Applications of Covering Sets

Casey Bruck

Union College

bruckc@union.edu

May 12, 2018

Casey Bruck (Union College) [Applications of Covering Sets](#page-23-0) May 12, 2018 1/18

4 0 8

 \sim

э

- **1** History behind Covering Sets
- 2 Mathematical Background
- **3** Example Coverings
- **4** What I did for Research

4 0 8

Polignac Conjecture - 1849

Every odd integer k can be written as $2^n + p$, where p is an odd prime and n is a positive integer.

4 0 8

Polignac Conjecture - 1849

Every odd integer k can be written as $2^n + p$, where p is an odd prime and n is a positive integer.

Counterexamples

Polignac's Conjecture was easily proved to be false via 127 and 509, but the problem was not completely discarded and provoked further thought into the subject.

- \bullet Paul Erdős, 20th century Hungarian mathematician.
- Introduced and developed the theory behind covering sets.
- Proved there are infinitely many counterexamples to Polignac's conjecture.
- Covering sets are now used to explore variations of the Polignac conjecture, some involving the Fibonacci numbers due to the special properties they possess.

Definition

A finite covering set of the integers is a system of congruences $n \equiv r_i$ mod m_i , with $1\leq i\leq t$, such that every integer n satisfies at least one of the congruences. To avoid trivial solutions we want $m_i > 1$ for all *i*.

Definition

A finite covering set of the integers is a system of congruences $n \equiv r_i$ mod m_i , with $1\leq i\leq t$, such that every integer n satisfies at least one of the congruences. To avoid trivial solutions we want $m_i > 1$ for all *i*.

Example

A complete residue system mod p.

 $n \equiv 0 \mod p$ $n \equiv 1 \mod p$. . .

 $n \equiv p - 1 \mod p$

We can write this covering set as $\{(0, p), (1, p), \ldots, (p-1, p)\}.$

(□) (f)

Extra Conditions

We are building these sets as a system of triples $(r_i, m_i, p_i)_{i=1}^{i=t}$ with the properties

- **1** The set $\{(r_i, m_i)\}_{i=1}^{i=t}$ is a covering set of the integers.
- \bullet $p_1, p_2, ..., p_t$ are all distinct odd primes which play an auxiliary role.
- **3** $L = \prod_{i=1}^{i=t} m_i$ is the least common multiple (LCM) of the covering.

つへへ

Do there exist infinitely many positive integers k such that $k - 2^n$ is composite for all integers $n \geq 0$?

4 0 8

Do there exist infinitely many positive integers k such that $k - 2^n$ is composite for all integers $n \geq 0$?

Erdős's Covering for $2^n \pm p$

Erdős used a covering set in which $\mathit{ord}_{p_i}(2) = m_i$, where $\mathit{ord}_{p}(2)$ denotes the multiplicative order of 2 modulo p , the smallest positive integer m such that $2^m \equiv 1 \mod p$.

 $\{(0, 2, 3), (0, 3, 7), (1, 4, 5), (3, 8, 17), (7, 12, 13), (23, 24, 241)\}\$

Do there exist infinitely many positive integers k such that $k - 2^n$ is composite for all integers $n \geq 0$?

 $\{(0, 2, 3), (0, 3, 7), (1, 4, 5), (3, 8, 17), (7, 12, 13), (23, 24, 241)\}\$

Do there exist infinitely many positive integers k such that $k - 2^n$ is composite for all integers $n \geq 0$?

 $\{(0, 2, 3), (0, 3, 7), (1, 4, 5), (3, 8, 17), (7, 12, 13), (23, 24, 241)\}\$

What Each Triple Means

- Take the triple $(1, 4, 5)$ in the covering.
- $4 = \text{ord}_5(2)$ so $2^4 \equiv 1 \text{ mod } 5$.
- When $n \equiv 1$ mod 4 we want $k 2^n \equiv 0$ mod 5.
- $k-2^1\equiv 0$ mod $5 \implies k\equiv 2$ mod 5.

Full System of Congruences

 $k \equiv 1 \mod 3$, $k \equiv 1 \mod 7$, $k \equiv 2 \mod 5$

 $k \equiv 8 \mod 17$, $k \equiv 11 \mod 13$, $k \equiv 121 \mod 241$

Finding a Solution

Now that we have a system of congruences for k we apply the Chinese Remainder Theorem to the system, with $k \equiv 1 \mod 2$ as well, to get infinitely many solutions $k \equiv 7629217 \mod 11184810$.

Fibonacci

Fibonacci Numbers

The Fibonacci numbers are a sequence of numbers where $F_0 = 0, F_1 = 1$ and for all $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$.

 $F = \{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...\}$

4 0 8

Fibonacci

Fibonacci Numbers

The Fibonacci numbers are a sequence of numbers where $F_0 = 0, F_1 = 1$ and for all $n > 2$, $F_n = F_{n-1} + F_{n-2}$.

 $F = \{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...\}$

Pisano Period

The n^{th} Pisano Period, denoted by $\pi(n)$, is the period with which the sequence of Fibonacci Numbers modulo n repeats.

Example

Let F be the Fibonacci Numbers, so $F = \{0, 1, 1, 2, 3, ...\}$. Then $\pi(2) = 3$ since F mod $2 = \{0, 1, 1, 0, 1, 1, ...\}$.

∢ □ ▶ ⊰ _□ ▶ ⊰ ∃ ▶ ⊰

Jones's Covering

In 2012, Lenny Jones proved there are infinitely many positive integers that cannot be written as $\mathcal{F}_n \pm \rho$ where \mathcal{F}_n is the n^{th} Fibonacci number and p is a prime.

Jones's Covering

In 2012, Lenny Jones proved there are infinitely many positive integers that cannot be written as $\mathcal{F}_n \pm \rho$ where \mathcal{F}_n is the n^{th} Fibonacci number and p is a prime.

 $\mathcal{C} = \{(0,3,2), (0,8,3), (1,10,11), (6,14,29), (6,16,7), (5,18,19),$ $(3, 20, 5), (2, 28, 13), (19, 30, 31), (12, 32, 47), (29, 36, 17),$ $(27, 40, 41), (22, 42, 211), (20, 48, 23), (5, 50, 101), (45, 50, 151),$ $(35, 54, 5779), (18, 56, 281), (37, 60, 61), (0, 70, 71), (12, 70, 911),$ $(47, 72, 107), (14, 80, 2161), (10, 84, 421), (89, 90, 181), (85, 90, 541),$ $(92, 96, 1103), (13, 100, 3001), (53, 108, 53), (17, 108, 109),$ $(42, 112, 14503), (7, 120, 2521), (40, 126, 1009), (124, 126, 31249),$ $(42, 140, 141961), (100, 144, 103681), (85, 150, 12301), (115, 150, 18451),$ $(78, 160, 1601), (46, 160, 3041), (50, 162, 3079), (140, 162, 62650261),$ $(122, 168, 83), (50, 168, 1427), (73, 180, 109441), (75, 200, 401),$

 Ω

イロト イ押ト イヨト イヨト

```
(175, 200, 570601), (110, 210, 21211), (196, 210, 767131),(4, 216, 11128427), (158, 224, 10745088481), (193, 240, 241),
(133, 240, 20641), (82, 252, 35239681), (29, 270, 271), (17, 270, 811),
(119, 270, 42391), (209, 270, 119611), (154, 280, 12317523121),
(28, 288, 10749957121), (25, 300, 230686501), (124, 324, 2269),
(232, 324, 4373), (148, 324, 19441), (26, 336, 167), (206, 336, 65740583),(98, 350, 54601), (168, 350, 560701), (28, 350, 7517651),(238, 350, 51636551), (133, 360, 10783342081), (88, 378, 379),(130, 378, 85429), (214, 378, 912871), (52, 378, 1258740001),
(393, 400, 9125201), (153, 400, 5738108801), (278, 420, 8288823481),(292, 432, 6263), (196, 432, 177962167367), (215, 450, 221401),(35, 450, 15608701), (335, 450, 3467131047901),(446, 480, 23735900452321), (268, 504, 1461601), (436, 504, 764940961),
(107, 540, 1114769954367361), (306, 560, 118021448662479038881),
(73, 600, 601), (433, 600, 87129547172401), (92, 630, 631),
(476, 630, 1051224514831), (260, 630, 1983000765501001),
```

```
(340, 648, 1828620361), (364, 648, 6782976947987),(638, 672, 115613939510481515041), (658, 700, 701),
(474, 700, 17231203730201189308301), (13, 720, 8641),
(515, 720, 13373763765986881), (700, 756, 38933),
(472, 756, 955921950316735037), (715, 800, 124001), (315, 800, 6996001),
(782, 800, 3160438834174817356001), (742, 810, 1621), (94, 810, 4861),
(580, 810, 21871), (418, 810, 33211), (256, 810, 31603395781),
(34, 810, 7654861102843433881), (194, 840, 721561),
(266, 840, 140207234004601), (508, 864, 3023), (412, 864, 19009),
(14, 864, 447901921), (686, 864, 48265838239823),
(242, 900, 11981661982050957053616001), (46, 1008, 503),(494, 1008, 4322424761927), (830, 1008, 571385160581761),
(302, 1050, 1051), (722, 1050, 9346455940780547345401),
(512, 1050, 14734291702642871390242051), (590, 1080, 12315241),
(950, 1080, 100873547420073756574681), (942, 1120, 6135922241),
(270, 1120, 164154312001), (750, 1120, 13264519466034652481),
(428, 1134, 89511254659), (680, 1134, 1643223059479),
(806, 1134, 68853479653802041437170359),
(1058, 1134, 5087394106095783259)\}.
```
GB 11

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

BJLM Theorem

There exist infinitely many positive integers k such that

$$
k(2^n + F_n) \pm 1
$$

is composite for all integers $n \geq 0$.

 $C = \{(1,3,2), (2,3,2), (0,4,3), (3,8,3), (5,8,3), (2,10,11), (9,18,19),$ $(15, 18, 19), (9, 20, 5), (14, 20, 5), (3, 30, 31), (6, 30, 31), (18, 40, 41), (33, 48, 7),$ $(6, 48, 7), (21, 60, 61), (30, 60, 61), (39, 72, 17), (165, 180, 181),$ $(57, 240, 241), (78, 240, 241)$

contains 21 ordered triples, with $L = 720$.

Problem

Do there exist infinitely many positive integers k such that $k^2(2^n+F_n)+1$ is composite for all integers $\ge 0?$

Strategy

Finding a covering with the following requirements:

- \bullet p_i divides $2^{m_i}-1$,
- **3** m_i is a multiple of $\pi(p_i)$,
- \bigcirc $(2^n + F_n) \neq 0$ mod p,
- $\Phi^--(2^n+F_n)^{-1}$ to be a Quadratic Residue mod p.

 QQ

K @ ▶ K 경 ▶ K 경

4 D F

```
C = \{(1,3,2), (2,3,2), (18,24,3), (2,8,3), (0,20,5), (7,20,5), (9,20,5),(14,20,5),(1,48,7),(3,48,7),(14,48,7),(22,48,7),(23,48,7),(26,48,7),(31,48,7),(34,48,7),(41,48,7),(45,48,7),(6,10,11),(6,72,17),(18,72,17),(23,72,17),(33,72,17),(40,72,17),(43,72,17), (9,18,19),(15,18,19),
  (5,30,31), (25,30,31),(27,30,31),(2,40,41), (11,40,41),(33,40,41),
   (21,60,61),(30,60,61),(60,180,181),(99,180,181),(138,180,181),
              (163,180,181),(12,240,241),(83,240,241),
             (105,240,241),(108,240,241),(143,240,241)}
```
Approaching the Problem

What I Tried

- Choose *L* early in the problem solving process.
- Smart choice of r_i , avoid 1 where possible.

```
F mod n = \{0, 1, 1, \dots, 1\}
```
Use computer programs to help determine if a given list of triples is a covering, what r_i values occur most frequently.

Obstacles

- No closed formula for Pisano Periods.
- Do not want a covering to be too large.

Looking Forward

Create a program to search for out the r_i, m_i r_i, m_i r_i, m_i for a given L and p .

Thank You

重

 \rightarrow \mathcal{A}

K ロ ▶ K 御 ▶ K 舌

重