define the Christoffel symbol Γkij as:

Γkij =
1

2
gkl
(
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
=

1

2
gkl (∂igjl + ∂jgil − ∂lgij) , (8.4)

where in the second version we write the partial derivative with respect to xi as ∂i. This symbol
allows us to neatly write the geodesic equation succinctly as:

d2xk

dτ 2
+ Γkij

dxi

dτ

dxj

dτ
= 0, (8.5)

which must hold for each k. This gives us one equation for each dimension.

8.2.1 Notation of the Metric

We earlier introduced a way of expressing the metric as components of a matrix and then used that
notation in equation (8.1). If we consider a vector of an infinitesimal length, dτ , we can rewrite
equation (8.1) as:

dτ 2 = gijdx
idxj (8.6)

This is really just another way we can write the metric, but it gives us a nice physical interpretation.
We can thus express the metric in a way using infinitesimal displacements, which is a natural way
of thinking about it in physics. It also tells us how we can integrate over length in a Riemannian
manifold, as we simply take the square root of dτ 2.

We will use this notation in later sections.

8.3 Lorentzian manifold

However, this is not enough yet. This is a way of talking about space. We need a mathematical
construct which will correspond to spacetime. To do this we must slightly modify how our metric

43



works. This will lead to what is called a Lorentzian manifold.
A Lorentzian manifold will have a (Lorentzian) metric which will be identical to that of Rieman-

nian metric except we replace the requirement of positive definiteness with being non-degenerate.
This means that if g(v, w) = 0 for all w ∈ TpM , then v = 0. We also impose the restriction that
each tangent space, TpM , has a basis such that g11 = 1 and that gµµ = −1 for all µ 6= 1. This
allows us to have three “spatial” dimensions and one “temporal” dimension. We will use Greek
subscripts to differentiate Lorentzian manifolds from Riemannian ones.

Now that we allow the metric to be negative, we can split all vectors into three categories, just as
we did in special relativity. We will call vectors v for whom g(v, v) > 0 time-like, g(v, v) < 0 space-
like, and g(v, v) = 0 either null or light-like. A path γ is said to be time-like if g(γ′(t), γ′(t)) < 0
for all t. These will be the paths we will consider to be physical. We must also modify our formula
for distance; in a Lorentzian manifold the length of a vector will be:

‖v‖ =
√
|vµvνgµν | (8.7)

We do this because our modified metric allows for negative values, which would otherwise cause
imaginary lengths. We would like our notion of length to remain a positive real number, and so
we take the absolute value of the metric to compensate for this. However, this modification does
not effect the geodesic equation, and we could rederive it in the same exact way as before. To see
this, note that:

d

dx
L =

d

dx

√∣∣∣∣dxµdt dxνdt gµν
∣∣∣∣ =

d

dx

∣∣∣∣dxµdt dxνdt gµν
∣∣∣∣

2

√∣∣∣∣dxµdt dxνdt gµν
∣∣∣∣

=
1

2L
sign

(
dxµ

dt

dxν

dt
gµν

)
d

dx

(
dxµ

dt

dxν

dt
gµν

)
,

where x is some arbitrary quantity with respect to which we can take a derivative. This equation
shows that differs from what we would get without the absolute value by at worst at sign, and
at best nothing at all. Since both sides of the Euler-Lagrange equation have derivatives of L, the

factor of sign

(
dxµ

dt

dxν

dt
gµν

)
cancels out, and so we can derive the geodesic equation the same as

we could in a Riemannian manifold.
The concepts of a Lorentzian manifold should all be sounding very familiar. This is because we

have actually already dealt with a Lorentzian manifold. Minkowski space, discussed in section 4, is
a simple example of a Lorentzian manifold. We did not need to talk about it as a manifold before
though, since it is a flat manifold. The metric is just a modified identity matrix, and so there is
little the material from this section adds to the picture to justify the complexity and generality.
However, now that we wish to move to dealing with a curved spacetime, it is now necessary.

8.4 Covariant Derivatives and Curvature

An issue arises from having different vector spaces associated with every point on the manifold.
How can one take a derivative if the vector space is changing? To do this we define the covariant
derivative, which turn out to be essential for defining curvature.

The covariant derivative on a manifold M with metric g, denoted as either ∇(X,Y) or ∇XY,
is a function which maps a pair of vector fields to a third vector field satisfying the following
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properties:

1. The Leibniz Rule: ∇X(fY) = DX(f)Y+f∇XY, where f is any smooth function f : M → R
and DX(f) is the directional derivative g (X, grad(f))

2. ∇fXY = f∇XY

3. bilinearity of∇ : ∇X+YZ = ∇XZ+∇YZ, ∇X(Y+Z) = ∇XY+∇XZ, and∇X (cY) = c∇XY
for all c ∈ R

4. Metric Compatibility: DX(g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ)

5. Torsion Free: ∇XY −∇YX = [X,Y], where [·, ·] denotes the Lie bracket,
[X,Y] = DX(Y ν)eν −DY(Xµ)eµ

It is a fact that there is only one function which satisfies these properties for any manifold M and
metric g.

The motivation for the covariant derivative is that it is a generalization of the directional
derivative. It tells us how a vector field Y changes in the direction of X at every point on the
manifold. It is called covariant since it transforms covariantly.

Since the covariant derivative is bilinear, we can determine how it acts by simply applying it
to the basis vectors. We can do this be considering the basis vectors as constant vector fields.
Applying property 5 of the definition of the covariant derivative we find:

∇eµeν −∇eνeν = [eν , eµ] = 0,

where the Lie bracket must be zero because the basis fields are constant. This means that:

∇eµeν = ∇eνeµ, (8.8)

or equivalently, the covariant derivative is symmetric on the basis vectors.
Now, all we need to do is determine ∇eµeν . By property 4 of the covariant derivative, we know

the following three equations:

Deµg(eν , eξ) = g(∇eµeν , eξ) + g(eν ,∇eµeξ) (A)

Deνg(eξ, eµ) = g(∇eνeξ, eµ) + g(eξ,∇eνeµ) (B)

Deξg(eµ, eν) = g(∇eξeµ, eν) + g(eµ,∇eξeν) (C)

By adding A and B and subtracting C and noting that Deµ = ∂µ we get:

∂µgνξ + ∂νgµξ − ∂ξgµν = 2g(∇eµeν , eξ). (8.9)

We know that the result of ∇eµeν is some vector field, and hence can be broken down into its
components. We will say that ∇eµeν = Xo

µνeo, and so if we solve for Xo
µν , we will know how the

covariant derivative will act on the basis vectors. Thus equation (8.9) becomes:

∂µgνξ + ∂νgµξ − ∂ξgµν = 2g(Xo
µνeo, eξ) = 2Xo

µνgoξ, (8.10a)

Xo
µν =

1

2
goξ (∂µgνξ + ∂νgµξ − ∂ξgµν) = Γoµν , (8.10b)
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which is exactly the Christoffel symbol from equation (8.4). Thus the covariant derivative on the
basis vectors becomes:

∇eµeν = Γξµνeξ. (8.11)

We can thus use properties 1 through 3 of the covariant derivative to find how it acts on any vector
fields:

∇XY = Xµ∇eµY = Xµ
(
∂µ(Y ν)eν + Y ν∇eµeν

)
= DX(Y ν)eν +XµY νΓξµνeξ (8.12)

We can now use the covariant derivative to define what it means for space to be curved. Note
that in Euclidean space the Christoffel symbols are all zero since the metric is constant in the
usual coordinates. This means that second term in equation (8.12) is zero, and so:

∇XY −∇YX = DX(Y ν)eν −DY(Xµ)eµ = [X,Y]. (8.13)

Since this holds for Euclidean space, it holds for all flat spaces regardless of coordinates. In flat
space, by applying equation (8.13), we can assert the following identity:

∇[X,Y]Z = ∇∇XY−∇YXZ = ∇∇XYZ−∇∇YXZ = ∇X∇YZ−∇Y∇ZZ

Thus, in flat space
∇X∇YZ−∇Y∇ZZ−∇[X,Y]Z = 0 (8.14)

But this is zero as a vector field. We would like to use this to define the curvature, however, our
intuition for curvature suggests we should want a scalar value. If we want a scalar, we can apply
the metric. We will define the Riemann Curvature Tensor as:

R(X,Y,Z,W) = g(∇X∇YZ−∇Y∇Z,Z−∇[X,Y]Z,W) (8.15)

Which we can fully understand from how it acts on the basis vectors:

Rµνξo = R(eµ, eν , eξ, eo) =
(
∂µΓλνξ

)
gλo −

(
∂νΓ

λ
µξ

)
gλo + ΓλνξΓ

σ
µλgσo − ΓλµξΓ

σ
νλgσo (8.16)

In a sense, the Riemann curvature tensor measures the failure of parallel transport to preserve
a vector. The technicalities are more complicated, but the idea is that we take a vector and move
it along a parallelogram defined by two directions, then the when the vector returns to its initial
position it may or may not point in the same direction. In Euclidean space it will, but on a sphere
it will not. This behavior on the sphere can be seen in figure 8.1. This change is what forms our
notion of curvature on a manifold. A more rigorous discussion of how curvature, parallel transport,
and the Riemann curvature tensor are related is given by Pe’er (4).

The Riemann curvature tensor has several nice properties. Those being:

• R(X,Y,Z,W) = −R(Y,X,Z,W)

• R(X,Y,Z,W) = −R(X,Y,W,Z)

• R(X,Y,Z,W) = R(Z,W,X,Y)

• R(X,Y,Z,W) +R(Y,Z,X,W) +R(Z,X,Y,W) = 0

These symmetries reduce the number of calculations needed to know the form of the Riemann
curvature tensor.
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Figure 8.1: The parallel transport of a vector on a sphere from points A to N to B to A. The
result of this process is a vector which forms an angle of α with respect to initial vector. Image
by Fred the Oyster [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)], via
Wikimedia Commons.

However, the Riemann curvature tensor provides more information than we need. We define
the Ricci curvature tensor, Ric as:

Ricµν = −gooRµoνo = −goo
((
∂µΓλoν

)
gλo −

(
∂oΓ

λ
µν

)
gλo + ΓλoνΓ

σ
µλgσo − ΓλµνΓ

σ
oλgσo

)
, (8.17)

and can be considered a contraction of the Riemann curvature tensor. Due to the symetries of the
Riemann curvature tensor, we also have:

Ricµν = Ricνµ (8.18)

We will prefer the Ricci curvature tensor to the Riemannian one due to Einstein’s insight that
the mass/energy of a physical system should relate to its curvature. As we saw in section 6, the
stress energy tensor is of rank 2, and so we want a curvature tensor also of rank 2. However, the
Ricci curvature alone is not enough. We can repeat the process done in equation (8.17) of summing
over two of the indices on the Ricci curvature tensor, this yields the scalar curvature or the Ricci
scalar :

R = gµνRicµν (8.19)

We can now write out Einstein’s field equation. If we use units such that the speed of light and
Newton’s gravitational constant are both 1, a Lorentzian manifold represents a physical system
when:

Ricµν −
1

2
Rgµν + Λgµν = 8πTµν , (8.20)

where Tµν is the stress energy tensor, representing the energy and mass of the system, and Λ is
the cosmological constant. The cosmological constant is a theorized constant which has to do with
the expansion of the universe, and we will assume it to be zero for the rest of this paper. It can
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be shown with little effort that when the the stress-energy tensor is zero, then Einstein’s field
equation becomes:

Ricµν = 0, (8.21)

which is called Einstein’s vacuum equation1.
Equation (8.20) is what governs general relativity. These equations allow us to determine how

mass and energy will curve space, and then this curvature tells us what paths objects will follow.
Now that we have an equation which gives a condition for a manifold to represent a physical

system, it is natural to ask what is the simplest space which satisfies (8.21). This is, of course,
Minkowski space. In Minkowski space the metric is constant over all space, and hence the Christof-
fel symbols are all zero. This makes the Riemann curvature zero everywhere, which in turn means
Ricµν = 0. This example is rather uninteresting, so we will now consider the simplest non-trivial
example of a metric which satisfies Einstein’s vacuum equation: the Schwarzchild metric.

1If we do not assume the cosmological constant is zero, the vacuum equation becomes Ricµν = Λgµν
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Chapter 9

The Schwarzchild Solution

We would now like to compare the effects of general relativity on the orbits of satellites around
stars to those we found classically and from special relativity. However, before we can do that we
must first figure out what the curvature caused by a star is. To do this we find the Schwarzchild
solution to Einstein’s field equation.

9.1 The Simplest Non-Trivial Solution

We will consider a metric which is spherically symmetric and time independent metric. The idea
being that a star, itself being spherically symmetric, should cause a spherically symmetric geometry
and that gravitational field created by the star is not changing with time, and so neither should
the metric. The metric will thus look like:

ds2 = f(r)dt2 − g(r)dr2 − r2dφ2 − r2 sin2 φdθ2 (9.1)

Where f and g are functions of r which we must solve for. Note we will do this derivation in a
fully dimensional setting and then later non-dimensionalize. This will give us physical insight into
some of the constants of integration we choose.

To satisfy Einstein’s vacuum equation, the Ricci curvature tensor must be zero. In particular,
we must have:

Ric00 = 0⇒ 4f(r)f ′(r)g(r)− rf(r)f ′(r)g′(r)− rf(r)2g(r) + 2rf(r)f ′′(r)g(r) = 0, (A)

Ric11 = 0⇒ 4f(r)2g′(r) + rf(r)f ′(r)g′(r) + rf(r)2g(r)− 2rf(r)f ′′(r)g(r) = 0, (B)

Ric22 = 0⇒ rf(r)g′(r)− rf ′(r)g(r)− 2f(r)g(r) + 2f(r)g(r)2 = 0, (C)

where we assume that f(r) and g(r) are both actually dependent on r, and so we ignore the case
which returns the Minkowski metric in spherical coordinates.

Equations (A) and (B) above can be combined to yield:

f ′(r)g(r) + f(r)g′(r) = 0

or
f(r)g(r) = K

for some constant K. By substituting the above into (C) we can find a differential equation for
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g(r):
rg′(r)− g(r)[1− g(r)] = 0

Which has the solution:

g(r) =

(
1− 2GM

c2r

)−1

, (9.2)

where
2GM

c2
is a constant of integration chosen so that it will become physically meaningful and

have the proper units. We know that f must be the reciprocal of g times the constant K. Taking
K to be c2, our proposed solution to Einstein’s equation has the form:

ds2 =

(
1− 2GM

c2r

)
c2dt2 −

(
1− 2GM

c2r

)−1

dr2 − r2dφ2 − r2 sin2 φdθ2, (9.3)

which we call the Schwarzchild metric. Here, c is the speed of light, G is Newton’s gravitational

constant, and M is the mass of the gravitational source. The factor
GM

c2
is called the Schwarzchild

radius, rs, and has an important physical meaning: If an object is within the Schwarzchild radius
of a gravitational source, it is impossible for it to escape. It does not matter how much external
force is used to try and pull the object out, it will always fall into what is called the singularity.
This leads to objects called black holes, so called since not even light can escape from the sphere
of radius rs, called the event horizon, which surrounds then.

Note that the Schwarzchild radius is the unit we chose for our non-dimensionalization we
did in section 3.2: this was part of the reason why. From here on we will revert to our non-
dimensionalization.

9.2 Geodesics in the Schwarzchild Metric

We are interested in the geodesics of the Schwarzchild metric. This will be done, not by applying
the geodesic equation (8.5), but rather by finding conserved quantities. These quantities will then
simplify the situation and connect to our physical constants in the non-relativistic and special
relativistic cases.

To start off, we will use the spherical symmetry of the Schwarzchild metric. The symmetry
suggest that any geodesic should reside in a plane1. We can understand all planar geodesics,

geodesics who are confined in some plane of motion, by studying the planar geodesics with φ =
π

2
and φ̇ = 0, where dots indicate derivatives with respect to proper time. So an understanding of the

φ =
π

2
, φ̇ = 0 case is sufficient for understanding the action of test particles in the Schwarzchild

metric.
Under this assumption the metric becomes:

dτ 2 =

(
1− 2

r

)
dt2 −

(
1− 2

r

)−1

dr2 − r2dθ2, (9.4)

where we can ignore the φ component entirely since we are confined to a plane. The Schwarzchild

1Using the word “plane” is somewhat an abuse of the word. Removing a degree of freedom in this case allows
us to go from 3+1 space to 2+1 space. We use the word “plane” to refer to the fact that its motion is confined to
two spatial dimensions, and not that the motion is fully two dimensional.
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metric of equation (9.3) yields a path length of:

τ =

∫ t1

t0

√(
1− 2

r

)(
dt

dλ

)2

−
(

1− 2

r

)−1(
dr

dλ

)2

− r2

(
dθ

dλ

)2

dλ =

∫ t1

t0

Ldλ, (9.5)

where λ is an arbitrary parameter which describes the path, and L is defined as:

L =

√(
1− 2

r

)(
dt

dλ

)2

−
(

1− 2

r

)−1(
dr

dλ

)2

− r2

(
dθ

dλ

)2

, (9.6)

for any parameter λ. Note that this holds for all parameters λ, and in particular holds for λ = τ .
Thus:

τ =

∫ t1

t0

Ldτ, (9.7)

which in differential form becomes:
dτ = Ldτ. (9.8)

Note that this means that not only is L non-dimensional, but that L = 1. We can substitute the
dτ in equation (9.7) with the left-hand side of equation (9.8) to get:

τ =
1

c2

∫ t1

t0

L2dτ. (9.9)

Thus the geodesic equations, which come from the Euler-Lagrange equations, are:

∂L2

∂xµ
=

d

dt

∂L2

∂ẋµ
.

Since L2, using τ as our parameter, is independent of of t and θ, we have two conserved
quantities, e and l, defined by:

∂L2

∂ṫ
=2

(
1− 2

r

)
ṫ = 2e

∂L2

∂θ̇
=− 2r2θ̇ = −2l,

The quantities e and l are analogous to the energy and angular momentum from previous sections,
but they are not quite the same. We will explore this more when we talk about the non-relativistic
limit. Regardless of their relation to earlier constants, these conserved quantities allow us to
simplify the equations of motion.

Since L = 1, and so L2 = 1, we have that:(
1− 2

r

)
ṫ2 −

(
1− 2

r

)−1

ṙ2 − r2θ̇2 = 1, (9.10)

which we can clean up by substituting in the quantities e and l as defined above to get:

ṙ2 = e2 − 1 +
2

r
− l2

r2
+

2l2

r3
(9.11)
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This gives us a differential equation for r as a function of τ . However, proper time is not the
most useful parameter for orbits; we also want to know r as a function of θ so we can compare to

our earlier work. We it will also simplify our equations to write them in terms of u =
1

r
. Using

primes to denote derivatives with respect to θ, we can write ṙ as −θ̇ u
′

u2
, and so the equation which

describes the orbit is:

u′2 =
1

l2
(
e2 − 1

)
+

2

l2
u− u2 + 2u3. (9.12)

By taking another derivative with respect to θ we can turn this into a second order differential
equation:

u′′ =
1

l2
− u+ 3u2. (9.13)

This can be integrated to solve for the shape of an orbit using the numerical methods of section
7.4. However, before we preform the numerical integrations, we need to know the limits on bound
orbits. This will be done by examining the effective potential.

9.3 General Relativistic Effective Potential

If we multiply equation (9.11) by
1

2
m we get:

1

2

(
e2 − 1

)
=

1

2
ṙ2 − 1

r
+
l2

2r
− l2

r3
(9.14)

Which looks like the sum of kinetic and potential energy terms equaling a constant, which can
be loosely interpreted as the total energy. The “actual” total energy is the constant e, however,
1

2
(e2 − 1) is constant if and only if e is as well, so the above equation is still analogous to the total

energy equation. Interpreting it as such gives us an effective potential of:

Ueff(r) = −1

r
+

l2

2r2
− l2

r3
(9.15)

Note that this is a true effective potential since it is separable into terms involving r and a classical
one-dimensional kinetic term. This makes it much nicer to deal with than the pseudopotentials of
sections 5.2 and 7.3. It looks the same as the effective potential from section 3.3 with an additional
quadrupole term. This quadrupole term causes some interesting behavior.

Of perneial interest are circular orbits. By taking the derivative of Ueff and setting it equal to
zero we can find them. This yields:

r2
c − l2rc + 3l2 = 0, (9.16)

where rc is the radius of a circular orbit. Since this is a quadratic equation, it will in general have
two solutions, those being:

rc =
l2

2

(
1±

√
1− 12

l2

)
. (9.17)

We will call the inner solution rin and the outer rout. There are no circular orbit, and thus no
bound orbits at all, when l < 2

√
3. We can also see that the two solutions agree when l = 2

√
3.
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This gives us a lower bound on the angular momentum term similar to what we found in the
special relativistic treatment.

We can see this behavior in the plots of Ueff in figure 9.1. Note that all the plots limit to
negative infinity and zero for r approaching zero and positive infinity respectively. The plot for
l =
√

3 has no critical points, the plot for l = 2
√

3 has one, and the rest have two. For the graphs
which have two, we get a local maximum and a local minimum. This means that there are two
possible circular orbits, a stable one and an unstable one. These orbits become the same at the
critical value of l = 2

√
3.

20 40 60 80 100 120 140
r

-0.08

-0.06

-0.04

-0.02

0.02
Ueff

l = 3

l = 2 3

l = 3 3

l = 4 3

l = 5 3

Figure 9.1: A plot of Ueff for various values of l. Note that for l =
√

3 there is no point with a
slope of zero, and thus no circular orbits. For l = 2

√
3, we have one critical point which is a saddle

point. All other curves have two critical points: one maximum and one minimum. All curves
approach negative infinity as r approaches zero, and approach zero as r approaches infinity.

The radius which yields the minimum is the larger solution, rout. Plugging this into equation
yields the minimum value of e needed for a bound orbit. A plot of this can in figure 9.2

5 10 15 20
l

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00
Ueff (rout )

Figure 9.2: A plot of Ueff(rout) as a function of l. The red dot denotes l = 2
√

3. The plot fails to
be real valued for l < 2

√
3. This quantity corresponds to a minimum “total energy” term.

What we learn from the that Ueff → −∞ as r → 0 is it is possible to fall into the star for any
angular momentum provided you are at a distance less than rin. This property is similar the way
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in special relativity it was possible to fall in for certain non-zero angular momenta. This is in fact
part of a stronger principle of general relativity: that it is impossible not to fall in if you are at a

radius less than the Schwarzchild radius, rs =
2GM

c2
or in our non-dimensionalization, rs = 2. To

see that this is consistent, note that the smallest rin can be occurs at l = 2
√

3, and so rin > 3 > rs.
This means that no matter what, rout is always greater that the Schwarzchild radius, and so

we do not have to worry about our bound orbits being unphysical.

9.4 Bound Orbits in General Relativity

We can plot the closed orbits by using the Runge-Kutta method used for solving the charged
special relativistic orbits. First, given a value of l, we find a valid value of e by picking one which
is greater than Ueff(rout) and less than both Ueff(rin) and zero. Then we pick the initial position by
finding the largest real root of:

e = Ueff = −1

r
+

l2

2r2
− l2

r3
, (9.18)

which will correspond to the maximum radius of a closed orbit.
An example of such a closed orbit can be seen in figure 9.3 plotted using l = 3

√
3 and e =

−0.005. It looks very much like the precessing ellipses from special relativity, however, the orbits
are not quite elliptical.
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100
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y

l = 3 3 and e = -.005

Figure 9.3: A bound orbit in general relativity with l = 3
√

3 and e = −0.005. At first glance the
orbit appears elliptical, but this is not the case.

Using the same methods used in section 5.4 we can find approximations for the precession
factor η, the eccentricity ε, and the scale factor r0. For the example orbit in figure 9.3 we find
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η ≈ 0.854, ε ≈ 0.879, and r0 ≈ 22.467. This yields a precessing ellipse which fits the orbit as can
be seen in figure 9.4. The fit is very good, but it has wider lobes than the actual orbit does. We
can see this behavior better in figure 9.5, which was generated by multiplying the θ coordinates
of the orbit by η to collapse all the lopes into one near-ellipse. This makes clear the fact that GR
orbits are non-elliptical. However, we can see from figure 9.6 we can see that as l gets larger, we
quickly approach the precessing ellipses of special relativity.
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Figure 9.4: The bound orbit with l = 3
√

3 and e = −0.005 plotted in figure 9.3, but fitted with

the precessing ellipse r(θ) =
22.467

1− 0.879 cos(0.854θ)
. The fit works pretty well, but we can see that

the lobes of the fit are slightly wider than the orbit.
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Figure 9.5: The orbit of figure 9.3 collapsed into one lobe and then compared to the elliptical

approximation r(θ) =
22.467

1− 0.879 cos(θ)
. The fix works pretty well, but we can see that the lobes

of the fit are slightly wider than the orbit.
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Orbit for l = 5 3 and e = -0.005
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Figure 9.6: Analogous plots to those in figures 9.4 and 9.5, except using l = 5
√

3. These plots
show that the orbits are much closer to the special relativistic case for larger l.

This suggests that SR is a good approximation of general relativity for large l. This, however,
is not accurate. If we look at figure 9.7, looking at how r0, ε, and η change with l we can see that
they do not seem to approach their SR values. In fact, it is not possible to take a limit of the
Schwarzchild solution and get anything which looks like special relativity without ignoring gravity
entirely.

9.5 Limit Cases of the Schwarzchild Metric

We will first consider the Newtonian limit of the Schwarzchild metric: that the Schwarzchild radius
is small, r � 1, and that the total speed of the object is much less than the speed of light, i.e.,
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Figure 9.7: Plots of r0, ε, and η as functions of l for e = −0.005. The red curve indicate the value
for each orbital characteristic we expect for the given e value as given in equations (5.15a),(5.15b),
and (5.15c). The plots do not seem to approach the curves for larger l values.

v � 1. The first assumption means that we are very far from the star and can ignore terms of

order
1

r2
. The second means that the speed of the orbiting object is much less than the speed of

light, and so we can ignore v2 terms.
Using (9.5) and time as our parameter λ, the Schwarzchild metric yields a proper time of:

τ =

∫ √(
1− 2

r

)
−
(

1− 2

r

)−1

ṙ2 − r2θ̇2dt

Where we here use dots to denote time derivatives. This is consistent with dots for derivatives with
respect to proper time in the non-relativistic limit, as when v � c, the proper time approaches

ordinary time. Expanding the integrand to first order in
1

r
we get:

L =

∫ √
1− 2

r
−
(

1− 2

r

)−1

ṙ2 − r2θ̇2

≈

√
1− 2

r
−
(

1 +
2

r

)
ṙ2 − r2θ̇2

≈
√

1− 2

r
− v2 − 2

r
ṙ2 (9.19)

We note that
2

r
ṙ2 is small compared to either term before it, and so we ignore it in the Newtonian

limit. This means that::

L ≈
√

1− 2

r
− v2

≈ 1− 1

r
− 1

2
v2

which looks like the classical Lagrangian except with an additive constant 1 and a scale factor of
−1. Since such things will not effect the extremization of the arclength, we follow a geodesic in
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the Newtonian limit if and only if we extremize the quantity:

S =

∫ [
1

2
v2 +

1

r

]
dt, (9.20)

which is precisely the classical action we would expect from a star and a satellite. This justifies
our choice of constants in equation (9.2), since it allowed our NR limit to have the correct form.

This demonstrates how general relativity does return our classical equations in the Newtonian
limit. However, GR does not limit to special relativity as treated before.

Starting from (9.19), we proceed without imposing any limit on v, but still requiring r � 1.
We can factor L to get:

L ≈
√

1− v2

√
1− 2

r
(1− ṙ2)

We then approximate for r � 1 and get:

L ≈
√

1− v2

c2

(
1− 1

2

rs
r

(
1− ṙ2

))
=
√

1− v2 − 1

r
+
√

1− v2
ṙ2

r

If it were not for the third term this would be a scalar multiple of the Lagrangian for special
relativity, however, this term is non-negligible in the SR limit since it is non-constant and of linear

order in
1

r
. This is a demonstration of the incompatibility of special relativity with gravity: when

one accounts for gravitational forces in a relativistic setting, it is necessary to do a full general
relativistic treatment.
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Chapter 10

Conclusions

We have seen how relativity be thought of as an extension of the principle of least action. We
first started using special relativity to geometrize the kinetic portion of the Lagrangian. However,
this result did not allow us to account for gravity and the action principle was not fully geometric.
General relativity fixed this by saying mass and energy distort spacetime, and that objects follow
paths which extremize length in this curved space.

To demonstrate this we examined the effects of relativity on the bound orbits of satellites
orbiting stars. Classically, orbits are closed ellipses and these orbits existed for all possible angular
momenta. Under special relativity, our first attempt to geometrize physics, we found that bound
orbits remained elliptical,but precessed about the star and that there was a lower limit on angular
momentum for stable orbits. General relativity, which fully geometrizes gravity, also has precessing
orbits, but they are not elliptical and actually have no analytic formula. General relativity also
has unstable orbits for all possible angular momenta in that if an object is within the Schwarzchild
radius of a black hole, it will be unable to escape regardless of angular momentum.

Additionally, we discussed how applying a charge to a star affects orbits in special relativity.
The charge creates an electric field whose energy effects the gravitational force. This causes the
orbits to no longer be elliptical, and moreover have no analytic solution. We also talked about
how one can work with electric and magnetic fields in general relativity, but lack the time to fully
explore them. Given time, I would have looked at how the charge effected the orbits of satellites,
especially the orbital parameters r0, ε, and η, and seen if it could limit to the SR case.
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Chapter 11

Appendix

11.1 Runge-Kutta Method

RK4Step[func , xPoint , tPoint ,dt ]:=Module[{k1, k2, k3, k4},
k1 = dtfunc[xPoint, tPoint];
k2 = dtfunc

[
k1
2. + xPoint, dt

2. + tPoint
]

;

k3 = dtfunc
[

k2
2. + xPoint, dt

2. + tPoint
]

;
k4 = dtfunc[k3 + xPoint,dt + tPoint];
Return

[
k1+2.k2+2.k3+k4

6. + xPoint
]

;
]
CKStep[func , xPoint , tPoint ,dt ]:=Module[{k1, k2, k3, k4, k5, k6},

k1 = dtfunc[xPoint, tPoint];
k2 = dtfunc

[
k1
5. + xPoint, dt

5. + tPoint
]

;

k3 = dtfunc
[

3.k1
40. + 9.k2

40. + xPoint, 3.dt
10. + tPoint

]
;

k4 = dtfunc
[

3.k1
10. −

9.k2
10. + 6.k3

5. + xPoint, 3.dt
5. + tPoint

]
;

k5 = dtfunc
[
− 11.k1

54. + 5.k2
2. −

70.k3
27. + 35.k4

27. + xPoint,dt + tPoint
]

;

k6 = dtfunc
[

1631.k1
55296. + 175.k2

512. + 575.k3
13834. + 44275.k4

110592. + 253.k5
4096. + xPoint, 7.dt

8. + tPoint
]

;

Return
[{

37.k1
378. + 250.k3

621. + 125.k4
594. + 512.k6

1771 + xPoint, 2825.k1
27648. + 18575.k3

48384. + 13525.k4
55296. + 277.k5

14336. + k6
4. + xPoint

}]
;

]
stepAdapt[func , xPoint , tPoint ,dt , error ]:=Module[{xPointRK4, xPointRK5, δt},
{xPointRK5, xPointRK4} = CKStep[func, xPoint, tPoint,dt];
If[‖xPointRK4− xPointRK5‖ = 0,

δt = dt 5

√
error

‖xPointRK5‖ ,

δt = dt 5

√
error

‖xPointRK4−xPointRK5‖ ;

];
Return[δt];

]
AdaptiveStepRK4[func , x0 ,dt , steps , error ]:=Module[{points, xPoint, tPoint, j, k1, k2, k3, k4, δt, xPoint5},

xPoint = x0;
tPoint = 0;
points = Table[{dt(i− 1.), x0}, {i, 1, steps + 1}];
For[j = 0, j ≤ steps− 1, j++,

δt = stepAdapt[func, xPoint, tPoint,dt, error];
tPoint = δt + tPoint;
{xPoint5, xPoint} = CKStep[func, xPoint, tPoint, δt];
points[[j + 2]] = {tPoint, xPoint};

];
Return[points];

]
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11.2 Charged Orbital Analysis

OrbitalAnalysisCharged[l , e , κ ,R ,dt , steps , error ]:=
Module[{x0,ff, list, rlist, θlist, rmin, rmax, p, ε, r0, index, η},
x0 = x/. NSolve

[
e =

√
l2+x2

x − κ
Rx + κ

x2 − 1
x − 1, x

]
[[2]];

ff(r , t ):=

r[[2]],
(2r[[1]]3)

((
e− κ

2r[[1]]2
+ κ
Rr[[1]]

+ 1
r[[1]]

+1
)2
−1

)
l2 −

r[[1]]4
(
− κ
r[[1]]3

+ κ
Rr[[1]]2

+ 1
r[[1]]2

)(
e− κ

2r[[1]]2
+ κ
Rr[[1]]

+ 1
r[[1]]

+1
)

l2 − r[[1]]

}
;

list = AdaptiveStepRK4 (ff, {x0, 0} ,dt, steps, error) ;
rlist = Table[list[[i, 2, 1]], {i, 1,Length[list]}];
If[¬rlist ∈ R,Return[{Null,Null,Null}]];
θlist = Table[list[[i, 1]], {i, 1,Length[list]}];
rmin = min[rlist];
rmax = max[rlist];
p = rmin

rmax ;

ε = 1−p
p+1 ;

r0 = rmin(ε+ 1);
index = {};
For[i = 3, i < Length[rlist]− 2, i++,

If[rlist[[i]] > rlist[[i+ 2]] ∧ rlist[[i]] > rlist[[i+ 1]] ∧ rlist[[i]] > rlist[[i− 1]] ∧ rlist[[i]] > rlist[[i− 2]],
AppendTo[index, i]

];
];
η = 2π

Mean[Differences[Table[θlist[[index[[i]]]],{i,1,Length[index]}]]] ;

Return[{r0, ε, η}];
]
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11.3 GR Orbital Analysis

OrbitalAnalysisGR[l , e ,dt , steps , error ]:=
Module[{x0,ff, list, rlist, θlist, rmin, rmax, p, ε, r0, index, η},
x0 = max

[
r/. NSolve

[
e = − l2

r3 + l2

2r2 −
1
r , r
]]

;

ff(r , t ):=
{
r[[2]], 1

l2 + 3r[[1]]2 − r[[1]]
}

;

list = AdaptiveStepRK4
(
ff,
{

1
x0 , 0

}
,dt, steps, error

)
;

rlist = Table
[

1
list[[i,2,1]] , {i, 1,Length[list]}

]
;

If[¬rlist ∈ R,Return[{Null,Null,Null}]];
θlist = Table[list[[i, 1]], {i, 1,Length[list]}];
rmin = min[rlist];
rmax = max[rlist];
p = rmin

rmax ;

ε = 1−p
p+1 ;

r0 = rmin(ε+ 1);
index = {};
For[i = 3, i < Length[rlist]− 2, i++,

If[rlist[[i]] > rlist[[i+ 2]] ∧ rlist[[i]] > rlist[[i+ 1]] ∧ rlist[[i]] > rlist[[i− 1]] ∧ rlist[[i]] > rlist[[i− 2]],
AppendTo[index, i]

];
];
η = 2π

Mean[Differences[Table[θlist[[index[[i]]]],{i,1,Length[index]}]]] ;

Return[{r0, ε, η}];
]
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