Comb	ined	DID	W/	Year	Dur	nmie	es	Coı	nbined	Koy	ck]	Mode!	lw/	Year
C02Emissions	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval	Sig		C02Emissions	Coef.	Std.E rr.	Z	P>z	[95%Conf
y90taxed	-1.11	.365	-3.04	.003	-1.832	389	***		C02Emissions					
Taxed	-1.461	.376	-3.88	0	-2.205	716	***		C02Emissions					
Coal	11.168	1.541	7.25	0	8.122	14.215	***		L1.	0.338		12.630	0.000	0.285
Gas	14.256	2.442	5.84	0	9.426	19.085	***				0.02			
Hydro	-5.286	.649	-8.14	0	-6.569	-4.002	***				7			
Nuclear	-1.351	.604	-2.24	.027	-2.545	157	**							
Wind	-40.826	5.454	-7.49	0	-51.611	-30.04	***		CarbonTaxRate	0.010		1.280	0.199	-0.006
Oil	4.925	.453	10.86	0	4.028	5.821	***				0.00			
Biofuelstwh	.225	.04	5.66	0	.147	.304	***				8			
Constant	8.567	.701	12.22	0	7.181	9.954	***		Coal	16.156	1.33	12.130	0.000	13.546
Mean dependent v	ar			dependent v		207					2			
R-squared		0.949 Number of obs 196.000					Gas	17.738		8.280	0.000	13.537		
F-test		41.	808 Pro	b > F	0.	000					2.14			
*** p<.01, ** p<.05	5, * p<.1										3			
a		~		e e e e e e	E AG				Hydro	-0.777	0.36	-2.140	0.032	-1.488
da.		Count			4.1010	n d			Solar	-81.895	5.15 1	-15.900	0.000	-91.991
		ıt Cou Denn		THE RESIDENCE OF STREET	'IIII'a	ma,			Wind	-32.665	5.99 5	-5.450	0.000	-44.414
Sweden, Denmark General Policy									Oil	2.044	0.29 9	6.840	0.000	1.458
Impl	lemei	ntatio	n- 1	990							P W			
			<u>.</u>			S	we	den	Event S	Study				

.....

95% CI

Finland Event Study

Point Estimate

Using Difference-in-Differences Analysis and the Kocyk Geometric Lag Model to Estimate Aspects Carbon Tax Effectiveness in Nordic Countries By Kyle C. Riley

Difference-in-Differences:

- Way to simulate semi-scientific experiment
- y90Taxed is the interaction term
- Taxed dummy variable applied at country level

Koyck Geometric Lag:

- Are taxes losing effectiveness based on a price level rise?
- L1 is the lagged variable of interest
- Value of 1 needs to be 0-1

Dummies

Interval]

0.390

0.026

18.766

21.939

-0.065

-71.799

-20.916

2.630

Denmark Event Study

Point Estimate

40

• Coefficient of .338 implies decaying rate each year

Conclusions:

- Individual country tests give mixed results
- Finland big driver of combined models results
- Potential issues of model power with year dummies in individual models
- Access to monthly emissions data would greatly improve power
- Need different controls to apply model ideas to Low-Middle income nations
- Would be interesting to look at new type of carbon taxes
- Could be done w/ Micro-level industry data